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Abstract—

Accurate face alignment is the prerequisite for many com-
puter vision problems, such as face recognition, synthesis
and 3-D face modeling. In this paper, a novel appearance
model, called Direct Appearance Model (DAM), is proposed
and its extended view-based models are applied for multi-
view face alignment. Similar to the active appearance model
(AAM), DAM also makes ingenious use of both shape and
texture constraints; however, it doesn’t combine them as in
AAM, texture information is used directly to predict the
shape and estimate the position and appearance (hence the
name DAM). The way that DAM models shapes and tex-
tures has the following advantages as compared with AAM:
(1) DAM subspaces include admissible appearances previ-
ously unseen in AAM, (2) It can converge more quickly and
has higher accuracy, and (3) the memory requirement is cut
down to a large extent. Extensive experiments are presented
to evaluate the DAM alignment in comparison with AAM.

I. INTRODUCTION

The appearance based approaches [Sirovich 87], [Turk
91], [Beymer 93], [Murase 95] avoid the difficulties in 3D
modeling by using images of example appearances. It has
become a dominant approach in face analysis and many
other applications. The appearance of a face in an image
is initially represented as a patch of image intensities en-
closed by the facial outline (namely, shape). In this paper,
the intensity patch contained in the shape after warping to
the mean shape [Cootes 01] is called texture. Both shape
and texture provide important clues useful for character-
izing the face appearance [Beymer 95]. The task of face
alignment is to accurately locate the representative points
of the facial outline and extract the confident face texture,
which is crucial for high accuracy face recognition, synthe-
sis [Moghaddam 97], [Torre 98], [Edwards 98], [Blanz 99,
[Gong 00], and tracking [Sclaroff 98], [Hager 98], [Cascia
00], [Ahlberg 01].

The Active Appearance Model (AAM), proposed by
Cootes et. al. [Cootes 01], is a powerful tool for face align-
ment, recognition [Edwards 98] , synthesis [Blanz 99] and
widely used in medical imaging processing. It makes inge-
nious use of subspace analysis techniques, PCA in partic-
ular, to model both shape variation and texture variation,
and the correlations between them. Another feature is that
AAM uses a smart search strategy: It assumes linear rela-
tionships between appearance variation and texture varia-
tion and between texture variation and position variation;
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and learns the two linear regression models from training
data. The two models facilitate the minimizations in high
dimensional space. This strategy is also developed in the
active blob model of Sclaroff and Isidoro [Sclaroff 98]. The
AAM has been extended to multi-view faces by using piece-
wise linear modeling [Cootes 00].

More recent progress has been made in this area. [Li 01]
present a method for learning 3D face shape model from
2D images based on a shape-and-pose-free texture model.
Cootes and Taylor show that imposing extra constraints
such as fixing eye locations can improve AAM search result.
[Baker 01] propose an efficient algorithm (inverse composi-
tional algorithm) for alignment. [Hou 01] present a novel
formulation of the relationship between texture and shape
by using texture to directory predict shape. [Yan 02] pro-
pose a strategy to combine local texture and global texture
for shape localization.

However, there are still two problems in the conventional
AAM. 1) Our analysis on mutual dependencies of shape,
texture and appearance parameters in the AAM subspace
models shows that there exist admissible appearances that
are not modeled and hence cannot be reached by AAM
search processing. 2) Another problem with AAM is that
the training of the two prediction models is based on tex-
ture difference vectors and is therefore very memory con-
suming because the training data for the two models are
generated in a rapidly multiplicative way. The memory
explosion makes AAM training very difficult even with a
moderate number of images.

We proposed a new appearance model, called Direct Ap-
pearance Model (DAM) [Li 02], to give a solution to above
two problems in multi-view face alignment. To solve the
first problem, the DAM model provides a proper subspace
modeling approach based on our findings: the mapping
from the texture subspace to the shape subspace is many-
to-one and therefore a shape can be determined entirely
by the texture enclosed by itself. From these relationships,
the DAM model considers an appearance, which is com-
posed of both shape and texture, to be determinable by
using just the corresponding texture. DAM uses the tex-
ture information directly to predict the shape and to up-
date the estimates of position and appearance (hence the
name DAM); in contrast to AAM’s crucial idea of modeling
the AAM appearance subspace from combining shape and
texture. Thus, DAM includes the admissible appearances



previously unseen by AAM, and improves the convergence
rate and accuracy.

To avoid the second problem, DAM predicts the new
face position and appearance based on the principal com-
ponents of texture difference vectors, instead of the raw
vectors themselves as in AAM. This cuts down the mem-
ory requirement to a large extent, and further improves the
convergence rate and accuracy. The claimed advantages of
DAM are substantiated by comparative experimental re-
sults.

In multi-view face alignment, the whole range of views
from frontal to side views are partitioned into several sub-
ranges, and one DAM model is trained to represent the
shape and texture for each sub-range. Which view DAM
model to use may be decided by using some pose estimate
for static images. In the case of face alignment from video,
the previous view plus the two neighboring view DAM
models may be attempted, and then the final result is cho-
sen to be the one with the minimum texture residual error.

The rest of the paper is organized as follows: In Section 2,
we analyze the AAM model and point out its shortcomings
after a brief introduction of AAM. Then we propose the
DAM model and search algorithm. In Section 3, DAM is
used for multi-view face alignment. This is followed by
extensive experimental results in Section 4. In Section 5,
we conclude this paper.

II. DIRECT APPEARANCE MODEL

Assume that a training set be given as A = {(S;,T7)}
where a shape S; = ((zi,4%),..., (2%, y%)) € R*X is a se-
quence of K points in the 2D image plane, and a texture
T? is the patch of image pixels enclosed by S;. Let S be
the mean shape of all the training shapes. S is calculated
after the shapes are aligned to the tangent space of the
mean shape S, which can be implemented as an iterative
procedure [Cootes 98]. After the shape warping, the tex-
ture T? is warped correspondingly to T; € RL, where L is
the number of pixels in the mean shape S, by pixel value
interpolation e.g. using a triangulation or thin plate spline
method.

A. Introduction to AAM

In the conventional AAM, the subspace analysis tech-
niques are efficiently used for modeling the variable varia-
tions and correlations. The shape is modeled by & (< 2K)
principal modes learned from the training shapes using
PCA. By this, a shape, which is originally in R?X | is repre-
sented as a point or vector s in the low dimensional shape
subspace in R¥

S=S+Us (1)

where U is the matrix consisting of k principal orthogonal
modes of variation in {S;}. Because the training shapes
have been aligned to the tangent space of S, the eigenvec-
tors in U is orthogonal to the mean shape S, i.e. UTS =0,
and the projection from S to s is

s=UT(S-5)=U"’s (2)

The above defines AAM’s shape subspace S;.

After deforming each training shape S; to the mean
shape, the corresponding texture 7} is warped to Tj. All
the warped textures are aligned to the tangent space of the
mean texture T by using an iterative approach as described
in [Cootes 98]. The PCA texture model is obtained as

T=T+Vt (3)

where V is the matrix consisting of ¢ principal orthogo-
nal modes of variation in {T};}, ¢ is the vector of texture
parameters. The projection from T to t is

t=VI(T -T)=VTT (4)

By this, the L pixel values in the mean shape is represented
as a point in the ¢ dimensional texture subspace S;.

Since there may be correlations between the shape and
texture variations, a further appearance model is built from
{s} and {t}. The appearance of each example is a concate-

nated vector
A= ( Ats ) 5)

where A is a diagonal matrix of weights for the shape pa-
rameters allowing for the difference in units between the
shape and texture variation. One may simply set A = rI
where r? is the ratio of the total intensity variation to the
total shape variation. Again, by applying PCA on the set
{A}, one gets

A=Wa (6)

where W is the matrix consisting of principal orthogonal
modes of variation in {A}. By projecting from A to a,
AAM models its appearance subspace S, by

a=WTA4A (7

Consider the difference between the texture Tj,, in the
image patch and the texture T, reconstructed from the
current appearance parameters

6T = Timy — T (8)

In AAM, the search for a face in an image is guided by
minimizing the norm ||67||. The AAM assumes that the
appearance displacement da and the position (including
translations (z,y), scale s and rotation parameter §) dis-
placement dp are linearly correlated to 07". It predicts the
displacements as

da = AT 9)
6p = ApoT (10)

where the prediction matrices A,, A, are to be learned
from the training data by using linear regression. In order
to estimate A,, we need to systematically displace a to get
da and the induced §T for each training image.



B. Motivations for DAM

The conventional AAM is widely applied in different
fields. However, the following analysis of relationships
between the shape, texture and appearance subspaces in
AAM shows defects of the AAM models. Thereby we sug-
gest a property that an ideal appearance model should
have, which motivates us to propose the DAM.

First, let us look into relationship between shape and
texture from an intuitive viewpoint. A texture (i.e. the
patch of intensities) is enclosed by a shape (before aligning
to the mean shape); the same shape can enclose different
textures (i.e. configurations of pixel values). However, the
reverse is not true: different shapes can not enclose the
same texture. So the mapping from the texture space to
the shape space is many-to-one. The shape parameters
should be determined completely by texture parameters
but not vice versa.

Then, let us look further into the correlations or con-
straints between the linear subspaces S, S; and S, in terms
of their dimensionalities or ranks. Let denote the rank of
space S by dim(S). We have the following analysis:

1. When dim(S,)=dim(S;)+dim(S;), the shape and tex-
ture parameters are independent of each other, and there
exist no mutual constraints between the parameters s and
t.

2. When dim(S;)<dim(S,)<dim(S;)+dim(S;), not all the
shape parameters are independent of the texture parame-
ters. That is, one shape can correspond to more than one
texture configuration in it, which conforms our intuition.
3. One can also derive the relationship dim(S;)<dim(S,)
from Eq.(5) and (6) the formula

Wa = ( As >
t

when that s contains some components which are indepen-
dent of ¢.
4. However, in AAM, it is often the case where
dim(S,)<dim(S;) if the dimensionalities of S, and S; are
chosen to retain, say 98%, of the total variations, which
is reported by Cootes [Cootes 98] and also observed by us.
The consequence is that some admissible texture configura-
tions cannot been seen in the appearance subspace because
dim(S,)<dim(S;), and therefore cannot be reached by the
AAM search. We consider this a flaw of AAM’s modeling
of its appearance subspace.

From the above analysis, we conclude that the ideal
model should be such that dim(S,)=dim(S;) and hence
that s completely linearly determinable by ¢. In other
words, the shape should be linearly dependent on the tex-
ture so that dim(S; U S;)=dim(S;). The DAM model is
proposed mainly for this purpose.

Another motivation of DAM is the space consumption:
the regression of A, in AAM is very memory consuming.
AAM prediction needs to model linear relationship between
appearance and texture difference according to (9). How-
ever, both a and 67T are high dimensional vectors, and
therefore the storage size of training data generated for

(11)

learning (9) increases very rapidly as the dimensions in-
crease. It is very difficult to train AAM for A, even with a
moderate number of images. Learning in a low dimensional
space will relieve the burden.

C. DAM Modeling and Training

Our proposed DAM proves a solution to the problems
in AAM. Tt consists of a shape model, two texture (origi-
nal and residual) model and two prediction (position and
shape prediction) model. The shape, texture models and
the position prediction model (10) are built in the same
way as in AAM. The residual texture model is built using
the subspace analysis technique PCA. Abandoning AAM’s
crucial idea of combining shape and texture parameters
into an appearance model, it predicts the shape parame-
ters directly from the texture parameters. In the following,
the last two models are demonstrated in detail.

Recall the conclusions we made earlier: (1) an ideal
appearance model should have dim(S,)=dim(S;) and (2)
shape should be computable uniquely from texture but not
vice versa. Therefore we propose the following regression
model by assuming a linear relationship between shape and
texture

s=Rt+e¢ (12)

where € = s—Rt is noise and R is a k x[ projection matrix.
Denoting the expectation by E(-), if all the elements in
the variance matrix E(ceT) are small enough, the linear
assumption made in Eq.(12) is approximately correct. This
is true as will be verified later by experiments. Define the
objective cost function

C(R) = E(e'e) = trace[E(eeT)] (13)
R is learned from training example pairs {(s,t)} by mini-
mizing the above cost function. The the optimal solution
is

R* = E(stT)[E(ttT)]™! (14)
The minimized cost is the trace of the following
E(ee”) = E(ssT) - R*E(ttT)R*”T (15)

Even in the assumption (12), AAM will still miss some
admissible texture if only retains 98% of the total variations
in (6); As all the example shape and texture are modeled in
(12), the admissible appearance can be seen in the subspace
modeled by DAM.

Another motivation of DAM is the huge memory con-
sumption for the modeling of the regression matrix A, in
AAM. Instead of using 67" directly as in the AAM search
(¢f. Eq.(10), we use principal components of it, 67", to
predict the position displacement

dp = R,0T" (16)
where R, is the prediction matrix learned by using lin-
ear regression. To do this, we collect texture differences
induced by small position displacements in each training



image, and perform PCA on this data to get the projec-
tion matrix H”. A texture difference is projected onto this
subspace as

oT' = HT6T (17)

0T" is normally about 1/4 of 4T in dimensionality. Results
have shown that the use of 07 instead of 67" as in Eq.(16)
makes the prediction more stable and more accurate.

The DAM learning consists of two parts: (1) learning
R, and (2) learning H and R,: (1) R is learned from the
shape-texture pairs {s,t} obtained from the landmarked
images. (2) To learn H and R,,, we generate artificial train-
ing data by perturbing the position parameters p around
the landmark points to obtain {dp, 6T }; then learn H from
{6T'} using PCA; after that we compute 67"; and finally
derive Ry, from {op,dT"}.

The DAM regression in Eq.(16) requires much less mem-
ory than the AAM regression in Eq.(9), typically DAM
needs only about 1/20 of memory required by AAM. For
DAM, there are 200 training images, 4 parameters for the
position: (z,y,0,scale), and 6 disturbances for each pa-
rameter to generate training data for the training R,. So,
the size of training data for DAM is 200 x 4 x 6 = 4, 800.
For AAM, there are 200 training images, 113 appearance
parameters, and 4 disturbances for each parameter to gen-
erate training data for training A,. The size of train-
ing data for A, is 200 x 113 x 4 = 90,400. Therefore,
the size of training data for AAM’s prediction matrices is
90,400 + 4,800 = 95,200, which is 19.83 times that for
DAM. On a PC, for example, the memory capacity for
AAM training with 200 images would allow DAM training
with 3,966 images.

Note that there is a variant of basic AAM [Cootes 01],
which uses texture difference to predict shape difference.
The prediction of shape is done by ds = BéT. However,
this variant is not as good as the basic AAM [Cootes 01].

III. Murtl-ViIEw DAM

The full range of face poses are divided into 5 view sub-
ranges: [—90°, —55°], [-55°, —15°], [-15°,15°], [15°,55°],
and [55°,90°] with 0° being the frontal view. The land-
marks for frontal, half-side and full-side view faces are il-
lustrated in Fig.1. The dimensions of shape and texture
vectors before and after the PCA dimension reductions are
shown in Table I where the dimensions after PCA are cho-
sen to be such that 98% of the corresponding total energies
are retained. The texture appearances due to respective
variations in the first three principal components of tex-
ture are demonstrated in Fig.2.

=~
=
=

. L p
Frontal, half-side, and full-side view faces and the labeled
landmark points.

Fig. 1.

| View

| #L#2] #3 [ #4] #5 |

Fontal 87 | 69 | 3185 | 144 | 878
Half-Side | 65 | 42 | 3155 | 144 | 1108
Full-Side | 38 | 38 | 2589 | 109 | 266

TABLE 1
DIMENSIONALITIES OF SHAPE AND TEXTURE VARIATIONS FOR FACE
DATA. #1 NUMBER OF LANDMARK POINTS. #2 DIMENSION OF SHAPE
SPACE S;. #3 NUMBER OF PIXEL POINTS IN THE MEAN SHAPE. #4
DIMENSION OF TEXTURE SPACE S¢. #5 DIMENSION OF TEXTURE
VARIATION SPACE (d1").

1st

Mean

Fig. 2. Texture and shape variations due to variations in the first
three principal components of the texture (The shapes change in ac-
cordance with s = Rit) for full-side (£10), half-side (£20), and frontal
(£30) views. .

The left side models and right side models are reflections
of each other, so we only need to train one side of them.
So we train [—15°,15°], [15°,55°], and [55°,90°] for the 5
models. We can find the corresponding model for all the
face with view in [-90°,90°].

The novel DAM prediction models leads to the following
search procedure: The DAM search starts with the mean
shape and the texture of the input image enclosed by the
mean shape, at a given initial position py. The texture
difference 6T is computed from the current shape patch
at the current position, and its principal components are
used to predict and update p and s using the DAM linear
models described above. Note that the p can be computed
from T in one step as 6p = RrdT, where Rr = R,HT,
instead of two steps as in Eqns.(16) and (17). If ||6T|| cal-
culated using the new appearance at the position is smaller
than the old one, the new appearance and position are ac-
cepted; otherwise the position is updated by amount xdp
with varied k values. The search algorithm is summarized
below:

1. Initialize the position parameters py, and determine
view by which to select the DAM model to use; set shape
parameters sg = 0;

2. Get texture T3, from the current position, project it
into the texture subspace S; as t, reconstruct the texture
T,, and compute texture difference 6Ty = T;,, — T, and the
energy Eo = ||0T0%;

3. Compute §T' = HTT, get the position displacement
0p = R,6T";



Fig. 3. Initial alignment provided by a multi-view face detector.
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Fig. 4. DAM aligned faces (from left to right) at the 0-th, 5-th,
10-th, and 15-th iterations, and the original images for (top- bottom)
frontal, half-side and full-side view faces.

4. Set step size k = 1;

5. Update p = po — kdp, s = Ri;

6. Compute the difference texture §7T using the new shape
at the new position, and its energy E = ||07[|%

7. If |E — Ey| < ¢, the algorithm is converged; exit;

8. If E < Ey, then let pg = p,sq = 5,01y = 6T, FEy = E,
goto 3;

9. Change k to the next number in {1.5,0.5,0.25,0.125, ..., },

goto 9;

In our implementation, the initialization and pose estima-
tion are performed automatically by using a robust real-
time multi-view face detector we have developed recently,
as shown in Fig.3. A multi-resolution pyramid structure is
used in search to improve the result. Fig.4 demonstrates
scenarios of how DAM converges.

When the face is undergone large variation due to stretch
in either the z or y direction, the model fitting can be
improved by allowing different scales in the two directions.
This is done by splitting the scale parameter into two: s,
and sy. The improvement is demonstrated in Figs.5.

IV. EXPERIMENTAL RESULTS

The training set contains 200 frontal, 200 half-side, and
170 full-side view faces whose sizes are of about 64x64 pix-
els, while the test set contains 80 images for each view
group. The landmark points are labeled manually (see
Fig.1 and Table I). They are used for the training and
as ground-truth in the test stage.

To compare, we also implemented AAM using the same
data in the frontal view. The shape and texture parame-

(0.0997) (0.3019) (0.2720)

Fig. 5. Results of non-isometric (top of each of the three blocks) and
isometric (bottom) search for frontal (top block), half-side (middle
block) and full-side (bottom block) view faces. From left to right of
each row are normal, and stretched faces. The number below each
result is the corresponding residual error.

ter vectors are 694144 dimensional, respectively, where the
weight parameter for the concatenation of the two parts is
calculated as r = 8.84 for A = rI in Eq.(5). The concate-
nated vector space is reduced to a 113 dimensional appear-
ance subspace which retains 98% of the total variation of
the concatenated features.

For DAM, the linearity assumption made for the model
of Eq.(12) is well verified because all the elements in F(ecT)
calculated over the training set are smaller than 10~*

Some results about DAM learning and search have been
presented in Figs.2-5. Fig.6 compares the convergence rate
and accuracy properties of DAM and AAM (for the frontal
view) in terms of the error in 6T (c¢f. Eq.(8)) as the algo-
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Fig. 6. Mean error (the curve) and standard deviation (the bars) in
reconstructed texture ||07T|| as a function of iteration number for the
DAM (left) and AAM (right) methods with the training (top) and
test (bottom) sets, for frontal face images. The horizontal dashed
lines in the lower part of the figures indicate the average ||67T|| for the
manually labeled alignment.

04 0.4
oA ] 03
02 - 02
o1 ol
% 5 w0 1B 2 % 5 T T

Fig. 7. Mean error in ||§T|| and standard deviation of the DAM
alignment for half- (left) and full- (right) side view face images from
the test set. Note that the mean errors in the calculated solutions are
smaller than obtained using the manually labeled alignment after a
few iterations.
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Fig. 8. Alignment accuracy of DAM (dashed) and AAM (solid) in
terms of localization errors in the z (left) and y (right) directions.

rithms iterate. The statistics are calculated from 80 images
randomly selected from the training set and the 80 images
from test set. We see that DAM has faster convergence rate
and smaller error than AAM. Fig.7 illustrates the error of
DAM for non-frontal faces. Fig.8 compares the alignment
accuracy of DAM and AAM (for frontal faces) in terms
of the percentage of images whose texture reconstruction
error 07 is smaller than 0.2, where the statistics are ob-
tained using another test set including the 80 test images
mentioned above and additional 20 other test images. It
shows again that DAM is more accurate than AAM.

The DAM search is fairly fast. It takes on average 39 ms
per iteration for frontal and half-side view faces, and 24 ms

for full-side view faces in an image of size 320x240 pixels.
Every view model takes about 10 iterations to converge. If
3 view models are searched with per face, as is done with
image sequences from video, the algorithm takes about 1
second to find the best face alignment.

V. CONCLUSION

In this paper, we have presented a method for multi-
view face alignment based on our proposed Direct Appear-
ance Models (DAM). DAM overcomes certain limitations of
AAM in the subspace modeling. Unlike AAM, all admis-
sible appearances can be seen in the subspaces modeled
by DAM and thus reachable in DAM search. The DAM
has faster convergence and solution accuracy. Also, DAM
requires less memory than AAM and allows to learn pre-
diction matrices from a large number of training images.
The occlusions, facial expressions, and illumination are still
hard conditions for accurate face alignment, we are planing
to develop robust algorithm to deal with these conditions.
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