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Abstract. The bag-of-visual-words (BOVW) approaches are widely used in 
human action recognition. Usually, large vocabulary size of the BOVW is more 
discriminative for inter-class action classification while small one is more 
robust to noise and thus tolerant to the intra-class invariance. In this pape, we 
propose a pyramid vocabulary tree to model local spatio-temporal features, 
which can characterize the inter-class difference and also allow intra-class 
variance. Moreover, since BOVW is geometrically unconstrained, we further 
consider the spatio-temporal information of local features and propose a sparse 
spatio-temporal pyramid matching kernel (termed as SST-PMK) to compute the 
similarity measures between video sequences. SST-PMK satisfies the Mercer’s 
condition and therefore is readily integrated into SVM to perform action 
recognition. Experimental results on the Weizmann datasets show that both the 
pyramid vocabulary tree and the SST-PMK lead to a significant improvement 
in human action recognition. 

Keywords: Action recognition, Bag-of-visual-words (BOVW), Pyramid 
matching kernel (PMK) 

1  Introduction 

Human action recognition has been received more and more attentions due to its 
crucial values in smart surveillance, human-computer interface, video indexing and 
browsing, automatic analysis of sports events, and virtual reality. However, there exist 
many difficulties with human action recognition, including occlusion, illumination 
changes, as well as geometric variations in scale, rotation, and viewpoint.  

In general, the action recognition approaches can be roughly classified as the 
template-based and the appearance-based approaches [1]. For the template-based 
approaches, there exist two sorts of templates. The first sort of templates directly use 
several key frames or segmented patches of the input videos, as described in [6, 8]. 
The second sort of templates are obtained by linear or nonlinear transformation of the 
input videos. For example, Rodriguez et al. [9] combine a sequence of training images 
into a single composite template by a MACH filter. For the appearance-based 
approaches, local features or global (or large-scale) features are employed to represent 
the videos. Generally, local spatio-temporal features are more robust to noise, 
occlusion and action variation than large-scale features. 



     
 

Fig. 1. Interest points localization of ten action video sequences in Weizmann dataset. Each red 
point corresponds to a video patch associated with a detected interest point. One key frame is 
shown for each video and all interest points detected in that video are overlapped on the key 
frame.  

Recently, several state-of-the-art action recognition approaches [2, 3, 4, 5, 17, 19] 
use the BOVW to exploit local spatio-temporal features. Typically, these approaches 
firstly generate a vocabulary of visual words and then characterize videos with the 
histograms of visual word counts. It is obvious that the vocabulary plays a decisive 
role in the process of action recognition. A good vocabulary should not only 
discriminate the inter-class invariance but also tolerant the intra-class invariance of 
objects or actions. It is common to choose an appropriately large vocabulary size [4, 
10]. However, the large size of vocabulary may introduce a sparse histogram for each 
video, yield more noise and reduce the discriminability of vocabulary. On the other 
side, if the vocabulary size is small, it may cause over-clustering and high intra-class 
distortion. Motivated by these observations, we propose a novel architecture of 
vocabulary – the pyramid vocabulary tree which combines the vocabularies of 
different sizes and exploits a larger and more discriminative vocabulary efficiently. In 
addition, it is very fast to project new features on the tree. With pyramid vocabulary 
tree, video sequences are hierarchically represented as the multi-resolution histograms 
of the vocabulary tree.  

Moreover, it is well known that the BOVW approaches are geometrically 
unconstrained. Therefore, there are many algorithms intending to combine the 
geometrical information with BOVW. Some approaches [13, 15] uniformly divide the 
3D space into the spatio-temporal grids and then compute the histogram of local 
features in each grid. However, in the human action videos, the interest points are 
usually detected in some local regions while most other regions contain no interest 
points (as illustrated by Fig.1). Inspired by this observation, we cluster the interest 
points in the spatio-temporal space, which forms several cluster centers. At each 
cluster center we compute the histogram of the local features. Based on the 
spatio-temporal cluster centers, we propose a sparse spatio-temporal pyramid 
matching kernel (called SST-PMK) to measure the similarities between video 
sequences. In SST-PMK, the histogram used for representing the video is more 
compact and robust than that in [13, 15]. Therefore the distance computed by 
SST-PMK is more reliable. Besides, the SST-PMK satisfies the Mercer’s condition 
and can be directly used as the SVM kernel to perform action recognition.  



In general, we propose a novel framework based on the sparse spatio-temporal 
representation of the pyramid vocabulary tree for action recognition. The pyramid tree 
is built to model the local features, and also prepares a hierarchical structure for 
computing SST-PMK. Moreover, SST-PMK effectively integrates the distances 
obtained from all levels of the pyramid vocabulary tree to compute the similarities 
between video sequences with a very fast speed.  

The remainder of the paper is organized as follows. Section 2 describes how to 
generate the pyramid vocabulary tree. Section 3 introduces SST-PMK and then 
combines it with the SVM classifier. Section 4 reports experimental results. Section 5 
concludes the paper. 

Fig. 2. The building process of the proposed pyramid vocabulary tree. 

2  Pyramid Vocabulary Tree 

The Pyramid vocabulary tree is built by hierarchically clustering a large set of training 
descriptor vectors. The building process of the pyramid vocabulary tree is illustrated 
in Fig. 2. First of all, the training descriptor vectors are clustered into k visual words 
to build the coarsest level 0 (i.e. the conventional BOVW). Subsequently, we split 
each visual word at the coarsest level 0 into two ones, resulting in a finer vocabulary 
level. In this case, the vocabulary tree grows in a hierarchical coarse-to-fine manner. 
Meanwhile, the number of its leaf nodes increases in an exponential manner.  

In the following sections, we briefly describe the generation of BOVW and the 
building of the pyramid vocabulary tree in details. 

2.1 The generation of BOVW 

A large set of local features are used in the unsupervised training of the tree. 
Capturing local features includes two relatively independent steps: detecting cuboids 



and describing cuboids. In recent years, a number of detectors and descriptors have 
been proposed for human action recognition. All can be used in our recognition 
framework. In this paper, we employ the Dollár et al.’s detector [7] to detect cuboids 
at every frame of each video and use the PCA-SIFT descriptor [14] to describe the 
detected cuboids. Dollár et al. [7] detector improves the 3D Harris detector by 
applying Gabor filtering to the temporal domain. The outputs of the detector are the 
location, the scale, and the dominant orientation of each interest point. We extract a 
cuboid at a given scale centered at every interest point with a size which is s times of 
its scale (s is set to be 6 in this paper). Then, PCA-SIFT descriptor applies Principal 
Components Analysis (PCA) to the normalized gradient vector which is formed by 
flattening the horizontal and vertical gradients of all the points in the cuboid. 

Subsequently, a K-means clustering process is run on the obtained PCA-SIFT 
features. As a result, k cluster centers are treated as k visual words at Level 0. Other 
clustering methods, such as spectral clustering [21] or Maximization of Mutual 
Information (MMI) [22], can also be two alternatives instead of the K-means 
clustering.  

2.2 The pyramid vocabulary tree 

After building the 0th level of the tree, the training features are partitioned into k 
groups, where each group consists of the features closest to a particular visual word. 
Then the training features of each group are clustered into two new visual words at a 
new level. Therefore each visual word at 0th level is split into two new visual words at 
level 1. This splitting is reasonable because the visual words at level 0 are highly 
compact after clustering. In this way, the tree grows till the maximum number of 
levels L is reached. The vocabulary size of each level is doubled than its upper level. 

In the online phase, each new PCA-SIFT feature is compared to k candidate cluster 
centers at level 0 and assigned to the nearest words. Then the result is propagated to 
the next level in order that we only need to compare the descriptor vector to the 2 
children cluster centers and choose the closest one. Level by level, the new feature is 
projected to the tree very fast. Furthermore, in the computational complexity aspect, 
the quantization of new PCA-SIFT features requires k+2L dot products in our 
approach. However, it needs 2Lk dot products for the conventional BOVW in a 
non-hierarchical manner with the same vocabulary size at the Lth level. 

3 SVM classification based on SST-PMK 

With the pyramid vocabulary tree, each video can be represented as a multi-level 
visual word histogram. To effectively measure the similarity of two visual word 
histograms, we present a sparse spatio-temporal pyramid matching kernel (called 
SST-PMK) in this section. Moreover, SST-PMK can serve as a kernel for SVM 
classification. 



3.1 The sparse spatio-temporal pyramid matching kernel (SST-PMK) 

The pyramid matching kernel (PMK) proposed by Grauman and Darrell [11] is an 
effective kernel to measure the similarity of two multi-resolution histograms and it 
has been successfully applied to object recognition. However, one potential problem 
with the PMK [11] is that it does not consider the spatio-temporal information. From 
Fig.1, it can be seen the geometrical distribution of interest points is regularly varying 
among different action classes, and thus spatio-temporal information is very helpful 
for improving the action recognition accuracy. Therefore, we take into account the 
spatio-temporal information of interest points while computing PMK. This is the 
contribution of our SST-PMK. 

The other observation in Fig.1 is that interest points are not uniformly distributed 
in the image and some regions contain no interest points. Without considering this 
observation, the SPM [13] uniformly partitions the whole image into 2D grids in the 
spatial space (i.e., the image coordinate) and the STPM [15] uniformly partitions the 
whole video into 3D grids in the spatial and temporal space. These two methods do 
not effectively assign grids, which leads to a large number of grids and some of the 
grids do not contain any interest points. Moreover, both SPM and STPM require a 
preprocessing step for normalizing the size of images or videos. In contrast, the grids 
obtained by SST-PMK are sparse and discriminative, without normalizing videos 
beforehand. Fig. 3 shows the hierarchical structure of SST-PMK. The following lists 
the specific procedure of constructing the SST-PMK. 

Fig.3. The hierarchical structure of SST-PMK for each video. The geometrical information of 
interest points is combined with the pyramid vocabulary tree to represent the videos. 

At first, the spatio-temporal vectors of interest points are clustered to produce 
spatio-temporal words (i.e. ST word i in Fig. 3 1≤i≤n). The 3-D data set formed by 
these vectors is divided into several subsets. The ST words are derived from the 
center of subsets.  

Then, for each video, we compute the histograms of its descriptor vectors (i.e. 
PCA-SIFT features) at each ST word and each level. And then we concatenate the 
obtained histograms into a vector H = [H l , … , H L], where Hl represents the 
histogram at level l. And Hl = [h l - ST 1, … , h l-ST n], where h l – ST i is the histogram for 
ST word i at level l. That is, we build a hierarchical structure as Fig.3 for each video 
and represent the video as a histogram vector. 

Given the corresponding histogram vectors X and Y of two videos, the SST-PMK 
computes a weighted histogram intersection in the hierarchical structure as illustrated 
in Fig. 3. At each level l, the histogram intersection is defined as the sum of the 
minimal value at each bin: 
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where x l –ST j is an element of X and represents the histogram of the video for ST word 
j at the level l, and x l –ST j( i ) denotes the count of the ith bin of x l –ST j. The number of 
the newly matched pairs Nl induced at level l is the difference between successive 
levels’ histogram intersections:  

                  )YΙ(X)YΙ(XN lllll 11,, ++−=                         (2) 
Because level L is the finest level, we compute the number of matches Nl from level L 
to level 0 just opposite to the building process of the pyramid vocabulary tree. The 
resulting kernel K is obtained by the weighted sum over the number of matches Nl 
occurred at each level, and the weight associated with level l is set to (2l-L): 
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where XL+1= YL+1=0.   
  The SST-PMK effectively combined each level in the hierarchical structure. The 
newly matched pairs at coarser level, which are not matched ones at its finer level, are 
also considered in the SST-PMK. This corresponds to some cases in action 
recognition, such as the same class actions performed by different persons, and the 
same class actions performed by one person at many times. If these intra-class actions 
are not regarded as match at fine level, they are still able to be treated as match at 
coarser level. Therefore, according to the pyramid tree and SST-PMK, our approach 
can overcome the variations between intra-class objects or actions. 

3.2 SVM classification 

We adopt the algorithm in [16] to train SVM for human action recognition. From 
equation (3), we obtain the following equation: 
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KΔ(XSTj , YSTj) is actually a pyramid matching kernel (PMK) [11]. In [11] it is proved 
that PMK is a Mercer kernel and a positive semi-definite kernel. Given that Mercer 



kernels are closed under addition, equation (4) shows that SST-PMK is a Mercer 
kernel. Therefore, SST-PMK distance between videos is directly incorporated into the 
kernel function of the SVM classifier. 

4  Experiments 
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Fig. 4. The confusion matrix of our approach on the Weizmann action dataset. 

The proposed action recognition approach directly manipulates the unsegmented input 
image sequences, which aims to recognize low-level actions such as walking, running, 
and hand clapping. Note that our recognition system does not require any 
preprocessing step. In contrast, there is a common limitation in [12, 18, 20]: a figure 
centric spatio-temporal volume or silhouette for each person must be specified and 
adjusted with a fixed size in advance. However, object segmentation and tracking is 
hard to implement in itself.  

We test our approach on the Weizmann dataset [23]. The Weizmann human action 
dataset contains 10 different actions including Walking, Running, Jumping, Galloping 
sideways, Bending, One-hand waving, Two-hands waving, Jumping in place, 
Jumping Jack and Skipping. One representative frame from each action category is 
shown in Fig.1. There are 93 samples in total. The resolution of the videos is 320x240 
pixels and the frame rate is 15fps.  

We perform the leave-one-out cross-validation to evaluate the competing 
algorithms. The red line is obtained by the proposed approach, the blue one is the ordinary 
BOVW approach, and the black one is the PMK approach without considering the 
spatio-temporal information. 

http://www.wisdom.weizmann.ac.il/%7Evision/VideoAnalysis/Demos/SpaceTimeActions/DB/jack.zip
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Fig.5. Recognition accuracy obtained by the three approaches vs. vocabulary size in Level 0. 

In all experiments we use the videos of the first five persons to learn the bag of 
visual words. In each run, the videos of 8 actors are used as the training set and the 
remaining videos of one person are used as the testing set. There is no overlap 
between the training set and the testing set. We run the algorithms 9 times and report 
the average results. 

In our approach, the three-level pyramid vocabulary tree is used to model local 
features. The number of visual words is set to 160 at the coarsest level (i.e. level 0) 
and 640 at the finest level (i.e. level 2). The geometrical information of the interest 
points is clustered into 10 centers. We use SST-PMK as the SVM kernel. Fig. 4 
shows the confusion matrix of our approach on the Weizmann dataset. Each row of 
the confusion matrix corresponds to the ground truth class, and each column 
corresponds to the assigned cluster. It shows that our approach works much better on 
the actions with large movements, but it does not achieve desirable results for the 
actions of small difference. The recognition accuracy for the actions with large 
movements is 100%, such as “bend”, “Jack”, “Pjump”, “side”, “walk”, “wave1”, and 
“wave2”. The actions “Jump”, “Run”, and “Skip” are similar to each other, and thus 
may be a little confused with each other.  

4.1 The comparison of three approaches 

In order to demonstrate the advantages of the pyramid vocabulary tree and the 



proposed SST-PMK, we compare two other approaches with our approach. In the first 
approach, we use only one vocabulary (i.e. conventional BOVW) and the remaining 
settings are all the same as our approach. Since there is only one level, the SST-PMK 
degenerates to the sum of the two histogram intersection: 
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where n is the number of ST words, and kL is equal to the vocabulary size of level L in 
our approach. Therefore in the first approach, equation (6) is used as the kernel of 
SVM classification. For the second approach, we do not consider the geometrical 
information, i.e., PMK is used for SVM classification. Moreover, we run the three 
approaches using different vocabulary sizes. Fig.5 draws the recognition accuracy 
curve of the three approaches vs. the vocabulary size k at level 0. Fig.5 shows that our 
approach gains the highest recognition accuracy at most cases. For k=[50, 60, …, 500], 
our approach is on average 7.63% higher than the first approach, and 4.66% higher 
than the second approach. It demonstrates that both the pyramid vocabulary and the 
geometrical information of the interest points are helpful for the action recognition.  

4.2 Kernel comparison of SVM 

Table 1. Comparisons between the proposed SST-PMK and the four popular kernels for 
SVM classifier. 

 Linear Polynomial RBF Sigmoid SST-PMK 
Bend 1 0.6667 1 1 1 
Jack 1 0.4444 1 1 1 
Jump 0.8889 0.4444 0.6667 0.5556 0.6667 
Pjump 0.8889 0.4444 1 1 1 
Run 0.6667 0.5556 0.8889 0.8889 0.8889 
Side 1 0.1111 1 1 1 
Skip 0.6667 0.4444 0.6667 0.4444 0.6667 
Walk 0.7778 0.2222 0.8889 1 1 

Wave1 1 0.2222 1 1 1 
Wave2 1 0.6667 1 1 1 

Average 0.8889 0.4222 0.9111 0.8889 0.9222 

We also compare the proposed SST-PMK with other four popular kernels used in 
SVM: linear kernel x'*y, polynomial kernel (g*x'*y)3, radial basis function (RBF) 
exp(-g||x-y||2), and sigmoid kernel tanh(g*x'*y). The same experimental 
configurations are used for all five kernels. Moreover, in the SVM classifier [16], 
C-Support Vector Classification (C-SVC) is employed and two kernel parameters (c 
and g) are considered. Different kernel parameters are used to estimate the recognition 
accuracy: 

]2 , ,2 ,[2  g  ],2 , ,2 ,2 [  c 3-14-1525-4-5 LL ==   
More specifically, since the linear kernel and SST-PMK just have one parameter c, 



we try 31 different c values and report the best results. For the other three kernels 
(polynomial kernel, RBF, and sigmoid kernel) have two parameters c and g, we try 
31×19=589 combinations. Table 1 shows the experimental results using the five 
kernels based approaches. Polynomial kernel based approach achieves the worst 
results, and the average accuracy of other three kernels (Linear kernel, Sigmoid kernel, 
and RBF) based approaches is a little lower than ours. Our approach achieves the best 
recognition performances, and it outperforms the other four kernels for nine actions of 
ten.  

5  Conclusion 

In this paper, we develop a novel framework which can recognize low-level actions 
such as walking, running, and hand clapping from unsegmented video sequences. 
This paper has the following two contributions. First, to the best of our knowledge, 
the vocabulary is built into pyramid tree topology in human action recognition for the 
first time. Second, we propose SST-PMK, which takes advantages of geometrical 
information of local features, to compute the similarities between video sequences. 
SST-PMK improves PMK by clustering the spatio-temporal information of interest 
points. Experiments show the effectiveness and robustness of the proposed approach. 
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