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Abstract

Active Shape Model (ASM) is a powerful statistical tool

for face alignment by shape. However, it can suffer from 

changes in illumination and facial expression changes, 

and local minima in optimization.  In this paper, we

present a method, W-ASM, in which Gabor wavelet

features are used for modeling local image structure. The

magnitude and phase of Gabor features contain rich

information about the local structural features of face

images to be aligned, and provide accurate guidance for

search. To a large extent, this repairs defects in gray

scale based search. An E-M algorithm is used to model

the Gabor feature distribution, and a coarse-to-fine

grained search is used to position local features in the

image.  Experimental results demonstrate the ability of W-

ASM to accurately align and locate facial features.

1. Introduction 

Accurate face alignment is important for extracting 

good facial features, which in turn is important for 

achieving success in applications such as face recognition, 

expression analysis and face animation. Extensive 

research has been conducted on image feature alignment

over the past 20 years. For example, Kass et al [1]

introduced Active Contour Models, an energy

minimization approach for shape alignment.  Kirby and 

Sirovich [2] described statistical modeling of grey-level

appearance but did not address face variability. Wiskott et

al [3] used Gabor Wavelets to generate a data structure

named the Elastic Bunch Graph to locate facial features. 

This latter approach can tolerate a certain degree of pose

and expression change, and has proven to be very useful.

It searches for facial points on the whole image and uses

the distortion of the graph to adjust the feature points.

Unfortunately, this procedure is time-consuming and

requires significant computation.

* The work described in this paper was performed at Microsoft Research

Asia in Beijing.

Active Shape Models (ASM) and Active Appearance 

Models (AAM), proposed by Cootes et al [4][5], are two 

popular shape and appearance models for object

localization. They have been developed and improved for

many years. 

In ASM [4], the local appearance model, which 

represents the local statistics around each landmark,

allows for an efficient search to be conducted to find the

best candidate point for each landmark. The solution 

space is constrained by properly training a global shape 

model. Based on modeling local features accurately, ASM 

obtains good results in shape localization. AAM [5]

combines constraints on both shape and texture in its

characterization of facial appearance. In the context of 

this paper, texture means the intensity patch contained in

the face shape after warping to the mean face shape.

There are two linear mappings assumed for optimization:

from appearance variation to texture variation, and from

texture variation to position variation. The shape is

extracted by minimizing the texture reconstruction error. 

According to the different optimization criteria, ASM

performs more accurate shape localization while AAM 

gives a better match to image texture. On the other hand,

ASM tends to get stuck in local minima, depending on 

initialization. AAM is sensitive to illumination,

particularly if the lighting during testing is significantly

different from the lighting during training. In addition,

training an AAM model is time consuming.

In this paper, we present an improved ASM method,

called W-ASM, in which Gabor-Wavelet features are 

used to model local structures of the image. The 

magnitude and phase of Gabor features contain rich

information about the local structure of the face to be 

aligned, and provide accurate guidance for the search. 

This, to a large extent, repairs defects in gray value based

search. An E-M algorithm is used to model the Gabor

feature distribution, and a coarse-to-fine approach is used

to search for positions for the local points. Compared with

the original method used in ASM, W-ASM can achieve

more accurate results. Compared with the Elastic Bunch 

Graph Matching method, by exploiting a statistical model

to restrict shape variation, computation is reduced because 
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we can use the prior model to direct the search more

effectively, rather than search the whole image.

Experimental results demonstrate that W-ASM achieves

better results than ASMs .

The rest of the paper is organized as follows: The 

original ASM algorithm is briefly described in Section 2. 

In Section 3, we present our Gabor based representation

for local structures of shape, and an E-M method for 

computing a more efficient Gabor representation. Our 

method of search is presented in Section 4. Experimental

results are presented in Section 5, and conclusions are

drawn in Section 6.

2. Overview of the ASM Algorithm

2.1. Statistical Shape Models 

We describe briefly the statistical shape models used to

represent deformable objects.

The ASM technique relies upon each object or image

structure being represented by a set of points. The points

can represent the boundary, internal features, or even 

external features, such as the center of a concave section 

of boundary.   Given a set of training images for a given

object, points are manually placed in the same location on 

the object in each image.  By examining the statistics of 

the positions of the labeled points a “Point Distribution

Model” is derived. The model gives the average positions

of the points, and has a number of parameters that control

the main variations found in the training set.

Figure 1. Labeled image with 87 landmarks

The points from each image are represented as a vector 

x and aligned to a common co-ordinate frame. Principle

Component Analysis [2] is applied to the aligned shape 

vector

bPxx                                    (1) 

where x is the mean shape vector, is a set of

orthogonal models of shape variation and is a vector of 

shape parameters.

P

b

The vector b defines a set of parameters for a 

deformable model. By varying the elements of b  we can

vary the shape using Equation (1). By applying bounds to

the value of parameter b we ensure that the generated 

shapes are similar to those in the original training set. 

The ASM search procedure is an iterative procedure. 

On each iteration it uses the local appearance model to 

find a new shape and then updates the model parameters

to best fit the new search shape [4]. 

2.2. Local Appearance Models

The local appearance models, which describe local

image features around each landmark, are modeled as the 

first derivative of the sample profiles perpendicular to the

landmark contour [4].

It is assumed that the local models are distributed as a 

multivariate Gaussian. For the jth landmark, we can 

derive the mean profile jg and the sample covariance 

matrix from the jth profile examples directly. The 

quality of fitting a feature vector sg at test image location 

s to the jth model is given by calculating the Mahalanobis

distance from the feature vector to the jth model mean.

jS

1( )
t

j s s j j s jf g g g S g g              (2)

At the current position s, when searching points, the 

local appearance models find the best candidate in the

neighborhood of the search point, by minimizing ( )j sf g ,

which is equivalent to maximizing the probability that

comes from the distribution.sg

Using local appearance models leads to fast

convergence to the local image evidence. However, due to

the variation of the illumination and image quality, often a 

feature point cannot accurately located. As a consequence, 

ASM tends to get stuck at local minima, depending on 

initialization.

3. Modeling Local Features Using Gabor 

Wavelets

3.1. Gabor Wavelet Representation of Local 

Features

The use of 2D Gabor wavelet representations in

computer vision was pioneered by Daugman in the 1980’s

[6]. The Gabor wavelet representation allows for a 

description of spatial frequency structure in the image

while preserving information about spatial relations.

A complex-valued 2D Gabor function is a plane wave

restricted by a Gaussian envelope:
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Commonly, 5 frequencies and 8 orientations are used 
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The second term in the square bracket of Eq. (3) makes

the kernels DC-free, i.e. the integral
2)(

vanishes, which renders the filters insensitive to the

overall level of illumination.

Figure 2 shows the 40 standard Gabor kernels.

Figure 2. 40 Gabor kernels used in this paper

In an image, for a given pixel x with gray level xL ,

the convolution can be defined as 

'2'' xdxxxLxJ jj                  (4) 

When all 40 kernels are used, 40 complex coefficients 

are determined. We refer to this set of 40 coefficients as a

jet, which is used to represent the local features. 

Specifically, a jet is the set of convolution coefficients for

kernels of different orientations and frequencies at one

image pixel. It can be expressed as jjj iaJ exp ,

where the magnitudes a vary slowly with position,

and the phases rotate at a rate approximately

determined by the spatial frequency of the kernel.

)(xj

)(xj

Two similarity functions are applied. One is a phase-

insensitive similarity function:

j j

jj

j

jj

a

aa

aa

JJS
2'2

'

', (5)

which  varies smoothly with the change of the position.

The other is a phase-sensitive similarity function:

j j

jj

j

jjjjj

aa

kdaa

JJS
2'2

''

'

cos

,           (6) 

which changes rapidly with location, and provides a 

means for accurately localizing jets in an image.

Assuming that two jets and refer to object locations 

with small relative displacement d

J 'J

, a standard method

[7][8] is used to estimate d :

By expanding Equation (6) in its Taylor form, we 

obtain

j j

jj

j

jjjjj

aa

kdaa

JJS
2'2

2

''

'

5.01

,     (7) 

Setting 0S
d

S
d yx

 and solving for d leads to

y

x

xxxx

xxxx

yxxyyyxxy

x

d

d
JJd

1
, '

(8)

where if , then 0yxxyyyxx

''
jjjxjjjx kaa

jyjxjjjxy kkaa '

for ,y xx , ,  defined accordingly.yx yy

Through this equation, we can estimate the

displacement between two jets taken from object locations

sufficiently close that their Gabor Kernels are highly

overlapped. This approach can estimate displacements up 

to half the wavelength of the highest frequency kernel, 

which will be 8 pixels when using the lowest frequency

kernels (where v=4), and 2 pixels when using the highest 

frequency kernels (where v=0). Wiskott uses this method

in the algorithm of the Elastic Bunch Graph Matching for 

face recognition. 

This representation is often favored for its biological 

relevance and technical properties. The Gabor kernels 

resemble the receptive field profiles of simple cells in the 

visual pathway. They are localized in both the space and 

frequency domains and achieve the lower bound of the 

space-bandwidth product as specified by the uncertainty 

principle [9].
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3.2. Modeling Local Features Using the E-M 

Algorithm

For the labeled training set, the jet of each point in each 

image, , is calculated, where i N , N is the 

number of training images, p , and M is the 

number of the landmark points (87 in our system). We

use the jets in the training set  to model the local features. 

piJ 1

M1

One simple way to model local features is to calculate 

the mean jet of each landmark in all training images.

N

i

pip J
N

J

1

1
                           (9) 

Due to changes in background and illumination, the jet 

values in the same position may vary considerably. For 

example, sometimes women have long hair which covers

the contour of their faces, while men often have shorter 

hair, which makes the respective jet values totally 

different. To use the mean value of all jets to represent the 

entire set of jet values may lead to error. 

Here we assume the jet values of each landmark are 

distributed as a multivariate Gaussian. In order to model

the distribution of jets, we use the Expectation-

Maximization (EM) algorithm [10] to determine the 

maximum likelihood parameters for a Gaussian mixture.

For each landmark i, we obtain the jets J . The 

distribution of Gabor jets for one landmark are then

modeled by the pdf: 

pi

1

1/ 21 2

1

| , , , , |

2 exp / 2

s

s

c

pi s s sk sk sk sk pi

k

c

sk sk sk

k

P J W c G J k

(

10)

,' 1
|

N

ki l sk pil

sk

k

J P k J

s
                  (14) 

where
2 1

T

sk pi s s pi sJ J ,

sc is the number of Gaussian components, and sk  is the

prior probability that the data J was generated by the 

Gaussian component k, which satisfies the normalization

constraint The Gaussian densities 

 have means

pi

sc

k

sk

1

.1

|z k, ,sG x x y sk  and covariance

matrices sk .

The parameters of a Gaussian mixture density can be 

estimated by maximizing the likelihood function through

an iterative procedure known as the Expectation-

Maximization (EM) algorithm. The EM algorithm is used

for finding maximum likelihood parameter estimates

when there is missing or incomplete data. We estimate

values to fill in for the incomplete data (the “E-Step”), 

compute the maximum likelihood parameter estimates

using this data (the “M-Step”), and repeat until a suitable 

stopping criterion is reached.

The E-Step consists of evaluating posterior 

probabilities of the kth Gaussian kernel given the jet for

each mixture component. First the posterior probability in

each Gaussian component is calculated 

,

1

|
|

|

sk pi

l k pi C

sk pik

P J k
P k J

P J k
            (11) 

Then the sum of posterior probabilities is calculated 

,

1

|
N

k l sk

l

S P k J pi                       (12) 

The M-Step then updates the mixture parameters as

follows:

N

Sk
sk
'

                                  (13) 

'

,' 1
|

TN

pi sk l sk pil

sk

k

J P k

S

J

(15)

The E-Steps and M-Steps are iterated until

convergence.

By using the EM algorithm, we obtain the distribution 

of the Gabor jets at each landmark point.  Then we use the

mean of each Gaussian component instead of the mean of

all jets.

4. Search Using Gabor Wavelets 

We can estimate the displacement between pairs of jets 

up to 8 pixels apart. By comparing the jets of each feature, 

we can obtain the best fitting jet at a new position. Here 

we use a coarse to fine approach to search for local points. 

4.1. Jet Displacement Estimation 
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For two point  and , if we know the Gabor jets of

 and , and if the displacement of the two points is 

less than 8 pixels, we can use a coarse to fine grained 

approach to obtain the displacement of the two points.

The procedure is as follows:  Assume we know the 

coordinates of P and the jet value J , the goal is to

estimate the coordinates of :

1P

1

2P

1P 2P

2

2P

1. Set the frequency of the lowest level. 

2. Calculate the Gabor coefficient of the current

frequency level at the position of P , to obtain the 

vector .

1

1J

3. Calculate d 21, JJd  using equation (7). 

4.    Calculate the new position idPP ' .

5.    Increase the frequency and go to step 2, until the 

highest frequency is reached. 

4.2. Point Displacement Estimation 

For the ith landmark point, the initial position is P  and 

the Gabor jet is .  Following Section 3.2, we obtain the 

mean of each Gaussian component

i

iJ

sk of the point, 

, where c is the number of Gaussian 

components. The point displacement is calculated as

follows:

sck 1 s

1. For each mean in each Gaussian component, calculate

the displacement between  and iJ sk .

                            (16) skik Jdd ,

2.  Get the new position candidates.

kiik dPP '
                                (17) 

3. Calculate the Gabor jets for each new position 
.

'
ikJ

4. Use the phase-insensitive similarity function (5) to 

calculate the similarity skikak J ,'S between the new 

jets and the mean jets in the corresponding Gaussian 

component.

5. Select the highest similarity value from skikak J ,'S

(a total of similarity values). The new position is 

chosen as the corresponding new search point position. 

sc

By conducting this procedure, we move the original 

point to a new position which is most “similar” to the

training model using the Gabor representation.

4.3. W-ASM Search Procedure 

Our full search procedure is similar to the ASM

method , except for the search for local points. The 

complete iterative procedure is as follows:

1. Use the face detection algorithm to detect the face

and initialize the shape Y .

2. Generate the model instance s
x x Pb  . 

3. Use the method  in Section 4.2 to search for each

local point and obtain the new shape 'Y .

4. Find the additional pose and shape parameter

changes required to move x to the new search 

shape 'Y .

5. Update the model parameters to match to 'Y .

6. Apply the constraints on .b
7. Repeat step 2 until convergence. 

5. Experimental Results 

We manually labeled 515 pictures, each of size 

.200200 On each image 87 landmarks are labeled. We

select 400 images as the training set and the others as the

test images. We compare the distance between each 

search shape and the manually labeled shapes. 

Figure 3. Point displacement test results.

First we calculate the displacement between each 

estimated point location and the corresponding labeled

point to get the result shown in Figure 3. The x-coordinate

is the average displacement (in pixels) between the 

estimated points and target point locations. The y-

coordinate is the percentage of points whose displacement

to the target is x. We can see that W-ASM achieves more

accurate results than ASM. 

For each test image, we calculate the overall 

displacement of the search shape to the labeled shape. The 

distance of two shapes is defined as follows: 

2 2

1 2 1 2

0

P

j j j j

j

Dis x x y y             (18) 

5

Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03) 
1063-6919/03 $17.00 © 2003 IEEE 



where P is the total number of landmarks (87 in our

system).  For each test image, we calculate DisA (the 

distance between ASM search shapes and the labeled 

shapes) and DisW (the distance of W-ASM search shapes

to the labeled shapes).  Then we calculate the value

%100/ DisADisWDisAm           (19) 

which measures the percentage of improvement of DisW.

When m<0, that is DisW>DisA, this means that the result 

of W-ASM is worse than ASM. In Table 1 below, we can

see that W-ASM works worse in 6 test images, and works

better than ASM in the remaining 94 test images.

We also tested the algorithm on other face databases, 

including the CMU face database and the FERET 

database, which demonstrate significant variation in pose 

and illumination. Some of the search results are shown in 

Figures 5-12. 

Our algorithm is tested on a P-III 450 computer with 

256M memory. The average time to process a face image

with W-ASM is about 0.5 to 0.8 seconds, while it takes 

about 0.2 to 0.4 seconds to process a face image using the 

ASM algorithm.

Table 1. Overall displacement comparison

m range

(%)

the number of

images

m<-5 2

-5<m<0 4

0<m <5 15

5<m <10 14

10<m <15 12

15<m <20 21

20<m <25 17

25<m <30 9

30<m 6

6. Conclusion

In this paper, we have presented the W-ASM algorithm,

which uses Gabor features to model the local structure of 

face images. By using Gabor wavelets, the facial features

can be more accurately located, compared to approaches 

using a simple gray value representation. An E-M

algorithm is used to model the Gabor feature distribution,

and a coarse–to-fine approach is used to search for local 

landmark features. Experimental results demonstrate the 

ability of W-ASM to accurately align and locate facial

features.

The Elastic Bunch Graph Matching algorithm is time-

consuming because it searches on the whole image, and

uses translation, scale, aspect ratios and local distortions 

of the image grids to guide the search. This method

requires significant computation. It is reported in [3] that 

when running on a SPARC station 10-512, it takes less

than 30 seconds to extract features from one image. By

contrast, the W-ASM algorithm, uses a statistical model to 

restrict shape variation and thereby limits the search space

to a very small range. Thus the search procedure is much

more efficient  than ASM, requiring much less search

time in practice (about 0.5-0.8 seconds for each image).
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Figure 4. Comparison of the ASM and W-ASM

algorithms. The first column contains the original images 
with initial shapes. The middle column contains the 
search results using ASM. The third column contains the 
search results using W-ASM.

Figure 5. Figure 6.                   Figure 7.  Figure 8. Figure 9. 

Figure 10.

Figure 11.

Figure 5-11.  Some search results using the W-ASM algorithm.
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