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Abstract

This paper presents an approach to face alignment under
variable illumination, an obstacle largely ignored in previ-
ous 2D alignment work. To account for illumination vari-
ation, our method employs two forms of relatively lighting-
invariant information. Edge phase congruency is adopted
to coarsely localize facial features, since prominent feature
edges can be robustly located in the presence of shading
and shadows. To accurately deal with features with less
pronounced edges, final alignment is then computed from
intrinsic gray-level information recovered using a proposed
form of local intensity normalization. With this approach,
our face alignment system works efficiently and effectively
under a wide range of illumination conditions, as evidenced
by extensive experimentation.

1. Introduction
The appearance of a face can change dramatically as the
light condition changes, and sometimes variability due to il-
lumination changes is greater than that owing to differences
between individual faces [1]. To deal with this problem,
several works have addressed the issue of lighting variation
in face recognition, such as the Illumination Cone method
proposed by Belhumeur and Kriegman [2] and the Quotient
Image method proposed by Shashua et al. [3]. These meth-
ods assume that faces are already aligned, but there exists
little work on how to perform this alignment automatically
under variable illumination.

Lighting conditions can have a substantial effect on
the robustness and accuracy of face alignment algorithms.
Current alignment methods such as Active Shape Models
(ASM)[4], Active Appearance Models (AAM)[5] and their
extensions [6] attempt to model the appearance of important
facial features, but feature search based on these models can
become unstable when there exists significant shading and
shadowing which can effectively mask subtle features and
introduce misleading features as well. These illumination
effects can confound the search process and lead the algo-
rithm to local minima, even for relatively uniform lighting.

To reduce the misleading effects of shading, shadows

and noise, we propose to use information on prominent
edges in the initial stages of search. Generally a model point
corresponds to an edge in its locality, and features having
prominent edges, such as the eye boundaries, can in general
be easily identified in the presence of shading and shad-
ows. Since search based on prominent edge information
can effectively locate some subset of the features even un-
der variable illumination, it decreases the likelihood of poor
convergence by robustly providing a rough face alignment.
Although previous alignment methods require a good ini-
tialization to prevent poor shape convergence, we show that
an edge-based approach can be robust to bad initializations.

Some edge features such as nose and lip boundaries,
however, tend to exhibit gradual or low frequency edges
that are sometimes not pronounced enough to be localized
in an edge-based search, especially in the presence of shad-
ing and shadow variations. For such features, more de-
tailed information is needed, so gray-level data is used. The
gray-level information of features lying in deep shading or
shadow, however, can become very subtle and difficult to
distinguish from surrounding areas, which can lead to in-
correct convergence. To deal with this problem, apatch
filtering technique is proposed to perform a type of local in-
tensity normalization to better recover intrinsic information
from local regions. While dependence on only gray-level
information throughout the entire search process can lead
the alignment process astray, search using gray-level mod-
els gives good accuracyfor a good initialization, given by
the edge-based search.

Many methods for shape model fitting employ a hi-
erarchical approach for efficiency and robustness of the
search algorithm: at the coarsest level a rough alignment
result is computed as a good initialization for a second
level in which an accurate face contour is gradually lo-
cated. Our method takes a similar approach using relatively
illumination-invariant features. Our proposed technique ini-
tially uses features containing less information, specifically
edge phase congruency, for coarse alignment because locat-
ing prominent edges is robust even when shading and shad-
ows are present. After coarse alignment, our method utilizes
features containing more detailed local information that is
emphasized by patch filtering to obtain the final result. With
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this proposedbi-stage approach, our face alignment sys-
tem yields accurate, stable and efficient performance under
a wide range of illumination conditions, as evidenced in ex-
tensive experimentation.

2 Feature Descriptors

In this section, we describe the two relatively illumination-
invariant feature descriptors used in our alignment tech-
nique. The first one for coarse alignment is based on con-
sistency in edge phases, and the second involves a filter for
local intensity normalization.

2.1 Edge Filtering

Gradient-based edge detection methods are sensitive to
edge magnitude and smoothness, which can be significantly
affected by illumination conditions. In our algorithm, we
instead employ phase congruency information in the fre-
quency domain [7] to detect prominent edge features.

Edge phase information at each point is computed lo-
cally over multiple frequencies of logarithmic Gabor filters
[8]. The amplitude and phase of the transform at a given
Gabor wavelet scale is computed as

An(x) =
√

en(x)2 + on(x)2
φn(x) = atan2(en(x), on(x))

(1)

[en(x), on(x)] = [S(x) ∗Me
n, S(x) ∗Mo

n] (2)

where Me
n and Mo

n are the even-symmetric and odd-
symmetric wavelets at scalen.

In [7], phase congruency in 1-D is computed as

PC(x) =

∑
n
W (x)bAn(x)∆Φn(x)− T c∑

n
An(x) + ε

. (3)

The valueT of estimated energy due to noise is subtracted
from the local energy to reduce the influence of noise, and a
small constantε is included in the denominator to avoid ill-
conditioned calculation when all the Fourier amplitudes are
small. W (x) is a weighting function to devalue the phase
congruency at locations where the spread of filter responses
is narrow, because a point of phase congruency should be
significant only if it occurs over a wide range of frequen-
cies. A phase deviation function∆Φn(x) increases the sen-
sitivity of the phase congruency measure.

For two-dimensional images, phase congruency is com-
puted over several orientations in the frequency plane to de-
tect all possible 2-D features:

PC2d(x) =
∑

o

∑
nWo(x)bAno(x)∆Φno(x)− Toc∑

o

∑
nAno(x) + ε

(4)

whereo denotes the index over orientations sampled uni-
formly over the frequency plane.

(a) (b) (c)

Figure 1:The log-intensity face image, its phase congruency image, and
its patch-filtered image.

Because phase congruency identifies points in an image
where the Gabor components are maximally in phase, it is
relatively robust to noise and local variations caused by il-
lumination. In Fig. 1(a,b), a log intensity face image and its
normalized phase congruency image is displayed.

2.2 Patch Filtering

Since shading and shadows often diminish the appearance
of features, they decrease the likelihood of correct conver-
gence. To reduce the diminishing effects of shading and
shadows, patch filtering is proposed for local intensity nor-
malization, which makes the feature more distinguishable
from its surrounding area, as demonstrated in Fig 1(c).

Our formulation of the patch filter begins with the Lam-
bertian lighting model, which describes a gray-level image
I(x, y) as

I(x, y) = ρ(x, y)nT (x, y)s (5)

or more generally, the Lambertian model with shadows can
be represented as

I = min(ρnT
∑

l

sl, 0) = min(ρnT S, 0) (6)

whereρ(x, y) is the reflectance (albedo) associated with
point(x, y) in the image,n(x, y) denotes the surface normal
of the object at(x, y), andS is the light source direction
and intensity, which can be represented as a linear combi-
nation of multiple point light sources. This equation can
be seen as a product of a reflectance component (ρ) and an
illumination component (nT S) as observed by Barrow and
Tennenbaum [9].

From Retinex theory [10], the illumination image com-
ponent can be approximated as the low frequency compo-
nent ofI, determined by convolution of the image with a
low-pass Gaussian filter, which we denote asF1. Divid-
ing image intensities by this illumination component then
yields an illumination-invariant descriptor:

R =
I

I ∗ F1
. (7)

This descriptor normalizes a local patch with respect to
illumination intensity, under the assumption that it is fairly
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(a) (b) (c)

Figure 2: (a) Initialization #1: scale variation. (b) Results using gray-
level feature. (c)Results using edge feature.

even over the local patch. This division by the illumination
component, however, can emphasize noise in the patch. To
reduce this side effect, we filter out the high-frequency com-
ponents in the numerator by convolving it with a low-pass
filter F2 with a larger passband thanF1:

R1 =
I ∗ F2

I ∗ F1
(8)

where the division is pixel-wise.
Since the Retinex model assumes smooth variation of re-

flectance in a scene, sharp reflectance changes within the
smoothing kernel ofF1 can distort the Retinex model of
the illumination component. To exclude reflectance varia-
tions from the illumination component, Gross [9] employed
an anisotropic filter instead of simple Gaussian smoothing.
As a fast approximation to anisotropic filtering, our method
uses a weighted Gaussian filter forF2:

F2 =
1
N

WG (9)

whereG is the Gaussian kernel andN is a normalization
factor such that

1
N

∑

Ω

WG = 1

whereΩ is the kernel size.W is the weight function, mod-
elled simply as a boolean function:

W (i, j) =
{

1 if I(i, j) ∈ M1

0 if I(i, j) ∈ M2
(10)

where the convolution window is divided into two sub-
regionsM1 andM2 by a thresholdτ = Mean(IΩ), and
M1 is the sub-region containing more pixels. In a smooth
local region, the effect of this filter is similar to that a stan-
dard Gaussian filter. However, in an edge region, the filter
kernel will convolve only with the primary local regionM1.
The overall result of patch filtering is shown in Fig. 1(c).
Although image noise is still amplified, the features become
much more apparent than before patch filtering.

2.3 Feature Comparison

To distinguish the relative merits of the two relatively
illumination-invariant features, their performance is mea-

(a) (b) (c)

Figure 3:(a) Initialization #2: rotation variation. (b) Results using gray-
level feature. (c)Results using edge feature.

(a) (b) (c)

Figure 4:(a) Initialization #3: displacement variation. (b) Results using
gray-level feature. (c) Results using edge feature.

sured with respect to initialization sensitivity and alignment
accuracy.

To fit these features into the ASM search framework,
we use as feature models the principal components of the
phase congruency values or the filtered gray-level values in
local windows centered on each feature point. The princi-
pal components analysis is computed from 200 images of
size 200x200 under various non-extreme illumination con-
ditions.

In an experiment performed on a different set of 200
images, three different poor initializations illustrated in
Figs. 2-4 are used to test the sensitivity of these two fea-
tures to initialization. Fig. 5 gives the statistical results of
this experiment and Figs. 2-4 illustrate the difference in per-
formance between the two methods. It is clear that the edge
filtering method is more robust to poor initialization.
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Figure 5: Comparison of different search features. The blue bar is for
the edge-based method, the green bar is for the gray-level method, and the
red bar is for the original ASM method. The y-axis represents the number
of images out of 200 on which shape points converge to relatively correct
positions, as opposed to images on which shape points converge to totally
wrong positions.
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Figure 6:Statistical comparison with ASM. Top row compares accuracy, and bottom row compares stability. Method 1: ASM. Method 2: Edge-based
alignment. Method 3: Gray-level method. Method 4: Bi-stage alignment.

From the experimental results presented in Sec. 4, it is
also apparent that the patch filtering method provides higher
accuracy for final alignment, since it improves upon the re-
sults given by edge filtering. The different merits of these
two methods motivates us to employ them at different stages
of the alignment process. The search process switches from
edge filtering to patch filtering when edge filtering has con-
verged, as determined for each point if after an iteration its
change in position falls below a specified threshold. Ter-
mination of the patch filtering method is determined in the
same manner.

3 Implementation

The multi-resolution implementation of our bi-stage align-
ment method is summarized in the following steps. As in
many ASM implementations, the number of resolutions we
use isL = 4 and the size of the search window is5× 1.

1. For each training and test image, a Gaussian image
pyramid is built. The base image is denoted as level
0, and the roughest image is taken as levelL. Similar
to the original ASM method, a statistical shape model
is built from the training images using PCA. For each
level of the pyramid, the PCA models of the edge fea-
tures and the patch features are each computed from
the training images.

2. An initialization for each test image is determined.
For images under non-extreme illumination, the initial

shape can be given by a face detection algorithm. For
images under extreme illumination, the initial shape
is provided manually or could be provided by color-
based detection methods.

3. In the search phase,

(a) Setl = L.

(b) If l = L, use the edge feature. Otherwise, use the
patch feature.

(c) Search the positions of all points until 90% of the
points converge, and then project the shape into
the PCA shape subspace.

(d) If l > 0, then decrementl by one and return to
(b).

4 Results

To test the performance of our alignment system, we do
substantial experimentation on two groups of images, under
general illuminations without significant facial shadows and
under extreme illuminations, which consist of a single point
light source at a large angle from the viewing direction. Be-
cause the bi-stage alignment algorithm requires some addi-
tional time to compute the edge and patch features in the
image, it is slightly slower than the original ASM search
scheme, but it nevertheless takes only about 0.5 to 0.8 sec-
onds to align a face in a200 × 200 image on a P-4 1.4G
computer with 256M memory.
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Figure 7:Comparison under good illumination. Top row: ASM. Bottom row: Bi-stage method.

Figure 8:Comparison under illumination that causes significant shading variation. Top row: ASM. Bottom row: Bi-stage method

4.1 Results under General Illumination

We manually labelled 400 images under general illumina-
tion, each of size200×200. Of these images, 200 were used
for training and the remaining 200 for testing. Even though
the faces are fairly well illuminated, some of these images
present problems to ASM. In this section, we compare the
accuracy and stability of our algorithm to the original ASM
method on the 200 test images.

To measure accuracy, the distance between the searched
feature positions(xk1, yk1) and the manually annotated fea-
ture points(xk2, yk2) is taken as the estimated alignment
error:

D =
∑

k

√
(xk1 − xk2)2 + (yk1 − yk2)2 (11)

For each of the 200 test images, indexed byj, the top row
of Fig. 6 plots the error of ASM (green) and the error of our
algorithm (red).

As a rough measure of stability, we input the manually

aligned shape to the alignment algorithms as the initializa-
tion, and then observe the variation between this initializa-
tion and the resulting shapes after search. The bottom row
of Fig. 6 exemplifies the greater stability of our method in
comparison to the original ASM method.

Although the edge-based method is more robust than the
gray-level method to poor initialization as illustrated in Fig.
5, it has lower accuracy and stability than bi-stage align-
ment. The gray-level method has lower accuracy than the
bi-stage method but it gives good stability when given a
good initialization.

Additional comparisons with ASM under good illumina-
tion are given in Fig. 7 for examples with exaggerated ex-
pressions, facial hair, or unusually-shaped features. Fig. 8
displays results under illumination that causes much shad-
ing variation on the faces.
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Figure 9:Alignment results for one person under varying illumination.

Figure 10:Alignment results for different people under extreme illumination.

4.2 Results under Extreme Illumination

We selected images from the CMU PIE database [10] and
YALE FACE DATABASE B [13] to test our method on ex-
treme illuminations. Since ASM collapses entirely on ex-
treme images, a statistical comparison between ASM and
our algorithm is not meaningful. Experiments on these im-
ages show that our system can give reasonable results un-
der various shadings and shadows, as exemplified in Fig. 9.
Even for images that are heavily shadowed and require great
care to align manually, our algorithm can often work effec-
tively, as shown in Fig. 10. For some images with signifi-
cant shadowing, although our algorithm may not accurately
locate some of the feature points, it rarely collapses to a
totally wrong result.

5 Conclusion

This paper addresses the problem of face alignment un-
der variable illumination using two relatively illumination-
invariant features at different levels of an alignment algo-
rithm. This approach allows our system to handle not only
illumination variations, but also poor initializations. Exper-
iments have demonstrated the robustness and accuracy of
this method, even for a fair number of images under ex-
treme illumination conditions.
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