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Abstract

Images of a visual object, such as human face, reside in a
complicated manifold in the high dimensional image space,
when the object is subject to variations in pose, illumina-
tion, and other factors. Viola and Jones [1, 2, 3] have
successfully tackled difficult nonlinear classification prob-
lem for face detection using AdaBoost learning. More-
over, their simple-to-complex cascade of classifiers struc-
ture makes the learning and classification even more effec-
tive. While training with cascade has been used effectively
in many works [4, 5, 6, 7, 2, 3, 8, 9, 10], an understanding
of the role of the cascade strategy is still lacking.

In this paper, we analyze the problem of classifying non-
convex manifolds using AdaBoost learning with and with-
out using cascade. We explain that the divide-and-conquer
strategy in cascade learning has a great contribution on
learning a complex classifier for non-convex manifolds. We
prove that AdaBoost learning with cascade is effective when
a complete or over-complete set of features (or weak clas-
sifiers) is available. Experiments with both synthesized and
real data demonstrate that AdaBoost learning with cascade
leads to improved convergence and accuracy.

1. Introduction
An interesting problem in pattern recognition and com-
puter vision is how to model and classify images of vi-
sual objects, such as the human face, under extrinsic vari-
ations in photometry and geometry. It has been found
that distributions of images in low dimensional linear sub-
spaces such as those based on principle component analysis
(PCA) under perceivable variations in viewpoint, illumina-
tion are highly nonlinear, non-convex, complex, and per-
haps twisted as shown in Fig 1. Linear methods, such as
PCA, de-correlate the low order moments while the imag-
ing process is a highly nonlinear function of various fac-
tors. They can hardly remove extrinsic variations in order
to achieve high recognition rate for identifying the intrinsic
identities of objects.

Recently, several nonlinear approaches, including
ISOMAP [11], locally linear embedding (LLE) [12], and
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Figure 1: PCA subspace of translated faces. (a) translated
faces, (b) the result of translated faces projected onto the
first and the third dimension, (c) the result of translated
faces projected onto the second and the third dimension

Laplacian Eigenmaps (LEM) [13], have emerged as non-
linear methods for modelling nonlinear manifolds of data
distributions. ISOMAP performs nonlinear dimensional-
ity reduction by applying multi-dimensional scaling (MDS)
on the geodesic distance matrix. LLE represents nonlin-
ear manifold using multilocally linear PCA representations.
LEM attempts to maintain ordering between points in a lo-
cal embedding. But all these methods are computational
complex, and could not ensure the separability of these
manifolds after dimensionality reducing.

Another major advance in nonlinear classification is Ad-
aBoost algorithms, introduced by Freund and Schapire [14].
These provide a simple yet effective stagewise learning ap-
proach: It learns a sequence of more easily learnable weak
classifiers, and boosts them into a single strong classifier by
a linear combination of them.

Originating from the PAC (probably approximately cor-
rect) learning theory [15, 16], AdaBoost provably achieves
arbitrarily good bounds on its training and generalization
errors [14, 17] provided that weak classifiers can perform
slightly better than random guessing on every distribution
over the training set. It is also shown that such simple
weak classifiers, when boosted, can capture complex deci-



sion boundaries [18].
Relationships of AdaBoost to functional optimization

and statistical estimation are established recently. It is
shown that the AdaBoost learning procedure minimizes an
upper error bound which is an exponential function of the
margin on the training set [19]. Several gradient boosting
algorithms are proposed [20, 21, 22], which provides new
insights into AdaBoost learning. A significant advance is
made by Friedmanet al. [23]. It is shown that the AdaBoost
algorithms can be interpreted as stagewise estimation proce-
dures that fit an additive logistical regression model. Both
the discrete AdaBoost [14] and the real version [17] opti-
mize an exponential loss function, albeit in different ways.
The work [23] links AdaBoost, which was advocated from
the machine learning viewpoint, to the statistical theory.

Viola and Jones [1, 2, 3] have made a successful ap-
plication of AdaBoost to face detection. Moreover, their
simple-to-complex cascade of classifiers structure makes
the computation even more efficient. Their system is the
first real-time frontal-view face detector which runs at about
14 frame per second for a 320x240 image [1]. Asymmetric
Boost is a variation of Adaboost for dealing with asymmet-
ric, skewed distributions [3]. The original AdaBoost min-
imizes a quantity related to classification error; it does not
minimize the number of false negatives.

A recent algorithm of cascade type classifier is the max-
imal rejection [24] for yes-or-no type of pattern classifica-
tion. A cascade of individual LDA classifiers is constructed,
in which negative training examples are extracted by boot-
straping or successive rejection operations. However, it has
only a single linear classifier for each stage. Therefore it can
not reject negative examples inside the hull of the positive
set and so it is impossible to obtain the zero error rate on the
training set and hence test set if the manifold is non-convex.

Many researchers have used cascade of classifiers [4, 5,
6, 7, 2, 3, 8, 9, 10]. It is found that the cascade structure
not only increases the speed of classification by focusing
attention on promising regions of the image, but also make
training easier. However, a detailed analysis of the role of
cascade is lacking.

In this paper, the problem of classifying non-convex
manifolds using AdaBoost learning is analyzed. We explain
the advantage of the cascade structure from the view of the
divide-and-conquer strategy. It is the divide-and-conquer
strategy that has a great contribution on learning a com-
plex classifier for non-convex manifolds. Training a single
strong classifier without using cascade may not converge
to a low error rate and may lead to many undesirable weak
classifiers with low efficiency. In contrast, the cascade strat-
egy splits a hard problem into several easier subproblems,
and solves them one by one in cascade. Experiments with
synthesized data and with real data demonstrate that Ad-
aBoost learning with the cascade structure leads to greater

performance.
The rest of the paper is organized as follows: Section 2

presents problem formulation and motivation. The divide-
conquer strategy is analyzed in Section 3. Section 4 pro-
vides experiment results.

2. Problem Analysis

We focus on learning for two class (positive and negative)
problem. Provided that we are given a large training set
L of N labelled training examples(x1, y1), . . . , (xN , yN),
whereyi ∈ {+1,−1} is the class label associated with ex-
amplexi ∈ Rn. N is typically of the magnitude of mil-
lions, or even infinity. Our aim is to learn a classifier who
can output a class probability estimate functionP{y|x}.

Due to limitation on computational resources, in prac-
tice, we could use just a subset of training data to train a
single strong classifier in each stage. The size of the train-
ing set is restricted ton, wheren � N .

Two important questions need be answered: how to se-
lect new training sets for each stage, and how to combine
the strong classifiers. In order to find the solutions of these
questions, a more important factor, the non-convexity and
complexity of manifold should be considered.

Although Freund has proved that the error of AdaBoost
is bounded above by a exponential function [14], in prac-
tice, many weak classifiers, which conflict with each other,
may be learned. In many cases, training a single strong
classifier without using cascade can hardly converge to a re-
quired performance specification, and instead it could lead
to many undesirable weak classifiers with low efficiency.

Fig 2(a) gives an illustrative situation for a two class
problem. The red (darker) area represents the positive sam-
ples, whereas the white areas stand for the negative sam-
ples. Note there are two holes of negative inside the red
area. In order to reject all white areas, ten simple features
are learned to form a strong classifier as in Fig 2(b). The
first feature is linel1, and the area abovel1 is regard as
negative examples. The second feature isl2, and the area
right-bottom tol2 is considered as negative examples, and
so on. If the two holes (negative samples) want to be ex-
cluded without using cascade, the six features (l1, l2, l3, l4,
l5 andl6) are required to be satisfied at one time. However,
these features conflict with each other; and no area (exam-
ples) exists to satisfy these features. In order to reduce this
conflict and reject all negative examples, a straightforward
AdaBoost may learn a strong classifier consisting many un-
desirable weak classifiers and the weak classifiers at the end
usually are of low efficiency.

In contrast, the cascade structure is a divide-conquer
strategy, which slices off part of negative samples stage by
stage, while fixing positive samples. Namely, the cascade
strategy splits a hard problem into several easier subprob-



(a) (b)

Figure 2: Non-convex manifolds (a) and their “separation”
(b)

lems, and solves them one by one. Therefore, a cascade of
strong classifiers does not require so many weak classifica-
tions to be satisfied at one time and this makes the training
easier. As shown in Fig 2(b), if we use one stage to reject
one hole, then only three features are required to satisfied at
one time, (l1, l2 andl3) or (l4, l5 andl6). Obviously, it is
easier for the cascade type to achieve a good classification
than that of a single strong classifier.

3. Learning Nonconvex Classifier Us-
ing Cascade

Due to the non-convexity and complexity of the two man-
ifolds, it is hard to separate these manifolds using a single
strong classifier. The cascade training is aimed to overcome
this problem. This is illustrated in Fig 3. Green examples
represent positive samples, while red examples represent
negative samples. We fix all the positive examples at each
stage, and bootstrapn negative examples which are misclas-
sified by the previous stages. This procedure is sketched in
Fig 3(a)-(j). Fig 4 illustrates a cascade training process.

Polytopes which enclose some negative samples for the
rejection are requires to handle non-convex manifolds. The
following theorem proves that such polytopes exist.

Theorem: In ann dimensional Euclidean space,n + 1
hyperplanes can be found to construct a polytope (a finite
region ofn-dimensional space enclosed by a finite number
of hyperplanes) with arbitrary size.

Proof:
(1) Obviously, an arbitrary segment can be bounded by

two points,p0 andp1 in one dimensional case, as Fig 5 (a)
shows.

(2) In two dimensional case,p2 is on the second dimen-
sion, as Fig 5 (b) shows. The first line can be defined by
point p2 and pointp0. The second line can be defined by
pointp2 and pointp1. The last line can be defined by point
p0 and pointp1. So, a triangle with arbitrary size can be
construct by these three lines.

(3) In three dimensional Euclidean space,p3 is on the

(a) (b)
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(g) (h)
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Figure 3: The procedure of two manifolds separation using
cascade.

1. For stages=1 toS

a)Generate a bootstrap setB with sizen ;
b)Train a strong classifierfs with B;

2. Output the final classifierg(f1, ...fS), a combination offi’s.

Figure 4: Training cascade of strong classifiers.

third dimension, as Fig 5 (c) shows. The first plane can be
defined byp3, p0 andp1. The second plane can be defined
by p3, p0 andp2. The third plane can be defined byp3, p1

andp2. The last plane can be defined byp0, p1 andp2. So,



a tetrahedron with arbitrary size can be bounded by these
four planes (planep3p0p1, planep3p0p2, planep3p1p2 and
planep0p1p2).

(4) In four dimensional Euclidean space,p4 is on the
fourth dimension. The first hyperplane can be defined by
p4, p0, p1 andp2. The second hyperplane can be defined by
p4, p0, p1andp3. The third hyperplane can be defined by
p4, p0, p2 andp3. The fourth hyperplane can be defined by
p4, p1, p2 andp3. The last hyperplane can be defined byp0,
p1, p2, andp3. So, a polychoron with arbitrary size can be
bounded by these five hyperplanes.

(5) Given thatn hyperplanes can be found to construct a
polytope with arbitrary size inn−1 dimensional Euclidean
space.

(6) In n dimensional Euclidean space,pn is on thenth
dimension. The first hyperplane can be defined bypn, p0,
p1, ..., pn−2. The second hyperplane can be defined bypn,
p0, p1, ..., pn−3, pn−1, and so on. We can usepn and the
combination ofp0, ..., pn−1 to constructn hyperplanes. The
last hyperplane can be defined byp0, p1, ..., pn−1. So, a
polytope with arbitrary size can be constructed by thesen+
1 hyperplanes.

As discussed above,n + 1 hyperplanes can be found to
construct a polytope with arbitrary size in ann dimensional
Euclidean space.

End Proof

(a) (b) (c)

Figure 5: Three examples of bounded region

Training in cascade is a divide-conquer strategy. As the
theorem indicates, no matter how complex the manifold is,
we can find a polytope to bound some negative examples,
and reject them in stages. Therefore, a nonconvex classifier
consisting of several linear classifiers can always be found
to reject part of negative manifold in all cases, as long as
feature space is complete or over-complete.

While maximal rejection classifier (MRC) [24] can also
be regarded as cascade. However, it has only a single linear
classifier for each stage, and is almost impossible to form a
ploytope in each stage. Therefore it can not reject negative
examples inside the hull of the positive sample set and so it
is impossible to obtain the zero error rate on the nonconvex
training set of positive examples and hence test set if the
manifold is non-convex.

4. Experimental Results
Two experiments are performed to compare AdaBoost
tarining with cascade and with non-cascade. The first is
based on synthesized data sets; the other is a real applica-
tion for face alignment quality evaluation.

4.1. Experiment on 2D artificial data sets
An synthesized data set was generated with positive sam-
ples encompassed by negative samples, as shown in
Fig 6(a). Red points represent positive examples, and green
points stand for negative examples respectively. Those ex-
amples which have been correctly classifiedat the end of
each training stageare re-labeled in black color. The er-
ror rate curves as functions of number of weak classifiers is
shown in Fig 7.

From Fig 6(b) and the red curve in Fig 7, we see that
the AdaBoost learning without cascade can barely achieve
high accuracy; the correctly classification rate it can get is
about 97% even after 1300 iterations, and the training ac-
curacy can hardly be improved after that. In this case, after
conquering those big block parts of the negative examples,
the single stage Adaboost learning falls into a dilemma:
it have to cut part of negative examples inside the hull of
posirive data set out, which conflicts with some weak clas-
sifiers learned before. In contrast, the cascade strategy tends
to overcome this problem, as shown in Fig 6(c)-(g)and the
blue curve in Fig 7. We see that after 500 iterations, learn-
ing with cascade converges more quickly than without. It is
more flexible for cascade to handle non-convex manifold.

4.2. Face Alignment Quality Evaluation
This experiment compares the two scheme using real data
derived for face alignment evaluation. The motivation for
this application is the following: Alignment between the
input and target objects has great impact on the perfor-
mance of image analysis and recognition system. Active
Shape Models (ASM)[25] and Active Appearance Models
(AAM) [26, 27] provide an important framework for align-
ment. However, an effective method for the evaluation of
ASM/AAM alignment results has been lacking for clas-
sifying between qualified and un-qualified alignment (see
Fig 8). Bad alignment results, can drop system perfor-
mance. An evaluation method is need to accept or reject
an alignment result.

In this application, the positive training examples are
qualified alignment results and negative are un-qualified
alignment results, as shown in Fig 9. They are generated
as follows: Examples of good and bad alignment are col-
lected. All the shapes are aligned or warping to the tangent
space of the mean shapeS. After that, the textureT0 is
warped correspondingly toT ∈ RL whereL is the number
of pixels in the mean shapeS.
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Figure 6: Comparison between Cascade and Non-cascade:
(a) positive and negative manifolds; (b) result of learning
without cascade with 1300 weak classifiers; (c)-(g) results
at the end of each of the five training stages with cascade,
where the total numbers of weak classifiers are 1300

In this experiment, 2536 positive examples and 3000
negative examples are used to train a strong classifier. The
2536 positive examples are derived from 1268 original pos-
itive examples plus the mirror images. The negative exam-
ples are generated by random rotating, scaling, shifting pos-
itive examples’ shape points. A strong classifier is trained
to reject92% negative examples, while correctly accepting
100% of positive examples.
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Figure 7: Error rate curves as functions of number of weak
classifiers for AdaBoost learning with (blue curve) and
without (red curve) cascade.

Figure 8: Instances of qualified (top) and un-qualified (bot-
tom) examples and the images warped to the mean face ac-
cording to the alignment results. The warped face looks
strange when the alignment is no good.

A cascade of classifiers is trained to obtain a computa-
tional effective evaluation function. When training a new
stage, negative examples are bootstrapped based on the
strong classifiers trained in the previous stages. The de-
tails of training a cascade of 5 stages is summarized Table
1. As the result of training, we achieved 100% correct ac-
ceptance and correct rejection rates on the training set. The
total number of weak classifiers of cascade is 1024.

Table 1: Training results (WC: weak classifier;n: number)

stage n of pos n of neg n of WC False Alarm
1 2536 3000 22 0.076
2 2536 3000 237 0.069
3 2536 888 294 0.263
4 2536 235 263 0.409
5 2536 96 208 0.000



Figure 9: Training Set of Positive Examples (top) and Neg-
ative Examples (bottom)

In training without cascade, all the 2536 positive exam-
ples and 43000 negative examples are used at one time to
train a single strong classifier. The learning without cascade
could not achieved 98.5% correct acceptance and correct re-
jection rates on training set, even after learning 1200 weak
classifiers.

During the test, a total of 1528 aligned examples (800
qualified images and 728 un-qualified images), which are
not seen during the training, are used. We evaluate each face
images and give a score in terms of the confidence value
HM (x) for the learning based method. The qualified and
un-qualified alignment decision is judged by comparing the
score with the normalized threshold of 0.

Fig. 10 quantitatively compares the two methods in
terms of their ROC curves (Fig. 10(a)) and correct curves
(Fig. 10(b)), where the axis labelP (pos/neg) means the
false positive rate and so on. From Fig. 10(b), we can see
that the equal error rate of the cascade is about 40%, while
that of non-cascade is 47%.

5. Summary and Conclusions
In this paper, we analyzed the problem of AdaBoost learn-
ing with and without using cascade for classifying the non-
convex manifolds. We explained why AdaBoost learning
with cascade not only increases the speed of classification,
but also make training easier, especially, when the mani-
folds of examples is non-convex and complex. Training
in cascade makes use of a divide-and-conquer strategy. It
splits a hard problem into several easier subproblems and
solves them one by one. We proved that such a divide-and-
conquerer strategy works when a rich enough, ie a complete
or over-complete, set of features (and hence weak classi-
fiers) is available. Experimental results with synthesized
and real data sets demonstrate advantages of learning with
cascade.
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