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Abstract

Multiple object tracking is particularly challenging
when many objects with similar appearances occlude one
another. Most existing approaches concatenate the states
of different objects, view the multi-object tracking as a joint
motion estimation problem and search for the best state of
the joint motion in a rather high dimensional space. How-
ever, this centralized framework suffers a great computa-
tional load. We brings a new view to the tracking prob-
lem from a swarm intelligence perspective. In analogy
with the foraging behavior of the bird flocks, we propose a
species based PSO (particle swarm optimization) algorithm
for multiple object tracking, in which the global swarm is
divided into many species according to the number of ob-
jects, and each species searches for its object and main-
tains it. The interaction between different objects is mod-
eled as species competition and repulsion, and the occlu-
sion relationship is implicitly deduced from the ‘power’ of
each species, which is effectively evaluated by the image ob-
servations. Therefore, our approach decentralizes the joint
tracker to a set of individual trackers, each of which tries to
maximize its visual evidence. Experimental results demon-
strate the efficiency and effectiveness of our method.

1. Introduction

Multiple object tracking in videos is one of the most
important problems in many emerging applications, such
as surveillance, intelligent transportation, human-computer
interface, and video analysis. Due to its crucial value in
these applications, many efforts have been made to solve
this problem in the last decades [1-17]. MacCormick and
Blake [3] develop a probabilistic exclusion principle to
solve the association problem in multiple object tracking,
but it can only be applied to pairs of objects. BraMBLe [4],

a Bayesian multi-blob tracker combines a multi-blob likeli-
hood function with a particle filter. Khan et al. [6] propose
anMCMC-based (Markov chainMonte Carlo) particle filter
which uses a Markov random field to model motion inter-
action, but their model can not deal with occlusion. Yu et
al. [7] propose a collaborative tracking algorithm for mul-
tiple objects which models the joint prior of objects using a
Markov random network to solve the identity maintenance
problem. Qu et al. [9] suggest an interactively distributed
multi-object tracking algorithm using a magnetic-inertia po-
tential model to solve the multiple object labeling problem
in the presence of occlusions. In [10], the spatio-temporal
context of each object is used to maintain the correct iden-
tification of the object. Nillius et al. [11] propose a method
to resolve multiple hypotheses via Bayesian networks and a
novel solution is obtained by belief propagation techniques.
Yang et al. [12] propose a game-theoretic multiple target
tracking algorithm, in which the tracking problem is solved
by finding the Nash Equilibrium of a game. It can decen-
tralize the joint tracker and uses computational resources
efficiently. Another solution to overcome the curse of di-
mensionality in tracking multiple objects jointly is the vari-
ational particle filter proposed by Jin et al. [13], where the
proposal distribution is based on the approximated posterior
obtained by variational inference. Despite the increasing
amount of work done in this field, multiple object tracking
still remains challenging for the following reasons: 1) it is
difficult to handle the interactions and the occlusions among
different objects; 2) it is difficult to reacquire a severely
occluded object after the occlusion process; 3) nuisance
factors, such as low quality video and camera parameter
changes also bring extra difficulties.
Recently PSO (particle swarm optimization) [18, 19],

a new population based stochastic optimization technique,
has received more and more attention because of its con-
siderable success. Unlike the independent particles in the
particle filter, the particles in PSO interact locally with one
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another and with their environment in analogy with the co-
operative and social aspects of animal populations, for ex-
ample as found in birds flocking. Starting from a diffuse
population, now called a swarm, individuals, now termed
particles, tend to move in the state space and eventually
cluster in regions where optimal state is located. The ad-
vantages of this mechanism are, on one hand, the robust-
ness and sophistication of the obtained group behavior and,
on the other hand, the simplicity and low cost of the com-
putation associated with each particle.
Inspired by the forgoing discussions, we propose a

species based PSO algorithm for multiple object tracking,
where the global particle swarm is divided into several
species according to the number of objects. The main con-
tributions of the proposed tracking algorithm are summa-
rized as follows:

1. A species concept is introduced into the PSO frame-
work to extend it to multiple object tracking. The par-
ticles are divided into species such that each species
corresponds to one of the objects. The occlusion be-
tween different objects is modeled as species compe-
tition, and the occlusion relationship is implicitly de-
duced from the power of each species. Meanwhile, a
repulsion force is employed to prevent the particles in
one species from being miss-attracted by other species.
As a result, the joint tracker can be decentralized to the
individual trackers, which try to maximize their visual
evidence.

2. The appearances of objects under occlusion are care-
fully updated based on the corresponding observation
models. Thus an object emerging from severe occlu-
sion can be successfully reacquired after occlusion.

This paper is organized as follows. The motivation of
our approach is given in Section 2. A brief introduction
to the traditional PSO algorithm is presented in Section 3.
In section 4, we show the details of our proposed tracking
approach. Experimental results are shown in Section 5, and
Section 6 is devoted to conclusion.

2. Motivation

2.1. Single Object Tracking From the Biology
Swarm Intelligence Viewpoint

First, we define the following analogies: 1) the
groundtruth state of an object and its support region are
viewed as ecological resources (e.g. food); 2) the particles
in state space correspond to a certain animal (e.g. bird); 3)
the observation likelihood of each particle is analogous to
fitness ability of an individual animal. Then the single ob-
ject tracking problem is viewed in the following way: sup-
pose a group of particles (birds) are randomly generated in

the image (state space), and none of the particles (birds)
knows where the object (food) is. But each particle (bird)
knows how far it is from the object (food) by evaluating the
observation (fitness ability) in each iteration. What is the
best strategy to find the object (food), and how can the infor-
mation obtained by each particle (bird) be used efficiently?
The PSO framework, inspired by the swarm intelligence of
birds flocking, provides an effective way to answer these
questions.

2.2. Extended to Multiple Objects Tracking

When the multiple objects are separated, the mechanism
in Section 2.1 for single object tracking can be easily ex-
tended to multiple object tracking by creating a tracker for
each object, and these trackers are conducted independently.
If the objects move close together and even occlude each
other, the independent sequential PSO framework may fail.
As mentioned in Section 2.1, the support regions of objects
are analogous to ecological resources, e.g. food. If oc-
clusion happens between two objects, their support regions
overlap, which means that the overlap part is the resource
needed by both species. Consequently, the competition and
repulsion between the species arises as they compete for
this part of the resource, and the stronger species may win
this competition with a higher probability. From the discus-
sions of the relationship between multiple object tracking
and biological swarm, we can find that our assumption and
analogies are reasonable and tractable.
In the following two sections, we first briefly review the

traditional PSO algorithm, and then give a detailed descrip-
tion of the multiple species based particle swarm optimiza-
tion tracking algorithm.

3. Particle Swarm Optimization

Particle swarm optimization [18], is a population based
stochastic optimization technique, which is inspired by the
social behavior of bird flocking. In detail, a PSO algorithm
is initialized with a group of random particles {xi,0}N

i=1 (N
is the number of particles). Each particle xi,0 has a corre-
sponding fitness value f(xi,0) and has a relevant velocity
vi,0, which is a function of the best state found by that par-
ticle (pi, for individual best), and of the best state found so
far among all particles (g, for global best). Given these two
best values, the particle updates its velocity and state with
following equations in the nth iteration (as shown in Fig.1),

vi,n = R(vi,n−1+ϕ1u1(p
i−xi,n−1)+ϕ2u2(g−xi,n−1)) (1)

xi,n = xi,n−1 + vi,n (2)

where the ϕ1, ϕ2 are acceleration constants, u1, u2 ∈ (0, 1)
are uniformly distributed random numbers, and R is a con-
striction factor to confine the velocity within a reasonable
range: ||vi,n|| ≤ vmax. After evaluating the fitness value of
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Figure 1. The nth iteration of particle i

each particle, the individual best and global best of particles
are updated in the following equations:

pi =

{
xi,n, if f(xi,n) > f(pi)

pi, else
, g = argmax

pi
f(pi) (3)

In Eq.(1), the three different parts represent inertial veloc-
ity, cognitive effect and social effect respectively. As a re-
sult, the particles interact locally with one another and with
their environment in analogy with the ‘cognitive’ and ‘so-
cial’ aspects of animal populations, and eventually cluster
in the regions where the optima are located.

4. Proposed Tracking Approach

In our tracking algorithm, the motion of a tracked object
between two consecutive frames is approximated by a set of
affine parameters (tx, ty, θ, s, α, β), where {tx, ty} denote
the 2-D translation parameters and {θ, s, α, β} are defor-
mation parameters. A particle is a sample from the affine
parameter space and its fitness value is evaluated by a sub-
space based appearance model [20]. In the following parts,
we first introduce the incremental subspace learning based
appearance model, and then give a detailed description of
the proposed multi-object tracking algorithm.

4.1. Incremental Subspace Learning Based Ap-
pearance Model

In this part, we introduce a subspace based appearance
model [20] for observation evaluation, which models the
appearance of an object by incrementally learning a low-
order eigenspace representation.

Observation Likelihood: As shown in [20], given the
learned subspace U and a new observation ot, the obser-
vation likelihood is based on the reconstruction error of the
observation ot in the object subspace, which is defined as
follows.

RE = ||ot − UUT ot||2 (4)

As a result, the observation likelihood is naturally formed
as

p(ot|xt) = exp(−RE) (5)

Incremental Subspace Learning: Given the SVD of the
previous appearance data A = {o1, . . . , ot}, i.e. A =
UΣV T , where each column oi is the observation of the
object in the ith frame. After tracking k frames, we have
obtained k most recent observations of the object E =
{ot+1, . . . , ot+k}, the R-SVD algorithm [21] efficiently

Figure 2. Overlapping region of two objects under occlusion.

computes the SVD of the matrix A
′
= (A|E) = U

′
Σ

′
V

′T

based on the SVD of A as follows:
1. Apply QR decomposition to E and get orthonormal basis
Ẽ, and U

′
= (U |Ẽ).

2. Let V
′
=

(
V 0
0 Ik

)
where Ik is a k×k identity matrix.

It follows then,

Σ
′
= U

′TA
′
V

′
=

(
UT

Ẽ

)
(A|E)

(
V 0
0 Ik

)

=

(
UTAV UTE

ẼTAV ẼTE

)
=

(
Σ UTE

0 ẼTE

)

3. Compute the SVD of Σ
′
= ŨΣ̃Ṽ T and the SVD of A

′
is

A
′
= U

′
(ŨΣ̃Ṽ T )V

′T = (U
′
Ũ)Σ̃(Ṽ TV

′T )

In this way, the R-SVD algorithm computes the new
eigenbasis efficiently.

4.2. Multiple Object Tracking Algorithm

As stated in Section 2.2, in the multi-object tracking
case, the observations of different objects may overlap dur-
ing occlusion, and the correspondences between objects and
their features become ambiguous. To overcome this diffi-
culty, we propose a multiple species based PSO algorithm.
The fundamental idea of the proposed algorithm is to divide
the particles into several species according to the number of
objects, and effectively model the interactions and the oc-
clusions between different species.
Below we give a detailed description of our algorithm

which contains the following parts: 1) problem formulation;
2) competition and repulsion model; 3) annealed Gaussian
based PSO; 4) selective updating for the appearance model.

4.2.1 Problem Formulation

Let’s recall the symbols for the states and observations
X = {xi,n

t,k , i = 1, . . . , N, k = 1, . . . ,M},O = {oi,nt,k , i =
1, . . . , N, k = 1, . . . ,M}, where N is the number of parti-
cles andM is the number of objects. Thus multiple object
tracking can be formulated as follows.

X ∗ = argmax
X

p(O|X ) (6)

1107



Figure 3. Project the overlapping part to the corresponding part of
learned subspaces.

If no occlusion happens, the above optimization problem
can be simplified by maximizing the individual observation
likelihood independently (here, we drop the superscript i, n
for simplicity):

x∗t,k = arg max
xt,k

p(ot,k|xt,k), k = 1, . . . ,M (7)

If occlusion happens, then we divide the observation of ob-
ject under occlusion into two parts: 1) non-overlapping part
õt,k; 2) overlapping part ôt,k. For example, the occlusion
happens between objects k1 and k2 (see Fig.2), thus the
tracking problem of these two objects can be formulated as
follows:

x∗t,k1 = arg max
xt,k1

p(õt,k1 |xt,k1)p(ôt,k1 |xt,k1 , xt,k2) (8)

x∗t,k2 = arg max
xt,k2

p(õt,k2 |xt,k2)p(ôt,k2 |xt,k2 , xt,k1) (9)

where p(ôt,k1 |xt,k1
, xt,k2

) and p(ôt,k2 |xt,k2
, xt,k1

) are the
interactive likelihood of the corresponding object on the
overlapping part respectively. The Eq.(8) and Eq.(9) are it-
eratively computed until convergence1.

4.2.2 Competition and Repulsion Model

Competition Model: When occlusion between different
objects happens, the corresponding support regions may
overlap (see Fig.2). In this case, the competition between
two species arises to scrabble for the overlapping part. The
question is how to effectively model the competition phe-
nomenon in tracking problems?
In order to answer the above question, we first need to tie

the visual problem to this phenomenon, and model the detail
of the competition process. Before introducing our model,
we first discuss the two related works [9, 12]. Although they
both model the interactions among the objects through the
observations, the detailed models are totally different from
ours. In [9], the interaction is modelled using the whole sup-
port of the observation region, not just the overlapping part.

1 The occlusion between three or more objects can be formulated sim-
ilarly.

This is a little unreasonable, since the competition only hap-
pens in the overlapping region, and the effectiveness of the
model may be diluted by the non-overlapping regions. In
contrary, [12] models the interference only using the over-
lapping part. However, the model focuses on the pixel level.
It may not be very robust when the interacting objects have
a similar color or are under severe occlusion. In this pa-
per, we view the overlapping part as a whole and project it
onto the corresponding part of the learned subspace of each
object (see Fig.3), and the fitness value on the overlapping
part is evaluated as the competition ability. As a result, the
power of each species is defined as follows

powerk = p(ôt,k|xt,k) = exp(−||ôt,k − ÛkÛ
T
k ôt,k||2)

(10)
where Ûk is the the corresponding subspace of the overlap-
ping part of the object k. Consequently, the interactive like-
lihood p(ôt,k1 |xt,k1

, xt,k2
) of object k1 on the overlapping

parts can be obtained2:

p(ôt,k1 |xt,k1 , xt,k2) =
powerk1∑

i=1,2 power
ki

(11)

The competition ability can be described by the interactive
likelihood for each species. A species with higher compe-
tition ability is more likely to win the competition, which
means that the object corresponding to this species is more
likely to be the one occluding other objects. We will val-
idate this conclusion through the experiments (see Section
5.2.2).

Species Repulsion: Generally, multiple object tracking al-
gorithms suffer from the the well-known coalescence prob-
lem during occlusion, where a tracker loses its associated
object and falsely tracks other objects. While in the real
world, the stronger species will repel other species and try
to take up all the resources. In order to tackle the coales-
cence problem, we need to define a repulsion model for the
objects under occlusion. When occlusion happens between
objects k1 and k2, the repulsion force from object k2 to ob-
ject k1 is defined as follows.

F−−−→
k2,k1

= p(ôt,k2 |xt,k1 , xt,k2)Vk1 (12)

where Vk1 is a velocity vector of object k1. The scale pa-
rameter p(ôt,k2 |xt,k1

, xt,k2
) is determined by the competi-

tion ability of object k2, representing the intension of the
repulsion force. The species repulsion model means that
the species with a larger the competition ability repels other
species nearby with a larger force.
This repulsion force is added to the particle evolution

process (see Section 4.2.3) to prevent the particle from be-
ing miss-attracted by other species and maintain the diver-
sity among the species. In this way, the competition model

2Here, we also assume that the occlusion happens between object k1
and object k2.
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is incorporated into the particle evolution process, thus al-
leviating the coalescence problem.

4.2.3 Annealed Gaussian Based PSO

Since the conventional PSO contains many parameters
which need to be tuned carefully, we adopt an annealed
Gaussian based particle swarm optimization (AGPSO) al-
gorithm [22], where the particles and their velocities are
updated in the following way,

vi,n+1 = |r1|(pi − xi,n) + |r2|(g − xi,n) + ε (13)

xi,n+1 = xi,n + vi,n+1 (14)

where |r1| and |r2| are the absolute values of the inde-
pendent samples from the Gaussian probability distribution
N (0, 1), and ε is zero-mean Gaussian perturbation noise to
avoid trapping in local optima. The covariance matrix of ε
is changed in an adaptive simulated annealing way [23]:

Σε = Σe−cn (15)

where Σ is the covariance matrix of the predefined transi-
tion distribution, c is an annealing constant, and n is the
iteration number. The elements in Σε decrease according to
the iteration number which enables a fast convergence rate.
If occlusion happens between object k1 and k2 at time

t, we add a repulsion force to the particle evolution pro-
cess, and then the iteration form for object k1 becomes as
follows:

vi,n+1
t,k1

= |r1|(pi
t,k1−xi,n

t,k1
)+ |r2|(gt,k1−xi,n

t,k1
)+ |r3|F−−−→k2,k1

+ε

xi,n+1
t,k1

= xi,n
t,k1

+ vi,n+1
t,k1

where r3 is also the Gaussian random number sampled from
N (0, 1). The third part on the right hand side of the above
equation represents the interactive effect from object k2 to
object k1.
In summary, our approach models the competition phe-

nomenon on the observation level and models competition
effect on the state space to guide the evolution process of
object state. Experiments show that our model is reason-
able.

4.2.4 Selective Updating for Appearance Model

In most multiple tracking algorithms, updating of the ap-
pearance model is stopped during occlusion. However, if
the object appearance changes during occlusion, the tracker
may fail to reacquire the object after the occlusion. In our
paper, we design a selective updating scheme to accommo-
date the appearance changes during occlusion: 1) as shown
in the Fig.2, pixels in the visual part of objects are incremen-
tally updated in the normal way, 2) pixels in the overlap-
ping part are projected back to the corresponding subspace

of each object (see Fig.3) and the reconstruction errors are
calculated.

R = |ôt,k − ÛkÛ
T
k ôt,k| (16)

If the reconstruction error of a pixel inside the overlapping
part is smaller than a predefined threshold, then it is updated
to the corresponding subspace.

4.3. Algorithm Summary

Our proposed tracking algorithm is summarized as fol-
lows 3.

1. Initialization: t = 0, the states of the multiple objects are
manually initialized as the global best for species {gt,k}Mk=1.
The individual best {pi

t,k}Ni=1 are set equal to gt,k.

2. for t = 1, 2, . . . do

3. Check occlusions among {gt−1,k}Mk=1, e.g. occlusion
between gt−1,k1 and gt−1,k2 is detected.

4. Randomly propagate the particles to enhance their diver-
sities within the species according to the following transi-
tion model

xi,0
t,k ∼ N (pit−1,k,Σk)

where Σk is the covariance matrix of the Gaussian transi-
tion distribution for the kth object.

5. for n = 1, 2, . . . , T do

6. Carry out the PSO evolution for object k1.

vi,n+1
t,k1

= |r1|(pit,k1−xi,n
t,k1

)+|r2|(gt,k1−xi,n
t,k1

)+|r3|F−−−→k2,k1
+ε

xi,n+1
t,k1

= xi,n
t,k1

+ vi,n+1
t,k1

7. Evaluate the fitness values by the observation model
and the interactive model.
f(xi,n+1

t,k1
) = p(õt,k1 |x

i,n+1
t,k1

)p(ôt,k1 |x
i,n+1
t,k1

, gt,k2 )

8. Update the two best particles and the annealing param-
eter.

9. Carry out the similar procedure for object k2 (other
trackers are independently carried out without interac-
tive part).

10. Check the convergence criteria: f(gt,ki) >Th and
f(gt,ki), i = 1, 2 changes little from previous itera-
tion.

11. If the convergence criteria for the object ki is satisfied,
stop its iteration;

12. end for

13. Update the appearance model based the visible parts and
the corresponding reconstruction error.

14. Output the object states at time t: {gt,k}Mk=1

15. end for
3Here, we take pairwise occlusion as an example. The occlusion be-

tween three or more objects can be formulated similarly, and we only show
how the tracking process is conducted on objects under occlusion. The
trackers for unoccluded objects are conducted independently without the
interaction part.
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Figure 4. Column 1-5: tracking performances, column 6: root mean square error, column 7: convergence time (red: PSO, blue: AGPSO).

Figure 5. Tracking two walking men with occlusion (first row: stop updating for the appearance model during occlusion, second row:
selective updating for the appearance model during occlusion) for frame #204, 209, 214, 219, 224

5. Experimental Results

In our implementation, each candidate image corre-
sponding to a particle is rectified to a 20×20 patch, and
the feature is a 400-dimension vector of gray level values
subjected to zero-mean-unit-variance normalization. The
above algorithm is implemented using Matlab on a P4-3.2G
computer with 512M RAM.

5.1. PSO vs AGPSO

First, we conduct a comparison experiment be-
tween the traditional PSO [24] and AGPSO. Here,
the particle number and the covariance matrix of the
transition distribution are set to {N = 200,Σ =

diag(82, 82, 0.022, 0.022, 0.0022, 0.0022)}. The same obser-
vation model is used for PSO and AGPSO. Fig. 4 shows the
tracking performances of PSO and AGPSO on a fast mov-
ing face, and graphs of the RMSE (root mean square error)
and convergence time, from which we can see that AGPSO
can achieve a better tracking accuracy and a much faster
convergence rate than traditional PSO. This is because the
velocity part employed in Eq.(1) carries little information,
while the annealing part in APSO iterations enhances the
diversity of the particle set and its adaptive effect enables a
fast convergence rate.

5.2. Multiple Object Tracking

In this section, we demonstrate three examples of track-
ing multiple objects with our method, and then give a sum-
mary of the experimental results.

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

1: person A occludes person B

0: no occlusion

−1: person B occludes person A

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

1: person A occludes person C

0: no occlusion

−1: person C occludes person A

10 20 30 40 50 60 70 80 90 100
−1.5

−1

−0.5

0

0.5

1

1.5

1: person B occludes person C

0: no occlusion

−1: person C occludes person B

Figure 7. Recovered occlusion relationship in Example 2

5.2.1 Example 1

The video in this example contains two walking people with
severe occlusion. We conduct a comparison experiment be-
tween two appearance updating strategies during occlusion:
no updating and selective updating. As shown in Fig.5, we
can see that no updating for the appearance model strategy
fails to track the person being occluded at frame 211 and can
not recover the track after occlusion. The reason is that no
updating strategy does not capture the gradual appearance
changes of the man being occluded, and thus the correspon-
dence of pixels between the man and the subspace is not
accurate, leading to the tracking failure. In contrary, our se-
lective updating strategy can follow the two people through-
out the occlusion and maintain the correct identities. This is
because the appearance changes are gradually updated be-
fore the object is completely occluded, and all the existing
visual evidences are utilized to successfully reacquire the
man after the occlusion.

5.2.2 Example 2

In this example, we test our method with a video se-
quence from the PETS 2004 database which is an open
database for the research on visual surveillance, available
on http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. To validate
the claimed contributions of our method, we conduct a
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(a) our algorithm

(b) Qu’s work [9]

(c) Yang’s work [12]
Figure 6. Tracking performances with occlusion for frame #422,455,465,480,488,501,518

Approaches Yang’s work Qu’s work Our algorithm

Number of frames in Person A (red window) 80/101 80/108 108/108
which tracking is Person B (blue window) 108/108 108/108 108/108
successful Person C (green window) 108/108 108/108 108/108

Person A (red window) 12.9768 11.5537 3.6145
RMSE of Position (by pixels) Person B (blue window) 5.4128 4.8482 3.3087

Person C (green window) 15.2104 2.6483 2.6262

Table 1. Quantitative results of our approach and its comparison with Yang’s and Qu’s work

quantitative evaluation comparison with [9, 12] which share
some similarities with our work, and furthermore, their
work are respectively conducted in two influential frame-
works: particle filter [25] and mean shift [26]. To give a
convincing comparison, [9] is performed with the same ap-
pearance model and updating scheme. Fig. 6 illustrates key
frames where three people are tracked through occlusion
(Person A is tracked with a red window, person B is tracked
with a green window, person C is tracked with a blue win-
dow), from which we can see that our algorithm handles
the interaction and occlusion between different objects very
well, while [9, 12] fail to track the object being occluded
by an object with similar appearance, because modeling the
species competition on the overlapping part and dealing it
as a whole is more reasonable and robust. Meanwhile, our
AGPSO framework is more probable to find the global op-
tima than particle filter and mean shift. Fig. 7 shows the re-
covered occlusion relationships between different persons,
where the x axis is the frame index, and the y is the occlu-
sion relationship. As illustrated in Fig. 7, our method can
correctly deduce the occlusion relationship based on the in-
teractive likelihood, and the results support the phenomenon
that the object with higher fitness value on the overlapping
part is more likely to be the one occluding the other objects.

To further illustrate the advantages of our method, we
conduct a quantitative evaluation comparison with [9, 12]

in the following aspects: number of frames in which track-
ing is successful, RMSE (root mean square error) between
the estimated position and the groundtruth4. Table 1 shows
the quantitative comparison. It is clear that the [9, 12] fail
to track person A at frame 501, when he is severely oc-
cluded by person C wearing the similar clothes, while our
method using the species competition and repulsion model
can prevent the coalescence problem and succeed in track-
ing throughout the sequence. Additionally, our method
achieves the most accurate localization than other twometh-
ods.

5.2.3 Example 3

This video sequence is also from the PETS 2004 database,
and it is more challenging since it contains five walking
people with continual occlusion and interactions. Fig. 8
illustrates some key frames where five persons are tracked
through the occlusion. As shown in Fig. 8, they are tracked
well in the following sequences even though the occlusion
simultaneously happens among the three persons at frames
277-340, from which we can see that our species competi-
tion and repulsion model are also effective for dealing with

4The object is not closely warped by the bounding box in the ground
true which contains many background pixels. Initialized by such bounding
boxes is not suitable for a subspace based tracking algorithm. Therefore,
only the center position of each object in the groundtruth is used for eval-
uation.
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Figure 8. Tracking people in a shopping center for frame #218,248,272,298,359,406

the occlusion among more than two objects. Besides the
species competition and repulsion model, the selective up-
dating of appearances during occlusion also provides a great
contribution to maintain the correct tracking identities in
this video sequence.

5.3. Summary

The underlying reasons for the above experimental re-
sults are discussed in this part. First, the species competition
and repulsion force mechanism employed in our method
provides a reasonable and effective solution to the inter-
action and occlusion problems in multiple object tracking.
Second, the AGPSO framework is effective at searching
for the optima, especially in a high dimension. Third, the
carefully designed updating strategy can effectively accom-
modate the appearance changes while preventing the model
from drifting away.

6. Conclusion

This paper makes an analogy between the tracking prob-
lem and the behavior of a flock of birds searching for food,
and has proposed a species based sequential PSO (particle
swarm optimization) algorithm for multi-object tracking, in
which different species search for object (food) and track
them once found. The occlusion between different objects
is modeled as species competition and repulsion. In addi-
tion, we use an annealed Gaussian PSO algorithm which is
more effective than previous PSO algorithms. Unlike the
joint tracker, our approach decentralizes the joint tracker,
and the individual trackers are conducted, each of which
tries to maximize its visual evidence. Experimental results
demonstrate the efficiency and effectiveness of our method.
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