
AUDIO TEXTURES

Lie Lu, Stan Li, Liu Wenyin, Hong-Jiang Zhang

Microsoft Research China
No.49 Zhichun Road, Beijing 100080, China
{i-lielu,szli,wyliu,hjzhang}@microsoft.com

Yi Mao

Institute of Artificial Intelligence
Zhejiang University, Hangzhou 310027, China

myb_79@sina.com

ABSTRACT

In this paper, we introduce a new audio medium, called audio
texture, as a means of synthesizing long audio stream according
to a given short example audio clip. The example clip is
analyzed, and basic building patterns are extracted. Then an
audio stream of arbitrary length is synthesized using a sequence
of extracted building patterns. The patterns can be varied in the
synthesis process to add variations to the generated sound.
Audio textures are useful in applications such as background
music, lullabies, game music, and screen saver sounds. A
method is proposed for implementing audio textures.
Preliminary results of audio textures are provided at our website
for evaluation.

1. INTRODUCTION

The size of audio media is an important consideration in
applications involving audio. The concerns include the storage
needed for the audio data, and the time needed for download and
transmission when the Internet is involved. How to make such
media objects small in sizes will be critical to the success of the
applications.

In many applications, there is a need for a simple sound of
arbitrary length, such as lullabies, game music and background
music in screen saver. Such sounds are relatively monotonic,
simple in structure, and have repeated yet possibly variable
sound patterns. A very long simple but not exactly repeating
sound would require huge storage.

In this paper, we introduce the idea of a new audio media, called
audio texture, as an efficient method for generating such sounds
from example clips. Audio texture provides an efficient means
of synthesizing continuous, perceptually meaningful, yet non-
repetitive audio stream from an example audio clip. It is
“perceptually meaningful” in the sense that the synthesized
audio stream is perceptually similar to the given example clip.
However, an audio texture is not just a simple repetition of the
audio patterns contained in the input; variations of the original
patterns are fused into it to give a more vivid stream. The audio
stream can be of arbitrary length according to the need

The idea of audio texture is inspired by video textures [7], a new
type of visual medium. The latter was proposed as a temporal
extension of 2D image texture synthesis [1][2], and is researched
in the areas of computer vision and graphics. It is natural to
generalize the idea to audio data. Audio data as a signal

sequence presents self-similarity as a video sequence does. The
self-similarity of music and audio has been shown in [3] using a
visualization method. So far, audio similarity is studied for
audio or music retrieval only [4][5][9] .

We propose an approach for synthesizing audio textures. The
key issue here is how to generate, from a short piece of example
audio clip, an arbitrarily long audio sequence which bears
similarity patterns to the original clip yet presents variations. A
two-stage method is proposed for generating audio textures. In
the analysis stage, the example clip is analyzed, and segmented
into sub-clips by extracting its building patterns or equivalently
finding pattern breakpoints. This step is based on the similarity
measure between each two frames according to their Mel-
frequency cepstral coefficients (MFCCs). In the synthesis stage,
the sequence to play the sub-clips or building patterns is decided,
and variable effects can be combined into the building patterns
to avoid monotony of the synthesized audio stream. Audio
texture is thus generated.

The rest of the paper is organized as follows. Section 2 presents
an overview of the proposed method for generating audio
textures. Section 3 describes algorithms for analyzing audio
structure. Section 4 describes the algorithms for synthesis
process. Section 5 presents settings for the experiments and
provides preliminary results.

2. SYSTEM OVERVIEW

The proposed method for generating an audio texture can be
divided into two stages: analysis and synthesis, as shown in
Figure 1.

In the analysis stage, feature is extracted to represent the original
audio data. The most important feature in our approach is Mel-
Frequency Cepstral Coefficients (MFCCs). Then, the structure
of the audio clip is analyzed, and the audio clip is segmented into
several basic building patterns or sub-clips, where a pattern or
sub-clip can be composed of a single frame or multiple frames.
Meanwhile, the similarity and transition probability between
each two sub-clips are calculated for further synthesis.

In the synthesis stage, we use sub-clip as synthesis unit. We
would still keep using frame as synthesis unit, especially when
no obvious building patterns are extracted from input audio
example. Using different synthesis unit may be more efficient
for different kind of audio. Frames can be considered as a
special case of sub-clips, so we will only consider sub-clip in the

II - 17610-7803-7402-9/02/$17.00 ©2002 IEEE

following sections. A sub-clip sequence is first generated based
on the transition probabilities, by deciding which sub-clip should
be played after a given sub-clip. Different effects can be
introduced by determining different sub-clip sequence or adding
different effects to the sub-clips or building patterns. The
variations include time scaling and pitch shifting, which can be
implemented by synchronous overlap-add (SOLA) method.
Once these are done, a perceptually natural audio stream, or an
audio texture, is generated.

Figure 1. System overview diagram

3. ANALYSIS PROCESS

In this step, the structure of input audio clip is analyzed. It
consists of two steps: similarity is first measured between each
two frames, and then the audio clip is segmented into sub-clips
as basic building blocks.

3.1 Similarity Measure

In order to generate a perceptually natural audio texture, it is
necessary to consider the similarity between any two frames and
the transition probability from one to another. It will be used to
extract the audio structure and segment the original audio into
several sub-clips. It is also the basis for synthesis if frame is
used as synthesis unit.

Let Vi and Vj be the feature vectors of frames i and j in the
MFCC feature space. The similarity measurement is simply
based on vector autocorrelation and defined as,

|||||||| ji

ji
ijS

VV

VV

⋅
•

= (1)

The above measure considers the isolated two frames only. In
order to give a more comprehensive representation of the
similarity, it will be better if their neighboring temporal frames
are taken into considerations. Suppose that the previous m and
next m frames are considered with weights [w-m,...,wm], the better
similarity is developed as follows.

�
−=

++=
m

mk
kjkikij SwS ,

' (2)

This method captures the time dependence of the vectors. To
yield a high similarity score, it requires that the two
subsequences should be similar. In this way, we are actually
matching two sub-clips instead of just two frames.

The transition probability from frame i to frame j depends on the
similarity between frames i+1 and j. The more similar these two
frames are, the higher the transition probability should be. In
this principle, the transition probability is related to the similarity
by the following exponential function.

)
1

exp(
'

,1

σ
−

= + ji
ij

S
AP (3)

where A is the normalizing constant such that � =j ijP 1 , and σ
is the scaling parameter.

Figure 2. Similarity matrix of an example music clip

Figure 2 shows an example of similarity matrix, using 2D

images representing '
ijS for all i,j, computed from a piece of

music clip. The brightness of a pixel is proportional to the
corresponding value. The brighter the pixel is, the larger the
similarity is. The transition probability matrix also shows alike
characteristics as similarity matrix but has one pixel offset.

3.2 Sub-Clip Extraction

Just as using di-phones in text-to-speech system, we also want to
detect some possible building patterns and use them to
synthesize texture instead of frames. Building patterns will be
got by segmenting the input audio clip into sub-clips at some
breakpoints. The segmentation is based on our novelty score at
each time slot. Novelty score is used to measure the possibility
of a new building pattern appears.

Consider a simple music clip having only two totally different
notes, the similarity matrix will be something like following:

��
����

−
−

=
II

II
S (4)

where I is a unit matrix.

The diagonal unit matrix corresponds to the notes which have
high self-similarity, while the off-diagonal matrix corresponds to
the low cross-similarity between these two notes. When S is
correlated by a kernel which looks like S but smaller than S at
the diagonal direction, a maximum value will be obtained at the
note change boundary. The correlation value at each diagonal
point is used as the novelty score at that time. That is, the
novelty score at the ith frame can be calculated as:

Analysis

Audio Structure

Generating sequence

Variation & Combination

Synthesis

Store to FileAudio Player

Input Audio

Feature Extraction

II - 1762

� �
=

−= −=
++

2/

2/

2/

2/
,,)(

w

wm

w

wn
niminm SKiN (5)

where K is a kernel matrix with 2w+1 dimension. (4) can be
considered as a simple kernel. We could also use 2D window
function (such as Hamming) replace the unit matrix in (4) to get
a new kernel. This kind kernel can avoid edge effects because it
tapers towards zero at the edges.

According to the novelty score, a simple scheme is developed to
do sub-clip extraction: The local maxima of the novelty curve
are selected as breakpoints. The sub-clip in each two
breakpoints can be seen as building pattern.

Figure 3 show an example of sub-clip or building pattern
extraction for a music clip. (a) shows the original music data
and (b) shows the corresponding novelty score. The local peak
is selected as building pattern boundary. From (b), it could be
seen that the local peaks of the novelty curve is basically
corresponds to the onsets of the music piece. That is, one note or
several notes is extracted as one building pattern.

	

�

�

 � � � � � � �
 �

 �
 �
 �
 �
 �

!! " $! " %! " '! " (

!) $, % - ' / (1) !))) $) ,) %) -) ') /

(a)

(b)

Time (s)

Figure 3 An example of sub-clip and building pattern extraction
(a) Digital audio data (b) similarity score curve

Some modification is needed when Equation (2) is used to
calculate the similarity between each two sub-clips, because that
definition assumes that sub-clips are of equal length. But the
segmented sub-clips are usually not of equal length, using this
method. In principle, time-warping and dynamic programming
method should be used to compute the similarity between each
two sub-clips. However, we proposed a simplified method as
follows:

Suppose sub-clip i contains M frames and begin from the frame
i; sub-clip j contains N frames and begin from the frame j; and M
< N. The similarity between these two sub-clips can be
represented by: 5

=
= 6789:;++

M

k
M

N
kjki

kij SwS
1 ,

' (6)

It will be more reasonable to consider the neighboring sub-clips
when the similarity between two sub-clips is measured:

<
=

−=
++

'

'

'
,

'''
m

mk
kjkikij SwS (7)

The transition probability from ith sub-clip to jth sub-clip is

determined by ''
,1 jiS + , and can be calculated by the similar

equation as (3).

4. SYNTHESIS PROCESS

After the transition probability between every two sub-clips has
been found, the audio texture can be generated sub-clip by sub-
clip. The issues here are: (1) to determine the order in which the
sub-clips should be combined and played, and (2) to add effects
into the building patterns.

4.1 Determination of Sequence Order

The sub-clip j following sub-clip i may be selected simply by
maximum probability Pij. In real applications, this scheme
sometimes causes repetition of a small part of the original audio
stream, especially at the end of the audio. In order to solve this
problem, we select sub-clip j with certain conditions, as defined
by the follow equation:

}{max
],[

ij
iaij

Pj
−∉

= (8)

This means that the next sub-clip of sub-clip i is searched in all
sub-clips but those in search window [i-a, i], where a is the size
of the window.

To introduce more stochastic characteristics in the generated
sub-clip sequence, we could also select any one of sub-clips in
the following set as subsequence:

}|{ 0pPjj ij >∈ (9)

where p0 is a threshold and used to control the number of
candidate sub-clips. Larger values of p0 emphasize the very best
transitions while smaller values of p0 allow for greater variety at
the cost of poorer transitions.

In fact, in the sequence order determination, we should also
consider the smoothness of amplitude and pitch. It will be very
helpful for perceptual ease of the final generated texture.

4.2 Adding Effects

Variations can be introduced to the sub-clips. In our
implementation, potential variations are time scaling, pitching
shifting and amplitude setting. Different variations can be done
by setting different values for the controlling parameters.
However, a parameter value for pitch-shifting should be applied
to a group of consecutive frames (or a sub-clip) to avoid abrupt
changes in pitch. A smoothing is performed on the transitional
frames between two groups in order to ensure the pitch transits
smoothly.

An interpolation method or TD-PSOLA (Time Domain – Pitch
Synchronous OverLap-Add) method [6][8] is used for
implementing time scaling and pitch shifting. For interpolation,
time scale and pitch scale will be changed simultaneously. If
one wants to change time scale and pitch scale independently,
TD-PSOLA is a good choice.

4.3 Synthesis by Sequencing and Combining

Basically, an audio texture is generated as a sequence of sub-
clips possibly varied. However, there are many different ways
of sequencing and combining the sub-clips. For example, for the
sound of horse neighing, we can generate a sequence of neighing
of a single horse using head to tail sequencing; we also can
generate an effect in which several horses are neighing
synchronously or asynchronously, by time-overlapping of some

II - 1763

textures. Moreover, we can generate an effect of horses running
towards and then away from the listener, by using certain
variation in pitch and amplitude. In sequencing and combining,
TD-SOLA is used again to smooth the break between two
concatenated sub-clips.

5. EXPERIMENTS

A set of audio textures are generated using the audio texture
algorithms presented in this paper. The original audio clips are
all 2-15 seconds long, sampled at the rate of 8KHz or 32KHz,
mono channel, and encoded by 16bit per sample. Experiments
are performed on sounds such as horse neighing, rooster crowing,
thunder, explosion, raining, stream, ripple and simple music.
Some examples are shown below:

Horse neighing. The input audio is 2 seconds long. It contains
just one neigh of a single horse. Eight sub-clips are extracted.
These sub-clips correspond to the start, the end and several
vibrations in the middle of a neigh. The length and pitch
variations for each sub-clip are set randomly. The length of sub-
clip sequence is chosen from a certain range. Different neighing
of horse can be generated by adjusting these parameters. Then
two textures are synthesized. The first one is done by combining
the different neighs as a temporal sequence, generating a sound
that a horse is neighing continuously. Another one is done by
combining different neighs with some time-overlapping, give a
sound in which a group of horses are neighing synchronously
and asynchronously.

Stream. This example is used to show how to generate textures
by using individual frame when no obvious building pattern is
found. The input audio is about 11 seconds long. It is divided
into 25ms frame with 12.5ms overlapping. The texture is
generated by sequencing these frames instead of sub-clips. The
length of texture is set randomly. Variations on time-scaling and
pitch-shifting are set for each one-second texture. To prevent the
pitch from changing too dramatically, smoothing is performed.
The generated texture is stream of infinite length, with some
variations in stream speed and amplitude.

Simple music. This example shows how this algorithm works
on simple music, since music is always more complex than other
audio types. This clip just has some simple rhythms, not as
complex as the traditional songs. It is about 12 seconds long and
is segmented into several building patterns. No effects are added
to any building pattern. Final texture is synthesized by
sequencing sub-clips. Results show the algorithm works well.

Some preliminary experiment results are presented on the
website: http://research.microsoft.com/~szli/AudioTextures. The
interested reader may want to compare the original sound and
the synthesized audio texture.

6. CONCLUSION

In this paper, we have introduced a new audio media, called
audio textures. An audio texture is an audio sequence of
arbitrary length generated from a short clip of audio example. It
consists of consecutively connected patterns that are perceptually
similar to those contained in the example clip but present
variations.

A method has been proposed for the extraction of the basic
patterns from the original clip, the making of variations of the
basic patterns and the connection of the variable patterns into a
long sequence. Algorithm has been presented to implement the
idea.

There are many potential applications for audio textures such as
lullabies, game music, background sounds and other effects.
Another potential application is that it is a good choice for audio
compression. We also hope the new concept could inspire you
on your research work in audio field.

The Audio texture technique can be improved in several aspects
in the future work. In analysis step, we just use a correlation to
measure the similarity between each two frames or sub-clips. It
will be more useful if we could find a perceptual similarity
measurement. In the synthesis step, we decide sub-clip sequence
based on local similarity, how to control the global perception of
generated texture is still a difficult task. Other features, such as
amplitude and pitch, will be helpful for audio texture generation.
In experiments, it would be better if more effective evaluation,
such as perception testing, could be used to evaluate our
algorithm. We would also extend our work to more traditional
music. Thus, more powerful signal processing methods are
needed.

7. REFERENCES

[1] J.S. de Bonet. “Multi-resolution sampling procedure for
analysis and synthesis of texture images”. SIGGRAPH’97.
pp. 361-368, 1997.

[2] A.A. Efros, T.K Leung. “Texture Synthesis by Non-
parametric Sampling”. In Proc. IEEE International
Conference on Computer Vision, 1999.

[3] J. Foote. “Visualizing Music and Audio using Self-
Similarity”. In Proc. ACM Multimedia ’99, pp. 77-80,
Orlando, Florida, November 1999.

[4] J. Foote. “Content-based retrieval of music and audio”. In
C. C. J. Kuo et al., editors, Multimedia Storage and
Archiving Systems II, Proc. SPIE, volume 3229, pages
138-147, 1997.

[5] S.Z. Li. “Content-based Classification and Retrieval of
Audio Using the Nearest Feature Line Method”. IEEE
Transactions on Speech and Audio Processing, 8(5):619-
625. September, 2000.

[6] E. Moulines, F. Charpentier. “Pitch-Synchronous
Waveform Processing Techniques for Text-To-Speech
Synthesis using Diphones”, Speech Comm., Vol.9, pp453-
467, 1990.

[7] Schodl, R. Szeliski, D.H. Salesin, I. Essa. “Video
Textures”. Computer Graphics Proceedings, Annual
Conference Series, pages 33-42, Proc. SIGGRAPH 2000,
July 2000. ACM SIGGRAPH

[8] H. Valbret, E. Moulines, J. P. Tubach. “Voice
Transformation using PSLOA Technique”. In Proc.
ICASSP-92. 1992.

[9] E. Wold, T. Blum, and J. Wheaton. “Content-based
Classification, Search and Retrieval of Audio”. IEEE
Multimedia, 3(3), pp.27-36, 1996.

II - 1764

