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Abstract 

This paper presents a Bayesian network based multi-
modal fusion method for robust and real-time face 
tracking. The Bayesian network integrates a prior of 
second order system dynamics, and the likelihood cues 
from color, edge and face appearance. While different 
modalities have different confidence scales, we encode 
the environmental factors related to the confidences of 
modalities into the Bayesian network, and develop a 
Fisher discriminant analysis method for learning optimal 
fusion. 

The face tracker may track multiple faces under 
different poses. It is made up of two stages. First 
hypotheses are efficiently generated using a coarse-to-
fine strategy; then multiple modalities are integrated in 
the Bayesian network to evaluate the posterior of each 
hypothesis. The hypothesis that maximizes a posterior 
(MAP) is selected as the estimate of the object state. 
Experimental results demonstrate the robustness and 
real-time performance of our face tracking approach. 

1. Introduction 

Face tracking is important for many vision-based 
applications such human computer interactions. Different 
face trackers may be classified into two classes: general 
tracking methods and learning based methods. 

General tracking methods use some low level features 
such as color and contour to track objects including faces 
[1,2,3,4,5,6,7,8,9,10]. For example, background models 
are often built and updated to segment the foreground 
regions [1,2,3]. Monte Carlo methods [4,5,6,7] adopt 
sampling techniques to model the posterior probability 
distribution of the object state and track objects through 
inference in the dynamical Bayesian network. A robust 
non-parametric technique, the mean shift algorithm, has 
also been proposed for visual tracking [8,9,10]. In [8] 
human faces are tracked by projecting the face color 
distribution model onto the color frame and moving the 
search window to the mode (peak) of the probability 
distributions by climbing density gradients. In [9,10] 
tracking of non-rigid objects is done through finding the 
most probable target position by minimizing the metric 

based on Bhattacharyya coefficient between the target 
model and the target candidates. Some other methods are 
presented to track human heads, for example, tracking 
contour through inference of JPDAF-based HMM [11], 
an algorithm combining the intensity gradient and the 
color histogram [12] and motion-based tracking with 
adaptive appearance models [13]. 

Learning based methods track the faces using learning 
approaches [14,15,16,17,18]. Results from face detection 
should help face tracking. In face detection, the goal is to 
learn, from training face and non-face examples (sub-
windows), a highly nonlinear classifier to differentiate the 
face from non-face pattern. The learning based approach 
has so far been the most effective for constructing 
face/non-face classifiers. Taking advantage of the fact 
that faces are highly correlated, it is assumed that some 
low dimensional features that may be derived from a set 
of prototype face images can describe human faces. The 
system of Viola and Jones [14] makes a successful 
application of AdaBoost to face detection. Li et al [15] 
extend Viola and Jones’ work for multi-view faces with 
an improved boosting algorithm. 

A face detection based algorithm can be less sensitive 
to illumination changes and color distracters than the 
general tracking methods due to the use of face pattern 
instead of color and contour only. However, they have 
their own difficulties. First, face detector may mass some 
faces and contain false alarms. Second, partially occluded 
faces and rotated faces are more like to be missed. Third, 
multiple pose face detection is several times more costly 
than frontal face detector. 

This paper presents a Bayesian face tracker that aims 
to track the position, scale and pose of multiple faces. The 
face tracker unifies low level features such as color and 
contour, and high level features such as face appearance 
for robust and real-time tracking of multiple faces. As 
shown in figure 1, the Bayesian Network [19, 20] 
includes four components: (1) the prior model, a second 
order system dynamics, (2) color, (3) edge and (4) face 
appearance likelihood models. The presented method is 
different from the previous work for example, Monte 
Carlo methods [4,5,6,7], in the following ways: 

First, in the stage of hypotheses generation, our tracker 
reduces significantly the number of hypotheses needed 
for robust tracking. In Monte Carlo methods, factored 
sampling and importance sampling techniques are 
employed to predict the distributions of the object states. 



Color likelihood is modeled as a mixture of Gaussians, 
and more hypotheses are generated where there is 
stronger color likelihood. However, it is computationally 
expensive with thousands of hypotheses to model the 
probability distribution of the object state. We adopt a 
much more efficient method for hypotheses generation. A 
bottom-up strategy is used to generate hypotheses that 
represent not the probability distribution of the object 
state but the probable hypotheses. The color likelihood is 
explicitly encoded in the Bayesian network as an efficient 
measurement. Though only several hypotheses are used, 
the result (that is, the MAP hypothesis) is not biased in 
most cases because they are generated from observations. 

Second, in the stage of hypotheses evaluation, a 
Bayesian network is used to evaluate the posterior 
probability of every hypothesis. The Bayesian network 
may integrate new constraints easily to improve the 
tracker’s performance. Besides, it incorporates multiple 
cues in a uniform and explicit way, which makes it easy 
to evaluate the confidence level of each modality and 
allows a learning algorithm for multiple modalities 
fusion. We introduce environmental factors to model the 
confidence of each modality and encode them into the 
Bayesian network to fuse multiple modalities more 
effectively. 

In the remainder of this paper, section 2 introduces the 
general overview of our algorithm. Section 3 describes 
the method to generate hypotheses. Section 4 explains 
hypotheses evaluation in the Bayesian Network 
framework. Section 5 describes learning algorithm for 
modalities fusion. Section 6 shows experimental results 
and finally section 7 contains conclusions and 
discussions. 

2. General Overview 

The tracker is initialized by the output of face 
detectors. Once a new face is detected, it will be added to 
the objects list being tracked. 

Multiple hypotheses are used to improve the 
robustness of the tracker. The hypotheses are generated 
via a coarse-to-fine strategy. The strategy is made up of 
two steps: first, a coarse sampling process in which 
hypotheses are generated from the local maxima in the 
probability distribution image (PDI); second, a boosting 
face filter is applied to refine the hypotheses. The coarse 
hypotheses are refined by the result of the face filter. 

Then a Bayesian Network (figure 1) is used to infer 
the hidden object state in each frame. Bayesian network is 
an efficient tool for data fusion and used to integrate the 
modalities such as the prior probability, color, edge and 
face appearance likelihoods. The posterior probability of 
every hypothesis is evaluated by the Bayesian network 
and the object state is approximated by the hypothesis 
that maximizes a posterior. 

The Bayesian network is similar with the dynamical 
one in that it also integrates the prior model. However, 
this work adopts a multiple hypothesis Bayesian network 
structure where each hypothesis has a posterior 
probability after the evidences are integrated. 

We further introduce the environmental factors into 
the Bayesian network to model the confidence of every 
modality during the tracking process. Then we present a 
learning algorithm based on Fisher discriminant analysis 
[21] to learn the way to fuse the modalities. 

Xt-1 , Xt-2 

Xt 

C E F 

Figure 1. The Structure of the Bayesian network. 
Xt-1 and Xt-2 are the previous object states; Xt 
represents the current object state. C, E and F are the 
color, edge and face appearance measurements 
respectively. 

3. Hypotheses Generation 

Multiple hypotheses are widely used in robust tracking 
in the cluttered environment. We adopt a coarse-to-fine 
strategy to generate the hypotheses. 

First, the hypotheses are generated from the local 
maxima in the probability distribution image (PDI). 

The PDI is converted from original color frames via 
color or blob models of the object, color/depth 
background model, or motion detection. The hypotheses 
generation does not require the use of a certain model. In 
this paper, the face is modeled as a blob. The blob is 
represented as a Gaussian model. It has a spatial (x, y) 
and color (r, g, s) (r=R/s, g=G/s, s=R+G+B)) component. 

exp[- 1 (O-µ)TΣ−1(O-µ)] 
P(O)= 2  (1)

(2π )m / 2  | Σ |1/ 2 

where the dimension m is 5, O is a 5-dimension vector 
(x, y, r, g, s), µ is the mean value, Σ is the covariance 
matrix of the Gaussian model. Because of different 
semantics of the spatial and color attributes, their 
distributions are assumed to be independent, i.e. 

Σ =


Σ s 0 


 , where Σs  and Σc means the covariance 

 0 Σc  
matrix of the spatial and color distributions of the blob 
respectively. 
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The current position of the face is predicted by 
Kalman filter. The prediction is not included in the 
dynamics of the BN because the process of hypotheses 
generation is independent of that of hypotheses 
evaluation. Then a set of initial hypotheses is uniformly 
distributed in the neighborhood region of the predicted 
position. Then mean shift algorithm is used to move the 
initial hypotheses to the place where local maxima occur 
in the PDI. If the hypotheses are inter-overlapped, they 
are merged into a representative. 

The mean shift algorithm [8,9,10] has some benefits 
for the tracking task: it finds the local maxima of a non-
parametric probability distribution efficiently, which is 
important for real-time applications. It also tends to 
ignore outliers in the data and thus compensates for noise 
and distracters in the observations. 

Second, the coarse hypotheses are refined by using a 
boosted face filter (BFF). The BFF is based on a boosted 
face detector [14,15]. The detector is to classify a 
subimage of standard size (e.g. 20×20 pixels) into either 
face or non-face. The face filter also computers most 
information needed by face detection; however, it does 
not make decisions – it provides a confidence value as the 
likelihood of every subimage being a face. 

The likelihood is computed based on a set of local 
features. There are a huge number of candidate features. 
AdaBoost learning is used to select a good collection of 
features to best represent the face pattern as opposed to 
nonfaces. Then the likelihood is computed based on the 
selected features. 

For the example x, AdaBoost assumes that a procedure 
is available for learning sequence of weak classifiers 
h x  ∈{0,1} (m=1,2,…,M) from the training examples. A 

m ( )  
stronger classifier is a linear combination of the M weak 
classifiers: 

M 
m m  ( )

HM ( )  = ∑m=1
α h x  (2)x M∑m=1
αm 

where αm are the combining coefficients. The 
classification of x is obtained as y(x)=sgn[HM(x)-0.5]. 
The AdaBoost learning procedure is used to derive αm 

and h xm ( ) . 
Assume that one of the coarse hypotheses is (x, y, s), 

(x, y) is the position component, s is the scale component 
of the hypothesis. Then the image is scanned in the 
neighborhood of the hypothesis at several scales at 0.83s, 
1.0s, 1.2s and three views, frontal, left and right profile, 
producing a large number of subwindows of varying 
locations and scales. The squared subwindows are 
effectively normalized to a fixed size of 20×20. The BFF 
is applied to each normalized subwindow x and the face 
confidence is empirically defined based on the output of 

the BFF for each subwindow. This gives a confidence 
map in the (i, j, s, p) (position-scale-pose) space. For each 
coarse hypothesis (x,y,s), we generate the corresponding 
hypothesis (x*, y*, s*, p*), for which the multi-view BFF 
produces the most significant confidence in the 
neighborhood of the hypothesis (x,y,s). 

4. Hypotheses Evaluation 

Hypotheses are then evaluated in a Bayesian network. 
In Monte Carlo methods [4,5,6,7], the cues integration is 
done through different stages such as hypotheses 
generation and measurement. In this paper, the posterior 
probability of each hypothesis is evaluated through 
integrating multiple cues in an efficient and flexible way. 

Hypotheses are evaluated by a posterior probability as 
the following: 

(P Xt | C, E, F , Xt −1, Xt−2 )  (3) 
where Xt-1 and Xt-2 are the previous object state, Xt 

represent the current object state (i.e. one of the 
hypotheses). C, E and F are the color, edge and face 
appearance measurements respectively. 

By using the Bayesian formula and the Bayesian 
Network as shown in figure 1, we may interpret the 
posterior probability of each hypothesis as follows: 

(P Xt | C, E, F , Xt −1, Xt −2 ) 
( C E F, Xt −1, Xt −2 )∝ P Xt , , ,  

(∝ P C  Xt )P(E | Xt )P(F | Xt ) P Xt | Xt −1, Xt −2 )  (4) 

In the following, more details are given about the prior 
and likelihood models. 

4.1. Prior Model 

The prior model P Xt | Xt −1, Xt −2 ) is derived from the( 
dynamics of object motion, which is modeled by a second 
order autoregressive process (ARP). 

Xt = A2 Xt−2 + A1 Xt −1 + D + Bwt (5) 
where the ARP parameters A1, A2 and B are matrices 

representing the deterministic and stochastic components 
of the dynamical models respectively. wt  is Gaussian 
noise drawn from N(0, I). D is a fixed offset. Therefore, 
the prior model is defined as: 

log P X t | X t −1, X t − 2 )( 
−1(= −  

1 || B Xt − A2 Xt −2 − A1 Xt −1 − D) ||2 (6)
2 

where ||…|| is the Euclidean norm. The ARP 
parameters A1, A2, B and D, are learned from training 
examples via maximum likelihood estimation [21]. 
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4.2 Color Likelihood Model 

The color likelihood of hypotheses P(C | X )  is derived 
directly from the PDI presented in section 3. The color 
likelihood of each hypothesis is defined as: 

1( |  X ) = ∑ I p ( x , y ) (7)P C  
nH ( ,x y  )∈ H 

where H represents the hypothetical region. nH  is the 
scale of the hypothesis. I p (x, y) is the pixel value at 

location (x, y) in its PDI. 

4.3 Edge Likelihood Model 

Contour is used to compute the edge likelihood. A 
contour, described as an ellipse, is constructed based on 
each hypothetical region in the PDI. A contour is defined 
by 5 parameters: the center point, two axis and rotation 
angle. The center point is the centroid of the probability 
distribution in the region. The axes are defined as the two 
eigen-values of the probability distributions in the region. 
The rotation angle is defined as the 2D orientation of the 
probability distribution. All the ellipse parameters may be 
easy to obtain by using the first and second moments of 
the PDI in the region. The edge likelihood is 
approximated by examining a set of points that lie on the 
contour: 

Nc

log P(E | X ) = 
Nc i=1 

1 ∑ f (| G(n(i)) |) (8) 

where n(i) is the normal line to the contour centered 
at the i-th pixel on the contour. G(l) is the gray-level 
gradient along the line l at its center point. f(x) is a non-
decreasing function. Nc is the number of examined points 
on the contour. 

4.4 Face Appearance Likelihood Model 

The face appearance likelihood P F( |  Xt )  is defined 
as the confidence value corresponding to each hypothesis, 
which is empirically defined based on the BFF output. 

Every hypothesis is evaluated by using the above 
models and the MAP one is chosen as the estimated of the 
object state. 

5. Learning Bayesian Network 

Bayesian network allows a probabilistic way for data 
fusion. However different modalities have different 
confidences, which make it necessary to learn the way to 
fuse multiple modalities. We introduce the environmental 
factors to model the confidences of different modalities, 

and encode them into the Bayesian network. The 
environmental factors provides a mechanism to fuse these 
modalities so that the hypothesis, which estimates the 
object state best, can be robustly chosen from all the 
hypotheses in every frame by using MAP criterion. 

The Bayesian network that encodes the environmental 
factors explicitly is shown as figure 2(a). 

Xt-1 ,Xt-2 

Xt 
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W 

Environmental 
Factor 

F E 

Xt-1,Xt-2 

Xt 
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F E 

wf we wc 

(a) (b) 

Figure 2. The Bayesian network that embeds 
environmental factors. Left image shows the 
embedding of the environmental factors W. Right 
image gives the factorized form of the 
environmental factors. 

We assume that the environmental factors are made up 
of 4 independent components: wp, wc, we, and wf, which 
reflects the prior probability, color, edge and face 
appearance likelihoods respectively. Therefore, the BN in 
figure 2(a) can be factorized into the form in figure 2(b). 
Now the posterior probability of every hypothesis can be 
computed as: 

P X( |  C, E, F, Xt−1, Xt−2,W)t 

∝ P X( ,C, E, F, Xt−1, Xt−2,W )t 

∝ P C Xt ,W ) P E  X t ,W ) 
(P F Xt ,W ) P Xt | Xt −1, Xt −2 ,W ) 

∝ P C X t , wc ) P E Xt , we ) 
P F  (( |  Xt , wf ) P Xt | X t −1, Xt − 2 , wp )  (9) 

It is further assumed that the three terms in (9) can be 
written as: 

P C Xt , wc ) ∝ P C  Xt )
wc  (10) 

P E Xt , we ) ∝ P E  Xt )
we (11) 
wf( |  Xt ) (12)P F Xt , wf ) ∝ P F  

( (P X t | X t −1, Xt −2 , wp ) ∝ P Xt | Xt −1, Xt−2 )wp (13) 

With the above assumptions (10)-(12), we obtain a 
new representation of the posterior probability. Since it is 
difficult to learn the environmental factors directly from 
the Bayesian network, they are learnt through an 
approximation approach based on Fisher discriminant 



[21]. Note that log-posterior is changed into the form of a 
weighted sum after taking logarithm: 

log P Xt | C, E, F, Xt−1, Xt−2,W )( 
∝ wc log P(C | Xt ) + we log P(E | Xt ) + wf log P(F | Xt ) 

+ wp log P( Xt | Xt −1, Xt −2 )  (14) 

The right four terms in (14) is proportional to the 
projection of the vector ( log P C  | Xt ) , log P E  | Xt ) ,( ( 

log P F  | Xt ) , log P Xt | X t −1, X t −2 ) ) (We call this vector( ( 
log-likelihood vector later) onto the factor vector (wc, we, 
wf, wp). For the convenience of learning the factor vector, 
we approximate the MAP criterion as a two-category 
classifier. One category includes the log-likelihood 
vectors of the MAP hypotheses; the other includes the 
log-likelihood vectors of the non-MAP hypotheses. 

In the training process, the object is properly tracked 
on training sequences with the environmental factors 
empirically defined. For every frame, if a hypothesis is a 
MAP one, its log-likelihood vector is labeled as class A; 
or else its log-likelihood vector is labeled as class B. The 
training samples are collected from a large number of 
frames and then are used to find the best factor vector. 

The best factor vector is expected to be the projection 
direction for which the projected samples are best 
separated (in the sense described in the following). This is 
exactly the goal of classical discriminant analysis. A good 
separation of the projected data means that the difference 
between the means of two classes to be large relative the 
some measures of the standard deviations for each class. 
The best factor vector is given by Fisher’s linear 
discriminant - the projection direction yielding the 
maximum ratio of between-class scatter to within-class 
scatter. 

However, there is no need to find the threshold for the 
approximate classifier. This is because that the factor 
vector is only used for fusing multiple modalities and we 
still select the hypothesis based on MAP criterion, but not 
from the output of the approximate two-category 
classifier during the tracking process. 

6. Experiments 

Various experiments have been conducted on real 
world video sequences in order to examine the 
effectiveness and robustness of the Bayesian face tracker. 

The face tracker is initialized by a background thread 
in which AdaBoost face detector runs on whole images 
due to its huge computational cost. When a new object is 
detected, it is added to the objects list to be tracked. 

A face tracker is constructed based on only low-level 
cues including prior model, color and edge likelihood 

models. The face is modeled as a blob and hence the 
tracker does not rely on fixed skin color model. This 
tracker do not use face appearance in the tracking 
process. The hypotheses are generated from the only 
coarse step of the coarse-to-fine strategy and evaluated 
using the low level cues. 

Figure 3. Cues Evaluation on a sequence of face 
tracking. This figure shows the log-likelihoods of 
color and edge, log prior and log posterior of the 
hypotheses in each frame. First max and second 
max mean the first and second maximum values 
among all hypotheses in each frame. The selected 
value is chosen according to MAP. 

We evaluate all the three models on a sequence. Figure 
3 shows the first-max, second-max and MAP values of 
every modality from frame 50 to 70. It is easy to find that 
tracking with multi-modal fusion is more robust than that 
with single modality from this figure. For example, in 



frame 58, the best estimate of the object state is the MAP 
hypothesis, whose color likelihood is not maximum. 
Color likelihood alone is not enough to select the proper 
hypothesis. The similar situation occurs to edge 
likelihood model in frame 69 and 70 and to the prior 
model in frame 61. Figure 4 shows the 4 frames and all 
the hypotheses of every frame. 

Figure 4. All the hypotheses in Frame 58,61,69,70 

Figure 5. The samples of the log-likelihood vectors. 
Positive samples are the log-likelihood vectors from 
MAP hypotheses. Negative samples are the log-
likelihood vectors from non-MAP hypotheses. 

We further conducted experiments to learn the 
environmental factors. First the training samples are 
collected from the result of tracking objects in a sequence. 
Fig. 5 shows an example of the training samples. The best 
factor vector is given by the Fisher linear discriminant 
(0.0402, 0.0236, 0.0105). We applied the unlearned factor 
vector and the learned one to track objects on another 
sequence and compare the results in these two cases. 
Figure 6 shows the comparison between the tracking 
results of un-learned and learned cases. Figure 6 shows 
the first maximum, second maximum and minimum log-
posteriors from frame 100 to 200. The learned factor 
vector leads to a better separation between the MAP 
hypothesis and the other ones in most frames. This is also 
confirmed by the values of the Fisher criterion function: 
0.0028 in the unlearned case and 0.0101 in the learned 

case. Though the unlearned and learned trackers both 
track the objects successfully in the test sequence, it is 
expected that the learned tracker will get better result in 
very difficulty situation than the unlearned one. 

BFF is then integrated into the above face tracker 
based on low level cues. The initialization stage is the 
same. After initialization, hypotheses are generated using 
the coarse-to-fine strategy and evaluated using not only 
the low level cues but also the high level cue: face 
appearance likelihood. 

Figure 6 The log-posterior values of 
frame 100 to 200. 

BFF improves the above face tracker in two ways: one 
is to reduce the bias of the estimate of the object state; the 
other is to increase the robustness of the Bayesian face 
tracker greatly. Figure 7 shows two examples where the 
improved tracker locates the object regions more exactly 
than the above tracker. This is because that when the 
profile face is observed, the estimation from color 
characteristics is biased, while the BFF may remedy it. 

The introduction of BFF also allows us to estimate the 
poses of faces. In figure 7, the arrows in second row 
image give the poses of faces. 

Tracking multiple objects is useful in real applications. 
The Bayesian tracker is naturally extended to this case. 
For each object, an object model (blob model in this 
paper) is constructed and used to obtain its PDI. To track 
the object, we just apply the Bayesian tracker in its PDI. 
Occlusion is a major problem in tracking multiple objects. 
Occlusion and re-appearance of an object in the scene are 
viewed as termination of the corresponding tracker and 
re-initialization of another tracker. Figure 8 shows the 
result of tracking multiple objects. 

This tracker runs comfortably at about 20 fps for 
320×240 frames on P1.4GHz PC. This is because of the 



efficiency of the coarse-to-fine strategy and only several 
hypotheses being used. At the same time, the Bayesian 
inference structure makes the tracker very robust to rapid 
motion, occlusions and clutter. 

Figure 7. The comparison between the tracker 
based on low-level cues and the improved tracker. 

Figure 8. Tracking of multiple faces: occlusions 
handling. (Frame 55,56,60,62 and 95,98,99,101) 

7. Conclusions 

In this paper, we have presented a new face tracker 
based on Bayesian network. It is different from Monte 
Carlo methods in the scheme of hypotheses generation 
and the inference structure of the graphical models. The 
tracker uses several hypotheses and a Bayesian Network 
to estimate the object state from prior and likelihood 
models. There are three novel ideas in the face detector 
and Bayesian network based face tracker, summarized as 
follows. 

First, a coarse-to-fine strategy is used to generate 
multiple hypotheses efficiently from the PDI and face 
confidence map. This method improves the efficiency of 
hypotheses greatly and reduces the number of hypotheses 
needed for robust tracking. 

Second, a Bayesian Network is used to evaluate the 
hypotheses, integrating prior probability, color, edge and 
face appearance likelihoods in a uniform and efficient 
way. 

Third, we further extend the Bayesian network of the 
tracker to learn the environmental factors for efficient 
data fusion strategy. We interpret the learning problem as 
the problem of classical discriminant analysis after 
making some approximations. The introduction and 
learning of environmental factors can adapt the tracker to 
different situations. 

Experiments have been conducted to demonstrate the 
robustness and real-time performance of the tracker. 
Experiments have also been done to evaluate multiple 
modalities and learn the environmental factors based on 
Fisher discriminant analysis, which is useful to future 
tracker implementation. 
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