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Abstract—Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for

the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically

construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning

motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In

the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the

cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm

for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern

is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to

detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic

scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for

learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

Index Terms—Tracking multiple objects, learning statistical motion patterns, anomaly detection, behavior understanding.
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1 INTRODUCTION

INTELLIGENT visual surveillance is an important facet of
computer vision research. One of the most important

goals of visual surveillance systems is to track objects and
further analyze their behaviors in order to detect anomalies,
predict future behaviors, or predict potential abnormal
behaviors before they occur. Analysis of motion patterns is
an effective approach for anomaly detection and behavior
prediction. For the most part, objects in the scene do not
move randomly. Instead, they usually follow specific
motion patterns. Knowledge of motion patterns can be
used to detect anomalous object motions and predict
behaviors. Current tracking systems mainly base their
analysis of motion patterns on a predefined classification
of tracked data. For instance, Collins et al. [8] allocate
detected objects to semantic categories such as human,
human group, and vehicle. Further classification of human
behaviors, such as walking and running, has been achieved.
Davis et al. [10] model and recognize a set of behaviors:
walking, marching, line-walking, and kicking while walk-
ing. However, in most applications, motion patterns of
objects cannot be easily predefined. A more appropriate
method is to automatically construct object motion patterns
which reflect the inherent properties of the scene, without
the assumption of any prior knowledge.

Although the automatic construction of motion patterns is
a newly emergent research topic, some pioneering investiga-
tions of this problem have already been made. Johnson and
Hogg [20] learn probability density functions of object
trajectories generated from image sequences. The movement
of an object is described in terms of a sequence of flow vectors,
where each vector consists of four elements representing the
position and velocity of the object in the image plane. The
patterns of object trajectories are formed with two competi-
tive learning networks which are connected by leaky
neurons. Both of the neural networks are learned using
vector quantization. Johnson [19] describes the enhancement
of the model developed in [20] to include generative
capabilities via the superimposition of learned prediction
schemes. In Johnson’s work, the number of different
behaviors is not estimated and the detection probability
theory is not used to identify anomalies and predict motions.
Stauffer and Grimson [42] learn motion patterns using real-
time tracking. Their method involves developing a codebook
of representations using an online vector quantization on the
entire set of representations acquired by the tracker. Joint
cooccurrence statistics are accumulated over the codebook by
treating the set of representations in each sequence as an
equivalency multiset. Finally, a hierarchical classification is
performed using only the accumulated cooccurrence data. In
Stauffer and Grimson’ work, the linking relationship between
successive positions in a trajectory is not represented in the
joint cooccurrence statistics. It is unclear how to detect
anomalies using motion patterns. Motion prediction is not
involved. Sumpter and Bulpitt [43] present a novel approach
for learning long-term spatial-temporal patterns of object
motions in image sequences using a neural network para-
digm to predict future behaviors. As in [20], they use two
neural networks. The first network and the input vector
components to the second network are the same as in [20].
They introduce feedback to the second network giving an
effective prediction of object behaviors. However, the
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number of input vector components and the number of
output neurons in the second network remain equal to the
number of flow vectors, so the learning efficiency inevitably
decreases when the size of the network increases. Further-
more, this neural network structure cannot be used to detect
abnormal behaviors. Owens and Hunter [35] determine
whether a point on a trajectory is normal using the
distributions of flow vectors. Their method does not
represent patterns of trajectories, so it can neither recognize
behaviors represented by trajectories nor predict them.
Bennewitz et al. [2] propose a method for learning motion
patterns of people. Data recorded with laser range finders are
clustered. Based on the clustering result, a Hidden Markov
Model is derived. This Hidden Markov Model is used to
predict positions of people from the learned motion patterns.
In the method, a linear interpolation is used to ensure that the
input trajectories, which are directly used to learn motion
patterns, have the same number of positions. This interpola-
tion approximates to the sampling of trajectories at a uniform
distance interval. The sequential information is omitted. The
assumption in [2] that the Gaussian distributions for different
positions on different patterns all have a fixed standard
deviation does not properly reflect the distribution char-
acteristics of motion patterns. Anomaly detection and long-
term prediction are not considered. In the experiments, the
proposed method is only tested on very small sets of
trajectories. Zhong et al. [52] detect anomalies with compar-
ison between behaviors but without learned motion patterns.
Ellis et al. [12], [25], [26] develop a praiseworthy method for
learning entry/exit zones and routes from trajectory samples.
The start/end points of trajectories are used to learn entry/
exit zones applying the Expectation-Maximization algo-
rithm. For the learning of routes, a new trajectory is compared
with all routes already in the database using a simple distance
measure. If a match is found, the trajectory is added to the
matching route and the route is updated. Otherwise, a new
route is initialized. The limitation of the method is that only
spatial information is used for trajectory clustering and
anomaly detection. Temporal information is not well
represented and, thus, behavior prediction is not covered.
Junejo et al. [22] apply graph cuts to cluster trajectories using
the Hausdorff distance to compare different trajectories and
calculate the edge weights of the similarity matrix. The
Hausdorff distance compares spatial information only and it
does not preserve sequential information. The Hausdorff
distance measure does not distinguish between objects
following the same route but heading in opposite directions.

While “learning motion patterns” and “learning routes
(or paths)” [22], [25] are alike, they differ in that even if
objects pass along the same route, they may produce
different behaviors (motion patterns). For example, a
vehicle may rush, move, or worm its way through a route;
a person may stroll, walk, or run through a route. These
behaviors are treated as different, even if they occur in the
same route. Motion patterns contain temporal information
which is necessary for the online detection of velocity-
related anomalies such as speeding vehicles and traffic
incidents and the prediction of future behaviors.

In this paper, we present a system for learning object
motion patterns which are then used to detect anomalies
and predict behaviors. Our system is original in the
following ways:

. Based on clustering foreground pixels using a fast
accurate fuzzy K-means algorithm, we propose a

new algorithm for robustly tracking multiple objects.
Growing and predictive adaptation are employed to
ensure that each cluster centroid is associated with a
moving object in the scene. Our algorithm does not
need accurate motion segmentation and does not
require a complex matching process.

. Based on the fuzzy K-means algorithm, we propose
a new hierarchical trajectory clustering method. In
the method, spatial information is used to cluster all
trajectories into some different trajectory categories,
each of which is further clustered into subcategories
with the temporal information. The number of
cluster centroids is estimated. The abnormal trajec-
tories in the sample set are processed.

. Based on the clustered trajectories, we learn the
characteristics of each motion pattern that is repre-
sented by a chain of Gaussian distributions whose
standard deviations are derived from the sample
trajectories.

. Based on the learned statistical motion patterns, we
use statistical theory, together with Bayes rule, to
detect anomalies and predict behaviors.

This paper is organizedas follows:Section2briefly reviews
the related work of behavior understanding. Section 3
describes the framework of our system. Section 4 introduces
our method for tracking multiple objects. Section 5 presents
our algorithm for clustering trajectories and learning statis-
ticalmotionpatterns.Section6coversourmethodforanomaly
detection and behavior prediction. Section 7 describes
experimental results. The last section summarizes the paper.

2 RELATED WORK

In the introduction, we reviewed the references which
concern construction of motion patterns in order to make
clear the motivation for this paper. In this section, the state of
the art in behavior understanding [15], [17] is reviewed. The
major existing methods for behavior understanding are
outlined as follows:

1. Principal Component Analysis (PCA). The PCA, as a
statistical approach, has been applied to the recogni-
tion of object behaviors. For instance, Yacoob and
Black [49] learn behavior models using PCA of a
number of exemplar actions.

2. Dynamic Time Warping (DTW). DTW is a template-
based dynamic programming matching technique
which has been used to match human movement
patterns. For instance, Bobick and Wilson [4] use
DTW to match an input signal to a deterministic
sequence of states.

3. Finite State Machine (FSM). The most important
feature of an FSM is its state-transition function.
Wilson et al. [47] analyze the explicit structure of
natural gestures where the structure is described by
an equivalent of a finite state machine.

4. Hidden Markov Models (HMMs). HMMs generally
outperform DTW in the processing of undivided
successive data and are therefore extensively applied
to behavior understanding. For instance, Starner et al.
[41] propose an HMM-based approach for the
recognition of sign language. Brand and Kettnaker
[6] show that, by minimizing the entropy of the joint
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distribution, observed behaviors can be organized
into meaningful states within an HMM. Oliver et al.
[34] propose and compare two different state-based
learning architectures, namely, HMMs and CHMMs
(Coupled Hidden Markov Models) for modeling
peoples’ behaviors and interactions. Nguyen et al.
[32] present an Abstract Hidden Markov Memory
Mode-based approach for recognizing high-level
human behaviors. Duong et al. [11] apply the Switch-
ing Hidden Semi-Markov Model to learn and recog-
nize human behaviors and detect anomalies.

5. Variable Length Markov Models (VLMMs). Unlike
HMMs, VLMMs can capture behavioral dependen-
cies that may have a variable or long time scale.
Galata et al. [14] propose a method for automatically
acquiring stochastic models of a behavior. VLMMs
are used for the efficient representation of behaviors.

6. Time Delay Neural Network (TDNN). In TDNN,
delay units are added to a general static network,
and some of the preceding values in a time-varying
sequence are used to predict the next value. TDNN
has been successfully applied to hand gesture
recognition [50] and lip-reading [29].

7. Grammar Techniques (GT). Based on low level
features detected by standard independent probabil-
istic temporal behavior detectors, a grammar provides
longer-range temporal constraints and disambiguates
uncertain low-level detections, etc. Brand [5] uses a
simple nonprobabilistic grammar to recognize se-
quences of discrete behaviors. Ivanov and Bobick [18]
describe a probabilistic grammar approach for the
detection and recognition of temporally extended
behaviors and interactions between multiple objects.
Minnen et al. [30] present a system that uses human-
specified grammars to recognize a person performing
the Towers of Hanoi task from a video sequence by
analyzing object interaction behaviors.

8. Bayesian Networks (BNs). BNs offer many advan-
tages for using prior knowledge and modeling the
dynamic dependencies between parameters of object
states. Town [44] uses an ontology to train the
structure and parameters of Bayesian networks for
behavior recognition. Park and Aggarwal [37] de-
scribe a framework for recognizing human actions
and interactions. In the framework, the poses of
individual body parts are recognized using individual
Bayesian networks, and the actions of a single person
are modeled using a dynamic Bayesian network.

9. Statistical Shape Theory (SST). SST is an effective
tool for analyzing object behaviors. Vaswani et al.
[45] model a behavior by the polygonal “shape” of
an associated configuration of point objects and its
deformation over time. Both “drastic” and “slow”
anomalies can be detected.

10. Nondeterministic Finite Automaton (NFA). Wada
and Matsuyama [46] employ NFA as a sequence
analyzer. They present an approach for multiobject
behavior recognition based on behavior-driven
selective attention.

3 OVERVIEW OF OUR SYSTEM

The automatically modeling of object behaviors without the
assumption of any prior knowledge is an unsolved problem
for current vision techniques. However, given a set of object
trajectories, we can automatically construct statistical
motion patterns, which are further used to detect anomalies
and predict object future behaviors.

Fig. 1 gives an overview of our motion analysis system
which is composed of four main modules: tracking of
multiple objects, learning of statistical motion patterns,
detection of anomalies, and prediction of future behaviors.
The module for tracking multiple objects is implemented by
clustering foreground pixels in each image frame and
comparing pixel distributions between successive images.
The outputs of this module are object trajectories and
features (such as color, size, etc.). These outputs form the
sample data for learning motion patterns. After enough
sample data are acquired, object motion patterns are
learned using a hierarchical trajectory clustering based on
the fuzzy K-means algorithm. In the motion patterns, each
pattern is represented by a chain of Gaussian distributions,
and statistical descriptions of typical motion patterns are
then formed. In the module for anomaly detection, we
calculate the probabilities of the matching between ob-
served behaviors and the learned motion patterns and then
calculate the probability values of abnormality of the
observed behaviors. In the module for behavior prediction,
partial trajectories are matched to the learned motion
patterns, and future behaviors are stochastically inferred.

4 TRACKING OF MULTIPLE OBJECTS

While the motivation of our system is to investigate the
learning of motion patterns, the detection of anomalies, and
the prediction of object future behaviors, these important
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tasks are based on the tracking of moving objects. In this
paper, we focus on real traffic scenes where there are many
vehicles and mutual occlusions between multiple vehicles.
While there exist some algorithms [23], [24], [28], [31], [39],
[51] for tracking multiple objects, most of them fail due to
the complexity of motions in crowded traffic scenes. In this
paper, a new fuzzy clustering-based tracking algorithm is
proposed to robustly track multiple vehicles. This algorithm
is based on the principle that a moving object is always
associated with a cluster of pixels in the feature space and
the features of each cluster change only slightly between
consecutive frames [16], [38]. Fig. 2 illustrates the frame-
work of our tracking algorithm. On the basis of background
subtraction and feature extraction, a fast accurate fuzzy
K-means algorithm is used to cluster foreground pixels.
Each cluster centroid corresponds to a moving object or a
part of a moving object. The clustering results of the current
frame, as the most important information, participate in the
initialization of the cluster centroids of foreground pixels in
the subsequent frame. A cluster centroid j in the subsequent
frame and the cluster centroid in the current frame, which
participates in the initialization of cluster centroid j, both
correspond to the same object or the same part of an object.
In the algorithm, clusters grow dynamically: They are
created or are erased. A predication algorithm is used to
integrate previous clustering results to ensure that the
initial values of cluster centroids in the subsequent frame
are close to the true object clusters.

4.1 Extraction of Foreground Pixels

In our clustering-based tracking algorithm, only the fore-
ground pixels are clustered. Background modeling and
subtraction are performed to extract foreground pixels.
The background image is updated by integrating the
current image �current into the current background Bcurrent:
Bupdated ¼ ð1� �ÞBcurrent þ ��current, where Bupdated is the
estimated background image and � is an adaptation
coefficient. By computing the difference between corre-
sponding pixels in �current and Bcurrent, foreground pixels in
the current frame are identified.

4.2 Acquisition of Pixel Features

In this algorithm, each foreground pixel is described with a
feature vector f containing its coordinates ðx; yÞ, velocity

ðvx; vyÞ, and color in the RGB space ðr; g; bÞ: f ¼ ðx; y; wv �
vx; wv � vy; wc � r; wc � g; wc � bÞ, where the weighting factor wc
describes the relation between color and position, andwv that
betweenvelocityandposition. (Inourexperiments,wechoose
wc to be 0.1 andwv to be 2 with the 320� 240 image size.)

Compared with coordinate and color features, velocity
features are difficult to acquire. Velocity can be estimated
using an optical flow-based algorithm [3]. In our method,
optical flow is computed by windowed correlation. For a
foreground pixel p (p ¼ ðx; yÞ) in the current frame and a
foreground pixel p� (p� ¼ ðx�; y�Þ) in the previous frame
(p� 2 RðpÞ, where RðpÞ is a search region around p), their
dissimilarity is measured by:

Dðp; p�Þ ¼
XN
i¼�N

XN
j¼�N

Iðxþ i; yþ jÞ � I�ðx� þ i; y� þ jÞj j; ð1Þ

where N defines the radius of the neighborhood patch of a
pixel, I is the intensity in the current frame, and I� is the
intensity in the previous frame. Here, the Sum of Absolute
Differences (SAD) is used to replace the correlation in [9],
[27] due to the simplicity of implementation of SAD. Then,
we find the point p� defined by:

p� ¼ arg min
p�2RðpÞ

Dðp; p�Þ: ð2Þ

The optical flow at p can be estimated as p�p
�!, and the

velocity ðvx; vyÞ can be described as the projection of the
optical flow to the x, y coordinate axes.

It is should be mentioned that a patch-based approach for
optical flow estimation works well for patches containing
“corner-like” intensities. In our experiments, a crowded
traffic scene is considered where vehicles are relatively small
and their constructions are complex. There exist “corner-like”
intensities in the patches when the radius of the patches is
properly selected. In addition, we only estimate the optical
flow for foreground pixels. This greatly reduces the compu-
tational cost, compared with the methods which estimate the
optical flow for all pixels in the current frame.

4.3 Clustering of Foreground Pixels

After the pixel features are acquired, foreground pixels are
clustered in the feature space. In order to improve the speed
of the clustering process, we introduce a component
quantization filtering to merge similar pixels. Then, the
fuzzy K-means algorithm [1], [7], [13], [36] is applied to
cluster merged foreground pixels.

4.3.1 Component Quantization Filtering

In component quantization filtering, the image plane is
partitioned into square regions with equal size. The features
in each square are represented by a “representative sample
vector”Xi which is equal to the mean of the feature vectors of
the foreground pixels in the region, and associated with a
weight wi which is the number of foreground pixels in the
region.

The component quantization filtering has the following
functions:

. Some noisy samples are filtered out before clustering.

. The representative sample vectors fXig give a
reduced and precise view of the original pixel
feature data set.

. The time needed for clustering can be reduced.
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4.3.2 Fuzzy K-means Algorithm

The representative samples fXig are clustered using the
weighting fuzzy K-means algorithm which is modified to
support weighted feature vectors.

Let M denote the number of representative samples, N
the dimension of the representative sample vectors, and K
the number of cluster centroids. Cluster centroid j
(j ¼ 1; . . . ; K) is represented by an N-dimensional vector
Vj. In the first frame, the initial values (Vjð0Þ, 1 � j � K) of
the cluster centroid vectors are randomly selected. In other
frames, the values of Vjð0Þ are derived from the clustering
results of the previous frames.

Given all representative sample vectors fXlg (1 � l �M),
the degree of membershipRlj of each sample l to each cluster
centroid j is computed by:

Rlj ¼
1= Xl � Vj
�� ��2

PK
m¼1

ð1= Xl � Vmk k2Þ
; 1 � l �M; 1 � j � K: ð3Þ

From (3), we can see that, the less the Euclidean distance
between a sample and a cluster centroid, the more the
membership of the sample to the cluster centroid.

According to the computed memberships, each cluster
centroid vector is updated by:

Vjðtþ 1Þ ¼ VjðtÞ þ

PM
l¼1

RljðtÞ � wl � ðXl � VjðtÞÞ

PM
l¼1

RljðtÞ � wl
; 1 � j � K;

ð4Þ

where wl is the weight associated with representative
sample vector l. From (4), we can see that, for a
representative sample and a cluster centroid, the more
their membership or the more weight associated with the
sample, the more the sample contributes to the adjustment
of the value of the cluster centroid vector.

It should be pointed out that in our algorithm the
number of clusters is adjusted dynamically (see Section 4.4),
making it possible to arrive at the correct number of clusters
even when the number of clusters in the first frame is not
correctly chosen.

4.4 Dynamic Growing of Cluster Centroids

Cluster centroids are created or erased as objects enter or
leave the scene. This is called the dynamic growing of
cluster centroids.

4.4.1 Creation of Cluster Centroids

In order to create cluster centroids, we manually define
“entering regions” where objects enter the scene. Within
each entering region, we find a subset of samples < where
the Euclidean distance between each of these samples and
its associated cluster centroid j exceeds a threshold �j. If the
number of such samples is large enough to represent an
object, a new entering event is detected. If the number of
these samples can represent � objects, � new cluster
centroids are created and trained using the sample set <.
We use the information in the previous frame to evaluate
the threshold �j. In the previous frame, we find the cluster
centroid j� corresponding to the cluster centroid j in the

current frame and all samples best matching cluster
centroid j�. We calculate the Euclidean distances between
these samples and cluster centroid j� and select the
maximum of these distances as threshold �j.

4.4.2 Erasure of Cluster Centroids

In order to implement the erasure of cluster centroids, we
manually define “leaving regions” where objects leave the
scene. Cluster centroid j is erased if the following two
points are satisfied:

. The position of cluster centroid j is within a leaving
region.

. The number of the samples corresponding to cluster
centroid j is too small to represent the smallest object
in the scene.

It is noted that manual definition of the entering or
leaving regions increases the robustness of the cluster
growing. Entering or leaving regions are not identified
automatically using knowledge of the object positions in the
image because 1) entering or leaving regions sometimes are
not beside the image edges, for example, at the boundary of
a static object such as a building and 2) even if these regions
are beside the image edges, the decision as to whether an
object is in one of the regions depends on a distance
threshold which also should be defined manually.

4.5 Prediction of Cluster Centroids

For a cluster centroid in the current frame, a prediction
algorithm is used to produce the initial value for the
corresponding cluster centroid in the next frame. This
prediction is based on information from current and
previous frames about the cluster centroids which corre-
spond to the same object or the same part of an object. This
prediction not only expedites the convergence of the
clustering process in the next frame, but it also ensures
that each centroid in the current frame corresponds to a
correct foreground pixel cluster in the next frame.

The Kalman filter is usually a good candidate for a
prediction algorithm. In our work, many objects need to be
tracked simultaneously, so there is a high computational cost.
For this reason, we keep the computational cost of the tracking
algorithm as small as possible. In order to decrease the
computational cost, a fast prediction algorithm, the double
exponential smoothing-based prediction algorithm [21], is
selected. The running speed of the double exponential
smoothing-based prediction algorithm is faster than that of
the Kalman and extended Kalman filter-based predictors [21].

Given a cluster centroid vector at time t:ft
!

, its
predictive value at time tþ � is calculated from the
following formulae:

f�t
�! ¼ �ft!þ ð1� �Þf�t�1

��!
; ð5Þ

f��t
�! ¼ � f�t�!þ ð1� �Þf��t�1

��!
; ð6Þ

ftþ�
��! ¼ 2þ ��

ð1� �Þ

� �
f�t
�!� 1þ ��

ð1� �Þ

� �
f��t�1

��!
; ð7Þ

where f�t
�!

smoothes the sequence ft
!

and f��t
�!

smoothes the
sequence f�t

�!
. The degree of exponential decay is deter-

mined by the parameter � 2 ½0; 1Þ.
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4.6 Modeling of Trajectories

In our algorithm, the successive cluster centroids which
correspond to the same object or the same part of an object
are connected to form a centroid trajectory. Of course, there
may be objects which correspond to two or more cluster
centroids in one frame. So, centroid trajectories should be
grouped into object trajectories during the clustering. The
centroid trajectories with the same motion constraint should
be merged into one object trajectory. For two centroid
trajectories, if they exist over the same sequence of frames,
we calculate the distance between the two corresponding
centroids in each frame. If the difference of these distances
between any two successive frames is smaller than a
threshold (which is set to 5 pixels in our experiments), the
two centroid trajectories are merged. The merged trajectory
is the mean of the centroid trajectories.

During tracking, we can also acquire object size, shape,

texture, etc. In this paper, we select position, velocity, and size

as features of an object in a frame and, thus, a trajectory which

exists for n frames is represented as: T ¼ fF1; F2; . . . ;

Fi; . . . ; Fng, where Fi ¼ ðxi; yi; vxi ; vyi ; sizeiÞ. Fi is called a

“point feature vector.”

4.7 Remark

From the above description of our tracing algorithm, we can
see that, compared with traditional tracking algorithms,
ours does not depend on accurate motion segmentation and
complex matching between objects and motion regions.
When partial occlusions between moving objects occur,
these objects can still correspond to different cluster
centroids due to the different features of the pixels
corresponding to these objects. Prediction of cluster
centroids ensures that each centroid corresponds to the
correct object, even when this object is partially occluded.
So, our tracking algorithm is robust for tracking multiple
objects and, thus, suitable for crowded traffic scenes.

5 LEARNING OF MOTION PATTERNS

By tracking objects, a set of trajectories � ¼ fT1; . . . ;
Tl; . . . ; TMg is acquired, where M denotes the number of
sample trajectories and Tl the lth trajectory. These trajectories
are used to learn object motion patterns � ¼ f�1; . . . ;
�j; . . . ; �Cg, where C is the number of motion patterns, and
�j is the jth motion pattern. In this section, we describe the
proposed learning algorithm, which includes hierarchical
clustering of trajectories and acquisition of statistical motion
patterns.

5.1 Hierarchical Clustering of Trajectories

The aim of clustering trajectories is to assign similar
trajectories to the same cluster [33]. In order to handle a large
number of trajectories, we hierarchically cluster trajectories
according to different features. In our algorithm, the sample
trajectories are clustered with two layers, as shown in Fig. 3.
As trajectories belonging to different routes must be assigned
to different clusters, in the first layer of clustering, sample
trajectories are clustered into different routes according to
trajectory spatial information. In the second layer of cluster-
ing, trajectories belonging to the same route are further
clustered according to temporal information.

5.1.1 Spatial-Based Clustering

In the spatial-based clustering (i.e., the first layer of
clustering), all sample trajectories are input to the cluster-
ing algorithm. In order to ensure the efficiency of the
clustering, only coordinates of the points on each trajectory
are kept for clustering, as coordinate information is enough
to represent the spatial information of each trajectory. For
each trajectory Tl, we construct an intermediate trajectory
T �l to represent the spatial information of trajectory Tl. We
first cluster the intermediate trajectories using the fuzzy
K-means algorithm, and then cluster the original trajec-
tories according to the their correspondences with the
intermediate trajectories. Each intermediate trajectory T �l is
acquired through the following steps:

. Each intermediate trajectory T �l is a sequence of
coordinates chosen from the original trajectory Tl.

. Intermediate trajectories are resampled at larger time
intervals (once every �t frames), i.e., we keep points in
the intermediate trajectories at intervals of �t frames,
and remove those points between the kept points.

. Trajectories input to a clustering algorithm should
have the same length (the same number of points).
Each intermediate trajectory is linearly interpolated
with points to ensure that all the intermediate
trajectories have the same number L� of points.

The set of the acquired intermediate trajectories is repre-
sented by �� ¼ fT �1 ; . . . ; T �Mg.

In the fuzzy K-means-based algorithm for clustering the
intermediate trajectories, each cluster centroid directly
corresponds to a class of intermediate trajectories. Each
cluster centroid is represented by a vector whose dimension is
the same as the intermediate trajectories. The cluster centroid
vectors are initialized randomly and adjusted gradually to
form a mapping from input to output, which keeps the
distribution features of the intermediate trajectories.

Let K denote the number of cluster centroids and N the
dimension of cluster centroid vectors. Cluster centroid j

(j ¼ 1; . . . ; K) is denoted by a N-dimensional vector Vj. For
simplicity, each intermediate trajectory T �l is represented by
an N-dimensional vector Xl. The fuzzy membership Rlj of
each sample l to each cluster centroid j (l ¼ 1; 2; � � � ;M,
j ¼ 1; 2; � � � ; K) is computed using (3). Cluster centroid
vectors are updated iteratively using the following formula:
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Vjðtþ 1Þ ¼ VjðtÞ þ
PM

l¼1 RljðtÞ � ðXl � VjðtÞÞPM
l¼1 RljðtÞ

ð8Þ

until the following stability condition is satisfied:

max
1�j�K

Vjðtþ 1Þ � VjðtÞ
�� ��� �

< ": ð9Þ

Note that (8) is similar to (4) except that the weight term in
(4) representing the number of pixels in a representative
sample vector is absent in (8).

The quality of clustering results is automatically measured
using the Tightness and Separation Criterion [48] (TSC):

TSCðV ;KÞ ¼
1
M

PK
j¼1

PM
l¼1 R

2
lj Xl � Vj
�� ��2

minj1;j2
Vj1
� Vj2

�� ��2 : ð10Þ

The criterion TSCðV ;KÞ is the ratio of the mean of the square
of the distance between each input sample and its corre-
sponding cluster centroid, to the minimum distance between
any two cluster centroids. The clustering result should make
the distances between the cluster centroids as large as
possible, and the distance between an input sample and its
corresponding cluster centroid as small as possible. We
estimate the number of cluster centroids by checking whether
TSCðV ;KÞ can be reduced by increasing or decreasing the
number of cluster centroids. The estimated number of
clusters corresponds to the minimum of TSCðV ;KÞ.

In addition, the minimum number of samples corre-
sponding to a cluster centroid is specified as a parameter for
the clustering algorithm. If a cluster contains less than the
required minimum number of samples, the cluster is
merged into its nearest neighboring cluster. This avoids
that the clustered results overfit some samples.

Corresponding to the clustering result of the intermedi-
ate trajectories, the set of original trajectories � ¼
fT1; . . . ; TMg is clustered into K subsets:

� ¼ffT1;1; . . . ; T1;M1
g; . . . ;

fTi;1; . . . ; Ti;Mi
g; . . . ; fTK;1; . . . ; TK;MK

gg;
ð11Þ

where Mi denotes the number of original trajectories in the
ith subset. The trajectories in each subset correspond to the
same cluster of intermediate trajectories.

In the following, each subset �i ¼ fTi;1; . . . ; Ti;Mi
g is

further clustered using temporal information.

5.1.2 Temporal-Based Clustering

The scale of each subset �i is much less than that of the
whole sample trajectories, so temporal information is
introduced to further cluster each subset of trajectories.

In order to cluster the subset �i, additional point feature
vectors are padded to each trajectory Tli in �i to obtain an
intermediate trajectory T ��li which has a fixed length L��i .
Suppose that trajectory Tli has n point feature vectors and
the length L��i corresponds to g point feature vectors. Then,
g� n feature vectors with 0 velocity are padded to Tli to
produce T ��li with g point feature vectors. The influence of
this padding can be ignored. At the current research stage,
better methods have not been found.

By this padding, each subset �i yields a set ���i of
intermediate trajectories. These intermediate trajectories are
clustered using the fuzzyK-means algorithm. The clustering
procedures are the same as the spatial-based clustering. The

number of cluster centroidsKi for the set ���i is also estimated
by minimizing the right-hand side of (10). Accordingly,
intermediate trajectories in ���i are clustered into Ki clusters.

Abnormal trajectories may exist in the sample trajectories.
As abnormal behaviors rarely occur in the scene, a cluster
which contains few sample trajectories may correspond to an
abnormal behavior pattern. Such clusters are removed. So, in
our method, it is not necessary to ensure that all the sample
trajectories are normal.

After the temporal-based clustering, all intermediate
trajectories are clustered into C clusters. According to the
correspondence between the original trajectories and the
intermediate trajectories, the original trajectories are clus-
tered into C sets of trajectories:

� ¼ ffT1;1; . . . ; T1;M1
g; . . . ;

fTj;1; . . . ; Tj;Mj
g; . . . ; fTC;1; . . . ; TC;MC

gg;
ð12Þ

where Mj denotes the number of the original trajectories in
the jth trajectory subset.

In the following, each trajectory subset �j ¼
fTj;1; . . . ; Tj;Mj

g is described as a motion pattern �j.

5.2 Statistical Motion Patterns

Each motion pattern �j is represented by a chain of ‘j
probability distributions f’j;1; ’j;2; . . . ; ’j;i; . . . ; ’j;‘jg. Each
probability distribution in motion pattern �j corresponds to
�j successive point feature vectors in a sample trajectory.
Let Lj be the maximum length of all trajectories in �j. The
relationship between ‘j and �j is �j ¼ Lj=‘j

	 

. �j is an

integer which is no less than 1. In our method, each
probability distribution in a motion pattern corresponds to
more than one point feature vectors in a trajectory. This
makes the motion pattern more flexible to adapt the object
position alteration along the moving direction.

In the paper, each probability distribution ’j;i is assumed
to be Gaussian. Let� and � be, respectively, the mean and the
covariance matrix of ’j;i. We find the corresponding point
feature vectors in the sample trajectories in �j to estimate the
parameters of ’j;i: � and �. Let k ¼ ði� 1Þ�j þ 1 and

# ¼ i�j if i < ‘j
Lj if i ¼ ‘j:

�
ð13Þ

Then, point feature vectors Fk; Fkþ1; . . . ; F# in each sample
trajectory in �j are used to estimate the parameters of ’j;i.
According to the maximum likelihood evaluation, the
following formulae are obtained:

� ¼ 1
Mið#�kþ1Þ

PMi

i¼1

P#
m¼k

Fi;m

� ¼ 1
Mið#�kþ1Þ

PMi

i¼1

P#
m¼k

Fi;m � �
� 

Fi;m � �
� T

:

8>>><
>>>:

ð14Þ

Accordingly, the probability (rather than probability den-

sity) of a point Z under probability distribution ’j;i is

specified by:

P ðZj’j;iÞ ¼ exp � 1

2
ðZ � �ÞT��1ðZ � �Þ

� �
: ð15Þ

Given a trajectory T ¼ ðF1; . . . ; FLÞ whose length is L, to
calculate the probability P ðT j�jÞ of trajectory T under
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motion pattern �j, we define the mean of the Euclidean
distance between T and the mean of �j as:

dðT; �jÞ ¼
1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
i¼1

ðFi � �j; i=�jd eÞ
2

vuut ; ð16Þ

where �j; i=�jd e is the mean of ’j; i=�jd e. The random variable
dðT; �jÞ approximately obeys the exponential distribution
with aparameter	andthe probabilityP ðT j�jÞ isestimated as:

P ðT j�jÞ ¼ e�	dðT;�jÞ: ð17Þ

We calculate the mean dk of the Euclidean distance between
each sample trajectory k in �j and the mean of �j. According
to the maximal likelihood evaluation, parameter 	 is
estimated as:

	 ¼ nPn
k¼1 dk

; ð18Þ

where n is the number of trajectories in �j.
In addition, the probabilities of all sample trajectories in �j

under �j are used to evaluate the optimal value of the
coefficient �j. If the sum of these probabilities can be increased
with increase or decrease of �j, �j is increased or decreased.

It should be pointed out that a motion pattern described
above is similar to a Left-to-Right HMM. As the lengths of
different trajectories change greatly, different numbers of
states in HMMs should be used to represent change of
trajectory lengths. It is demanding how the numbers of
states are automatically estimated and how such HMMs are
used to incrementally detect anomalies and implement
long-time prediction.

5.3 Remark

Compared with the motion patterns in existing approaches
for learning motion patterns, our motion patterns have the
following advantages:

. Behaviors represented by trajectories are intuitively
and statistically modeled.

. Positions in trajectories are modeled using prob-
ability distributions with alterable covariance values.

. The sequential order of trajectory points linked at
uniform time intervals is directly modeled.

Compared with previous approaches for learning motion
patterns, our approach has following advantages:

. The number of motion patterns is estimated rather
than assumed.

. Abnormal trajectories are allowed to exist in the
sample trajectories.

. The fuzzy K-means clustering in our approach is
superior to vector quantization clustering used in
previous work [19], [20], [42], [43], on the condition
that online learning is not concerned.

6 ANOMALY DETECTION AND BEHAVIOR

PREDICTION

After motion patterns are obtained, we can use them to
incrementally detect anomalies, judge whether or not an
observed trajectory is abnormal, and predict the future

trajectory along which an object is going to move according
to the current partially observed trajectory.

6.1 Anomaly Detection

6.1.1 Incremental Detection of Anomalies

The aim of incremental detection of anomalies is to detect
object motion anomalies as soon as they occur. Let T� be the
observed part of an object trajectory. Suppose that there are
k sample points in T�. We decide whether an anomaly
occurs when the object arrives at current position k.

We first calculate the probability of trajectory T� under
each motion pattern �j in the same way as formulated by
(16), (17), and (18). According to the Bayes rule, the
probability of �j given T� is calculated by:

P ð�jjT�Þ ¼
P ðT�j�jÞP ð�jÞPC

m¼1

P ðT�j�mÞP ð�mÞ
; j ¼ 1; 2; � � � ; C; ð19Þ

where P ð�jÞ is estimated by the ratio of the number of
samples corresponding to �j to the number of all samples.
We find the pattern �j� to which T� corresponds by:

j� ¼ arg max
j
P ð�jjT�Þ: ð20Þ

Then, we calculate the probability of the point k under the
k=�j�
	 


th probability distribution ’j�; k=�j�d e: P ðFkj’j�; k=�j�d eÞ.
The probability of anomaly occurrence when the object
arrives at point k is represented by:

AðkÞ ¼ 1� P ðFkj’j�; k=�j�d eÞ: ð21Þ

If probability AðkÞ is big enough, an anomaly is considered
to potentially occur when the object arrives at point k. When
a serial of such unusual points are detected, an anomaly is
marked. In this way, the dependence of the incremental
anomaly detection on the tracker is decreased.

6.1.2 Detection of Abnormal Trajectories

It is also interesting to evaluate the abnormality of a
complete trajectory. Given a trajectory T ¼ ðF1; F2; . . . ; FnÞ,
we calculate the probability of T under each motion pattern
and look for the motion pattern �j� that has the maximum
likelihood with trajectory T :

j� ¼ arg max
j
P ðT j�jÞ: ð22Þ

If the probabilityP ðT j�j� Þ ofT under the motion pattern�j� is
less than a threshold �j� , the trajectory is treated as abnormal.
We use the probability of each of the samples which
correspond to �j� given motion pattern �j� to calculate the
threshold �j� . For each of these samples Tl, we calculate the
probability P ðTlj�j� Þ of Tl under motion pattern �j� . We take
the minimum of all P ðTlj�j� Þ as the threshold �j� :

�j� ¼ min
l
P ðTlj�j� Þ: ð23Þ

In this way, each motion pattern has a threshold. So, we can
acquire a threshold set: f�1;�2; . . . ;�Cg.

6.2 Behavior Prediction

Future motion of an object can be predicted using the
learned motion patterns. Let T� be the initial part of a
motion trajectory. Suppose there are k sample points in T�.
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The probability P ðT�j�jÞ of T� under each motion pattern �j
is calculated in the same way as formulated by (16), (17),
and (18). According to the Bayes rule, the probability
P ð�jjT�Þ of �j given T� is calculated using the formula
similar to (19). P ð�jjT�Þ is just the probability that the object
is expected to move along the trajectory represented by
motion pattern �j. The trajectory represented by the motion
pattern with the highest probability is chosen as the most
probable one along which the object is expected to move. If
P ð�jjT�Þ is very small, �j is rejected as a possible trajectory
for the object.

7 EXPERIMENTAL RESULTS

All the above algorithms are implemented using Visual
C++6.0 on the Windows XP platform. In the following,
tracking results are first introduced. Performance of the
algorithm for learning motion patterns is then evaluated.
Finally, the results of anomaly detection and behavior
prediction are demonstrated.

7.1 Tracking

In order to verify the accuracy and robustness of the proposed
tracking algorithm, we tested it in a crowded traffic intersec-
tion scene. Fig. 4 shows three examples of pixel segmentation
and clustering. The images are of size 320� 240 pixels. Fig. 5
illustrates the extracted trajectories. In the testing time
interval, partial occlusions between moving vehicles and
those between moving vehicles and static street attachments
such as street lamps and trees occur frequently. The
correctness of the tracking results is checked by our own
visual judgment. During the testing time interval, 1,216 mo-
tion trajectories were produced using our tracking algorithm.
Also, 1,184 motion trajectories were seen to be correct. So, the

correct rateof trackingduringthis timeinterval is97.4percent.
This indicates that the proposed tracking algorithm is suitable
for traffic surveillance. The major reason why 2.6 percent
trajectories are unacceptable is local disturbances from
groups of pedestrians and long lasting or serious occlusions
between moving vehicles.

Fig. 6 shows computational costs in three key parts in the
proposed tracking algorithm: the fast fuzzy K-means algo-
rithm, optical flow estimation, and the growing and predic-
tion of cluster centroids. In this paper, all values of running
time are calculated on a P4 1.8GHz computer. From Fig. 6, we
can see that our tracker runs at the speed of 5-10 frames in a
second with a moderate number of vehicles present in the
scene. As the number of vehicles increases, the running cost
does not quickly increase.

Since anomalies do not always occur in real world scenes,
in order to test the performance of our anomaly detection
approach, we also experimented with an indoor model
simulating a real traffic scene (as shown in Fig. 7). The model
is of size 2:4m� 2:4m. The model includes crossroads,
parking lots, one-way roads, and multilane roads, etc., and
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Fig. 4. Examples of tracking results.

Fig. 5. Trajectories from real scene.

Fig. 6. Computational cost.

Fig. 7. A model traffic scene.



also involves many events such as turning left, turning right,
entering, and leaving. The model also includes radio-
controlled toy cars. By driving the toy cars, we can acquire a
series of trajectories. Fig. 8 shows 400 trajectories acquired by
tracking the toy cars. As the indoor model scene is
comparatively ”clean,” the trajectories are smoother than
those from the real traffic scene.

7.2 Learning of Motion Patterns

Figs. 9 and 10 show the learning results, respectively, in the
model traffic scene and in the real traffic scene using our
algorithm. In the figures, a white line represents the mean
of a motion pattern. As shown in the figures, the learned
motion patterns are consistent with the sample trajectories,
so the results can be treated as satisfactory.

Fig. 11 shows four motion patterns and the correspond-
ing sample trajectories in the model traffic scene. Fig. 12
shows three motion patterns and the corresponding sample
trajectories in the real traffic scene. In the shown motion
patterns, the middle lines represent the means of the
Gaussian distributions and shadows standard deviations.
From these figures, we can see that the motion patterns well
reflect the distributions of the sample trajectories.

In the following, the fuzzy K-means-based learning
method is compared with the vector quantization-based
method used in [19], [20], [42], [43]. The most convincing
comparison is to determine how well the algorithm does
versus ground truth labeled by hand. However, it is
difficult to manually label a large set of samples. So, we
use the Tightness and Separation Criterion (TSC) [48] to
automatically measure the validity of the clustering results.

Tables 1 and 2 demonstrate the TSC of the two learning
algorithms, respectively, for the model scene and the real
traffic scene with different stability conditions. For each
stability condition, the experiment was performed for three
times with different initial weights. From Tables 1 and 2, we
see that, with the same stability condition, the values of
criterion TSC of the fuzzy K-means algorithm are much less

HU ET AL.: A SYSTEM FOR LEARNING STATISTICAL MOTION PATTERNS 1459

Fig. 8. Trajectories from model scene.

Fig. 9. Learned result in model scene.

Fig. 10. Learned result in real traffic scene.

Fig. 11. Four motion patterns in model scene: (a) Motion patterns.

(b) Sample trajectories.

Fig. 12. Three motion patterns in real traffic scene: (a) Motion patterns.

(b) Sample trajectories.

TABLE 1
Performance Comparison in Model Scene



than those of the vector quantization algorithm. Extensive
experiments show that the fuzzy K-means algorithm has
more efficient learning results.

Table 3 shows the relationship between the number of
clusters and the criterion TSC in the spatial-based clustering
of the sample trajectories from the model scene. We can see,
from Table 3, that the criterion TSC decreases when the
number of clusters increases from 5 to 12, but dramatically
increases when it is equal to 13. So, it is proper to select the
number of clusters as 12 in the spatial-based clustering. This
result is consistent with the scene. As shown in Figs. 7 and 8,

there are four entrances by which vehicles enter the scene:
“left,” “bottom,” “right,” and “top.” Corresponding to each
entrance, there are three routes along which vehicles can
move: “turn left,” “go ahead,” and “turn right.” Thus, there
are 12 actual routes in the scene, and this result is reflected in
the values of TSC. The final learned motion patterns shown in
Fig. 9 are acquired by, using the temporal-based clustering,
further clustering trajectories assigned to each route.

For the real traffic scene, by the spatial-based clustering,
all trajectories are clustered into 18 clusters (i.e., 18 subsets
of trajectories corresponding to 18 routes). Table 4 shows
the relationship between the number of clusters and the
criterion TSC, when one of the subsets of trajectories is
further clustered using the temporal-based clustering. We
can see, from Table 4, that the value of TSC decreases when
the number of cluster increases from 5 to 10, but increases
when it is equal to 11. So, it is proper to select the number of
clusters as 10 for clustering this subset of trajectories. The
final learned motion patterns shown in Fig. 10 are acquired
by further clustering all the subsets of trajectories.

7.3 Anomaly Detection

With the learned motion patterns, we can use the method
introduced in Section 6.1.1 to incrementally find anomalies
and use the method introduced in Section 6.1.2 to detect
abnormal trajectories. The correctness of the following
anomaly detection results is verified by our visual judgment.
Fig. 13 is an example of anomaly detection in the indoor
model scene. The trajectory of the car is shown as a series of
arrows, with the size of the arrowhead representing the speed
of the car. Each abnormal point is marked with an “x” sign at
the center of the arrowhead. The abnormality probability is
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TABLE 2
Performance Comparison in Real Traffic Scene

TABLE 3
Relationship between Number of Clusters

and TSC in Model Scene

TABLE 4
Relationship between Number of Clusters and

TSC in Real Scene

Fig. 13. An example of anomaly detection in the model scene.



shown beside the car. The car entered the scene from the
bottom and then turned right. At the beginning, the car
moved within the normal lane, as shown in Fig. 13a. Then, it
entered the region (a grassplot) where admission is forbid-
den, as shown in Figs. 13b, 13c, and 13d. Several abnormal
points are therefore detected.

Fig. 14 illustrates another example of anomaly detection
in the real crowded traffic scene. In the right-bottom corner
of the scene, there are three lanes, separated with white
mark lines, along which vehicles can run upward. Only
along the left lane can vehicles turn left or turn around. A
car entered the scene along the middle lane along which all
vehicles are required to run ahead, as shown in Fig. 14a.
However, the car then made a “U” turn along the lane. This
is a serious traffic offense, which is correctly detected as
shown in Figs. 14b, 14c, and 14d.

7.4 Behavior Prediction

Fig. 15 shows an example of prediction in the indoor model
scene. The percentage beside a trajectory represents the
probability with which the car is expected to move along the
trajectory. The car entered the scene from the bottom and then
turned left. Fig. 15a shows the three most probable
trajectories which the car might follow; in Fig. 15b, the

probability values with which the car would move along
these three trajectories are changed; in Fig. 15c, the right-turn
trajectory is eliminated because the probability of the car
making a right turn has become very small. In Fig. 15d, the
forward trajectory is also removed for the same reason.

Another similar example of behavior prediction in the

real traffic scene is demonstrated in Fig. 16. A car entered

the scene from the right-bottom corner. Initially, it had three

potential moving ways: moving ahead, turning left, and

turning around, as shown in Fig. 16a. During the motion, it

tended to turn left or turn around, as shown in Fig. 16b and

Fig. 16c. After further motion, its tendency to turn around

became clear, as shown in Fig. 16d.
Both examples in Figs. 15 and 16 show that the predictions

are consistent with one’s visual judgment, demonstrating the
good accuracy of the algorithm in predicting object behaviors.

7.5 Remark

The above describes the performance of our system.

Certainly, our system has limitations:

. Entering and leaving regions are defined manually
for tracking multiple objects.
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Fig. 14. An example of anomaly detection in the real traffic scene.

Fig. 15. Prediction in the indoor model scene.

Fig. 16. Prediction in the real traffic scene.



. Online learning of motion patterns is not considered.

. Incremental detection of anomalies is dependent on
robustness of tracking.

8 DISCUSSIONS AND CONCLUSIONS

In the introduction, we have reviewed in detail the recent

work on learning motion patterns. Table 5 compares our

work with previous ones. In contrast with Johnson and

Hogg [20], Sumpter and Bulpitt [43], Makris and Ellis [25],

and Junejo et al. [22], our work has introduced probability

distributions to the motion patterns; the number of motion

patterns is evaluated; and anomaly detection and behavior

prediction are implemented based on statistical theory. In

contract with Stauffer and Grimson [42], we have intuitively

modeled the linking relationship between successive points

in a trajectory and implemented anomaly detection and

behavior prediction. Compared with Owens and Hunter

[35], we have constructed motion patterns represented by

trajectories rather than only point distributions and im-

plemented the detection of abnormal behaviors represented

by complete trajectories and behavior prediction. Com-

pared with Bennewitz et al. [2], we have modeled

trajectories sampled at uniform time intervals, made the

covariance alterable, used a large data set to test our

learning algorithm, and implemented anomaly detection

and long-term prediction.

In addition, our system for learning motion patterns is

based on the robust tracking of multiple objects. Our

tracking algorithm is not dependent on accurate motion

segmentation and it does not require complex matching

between objects and motion regions.
In summary, our system for learning motion patterns has

many advantages, and it has solved many issues left in

previous work, such as representation of a motion pattern

with probability distributions with alterable covariance

values, estimation of the number of motion patterns,

processing of abnormal trajectories in the sample set, and

usage of the detection probability theory to identify

anomalies and predict future behaviors.

Our future work will focus on the following aspects:

. We will model the behavior of “stop” in our motion
patterns.

. We will attach semantic meanings to motion
patterns using stochastic grammars [18], [30] or the
Past-Now-Future Networks (PNF) [40].

. We will apply the methods for automatically
extracting the rules explaining the phenomena
hidden in the input data to behavior analysis.

. We will introduce motion patterns for interactions
between objects.
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TABLE 5
Comparison of the Work of Learning Motion Patterns

(a) Motion patterns are modeled at uniform time intervals. (b) Motion patterns are intuitively and statistically modeled. (c) Point vectors in trajectories
are modeled with probability distributions. (d) If (b) is yes, whether the covariance is alterable. (e) Linking relationships between successive points in
a trajectory is directly modeled. (f) Batch processing is introduced in the learning algorithm. (g) The number of patterns is evaluated. (h) It is
unnecessary that sample trajectories are all normal. (i) Detection of anomalies is formulated with the probability theory. (j) Prediction of behaviors is
formulated with the probability theory.
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