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Relevance Feedback in Content-Based Image
Retrieval: Bayesian Framework, Feature Subspaces,
and Progressive Learning

Zhong Su, Hongjiang Zhang, Stan Li, and Shaoping Ma

Abstract—Research has been devoted in the past few years to rel-to balance the relative importance of different feature type and
evance feedback as an effective solution to improve performance of there is no universal formula for all queries. The relevance feed-

content-based image retrieval (CBIR). In this paper, we propose a ; ;
new feedback approach with progressive learning capability com- F;Sﬁ;gg? hique can be used to bridge the gap [3], [12], [13], [17],

bined with a novel method for the feature subspace extraction. The o . .
proposed approach is based on a Bayesian classifier and treats posi- Relevance feedback, originally developed for information

tive and negative feedback examples with different strategies. Pos- retrieval [16], is a supervised learning technique used to improve
itive examples are used to estimate a Gaussian distribution that the effectiveness of information retrieval systems. The main idea
represents the desired images for a given query; while the nega- ¢ rojayance feedback is using positive and negative examples

tive examples are used to modify the ranking of the retrieved can- ided by th . h , f
didates. In addition, feature subspace is extracted and updated provided by the user to improve the system’s performance.

during the feedback process using a Principal Component Analysis FOr a given query, the system first retrieves a list of ranked
(PCA) technique and based on user’s feedback. Thatis, in addition images according to predefined similarity metrics, which are
to reducing the dimensionality of feature spaces, a proper subspace often defined as the distance between feature vectors of images.
for each type of features is obtained in the feedback process to fur- Then, the user selects a set of positive and/or negative examples

ther improve the retrieval accuracy. Experiments demonstrate that f th trieved i dth t b fl fi
the proposed method increases the retrieval speed, reduces the re- rom the retrieved Images, an € system subsequently refines

quired memory and improves the retrieval accuracy significantly. the query and retrieves a new list of images. The key issue is
. N : how to incorporate positive and negative examples to refine

Index Terms—Bayesian estimation, content-based image re- . N .
trieval, principal component analysis (PCA), relevance feedback the query and how to adjust the similarity measure according
(RF). to the feedback.

The original relevance feedback method, in which the vector
model [1], [20], [21] is used for document retrieval, can be il-
lustrated by the Rocchio’s formula [16] as

ONTENT-BASED image retrieval (CBIR) is a process to
find images similar in visual content to a given query from
an image database. It is usually performed based on a com- ., 1 1
parison of low level features, such as color, texture or shapeQ =@+ (m ,Z,Di) -7 (N r Z ) Di)
features, extracted from the images themselves. While there is ‘€Px €D
much research effort addressing content-based image retrieval
issues [1], [11], [19], the performance of content-based ima &
retrieval methods are still limited, especially in the two aspec‘t%r_gI
of retrieval accuracy and response time. . L
The limited retrieval accuracy is because of the big gap b%)—r agiven initial queryy), and a _set of relevant documen]]?_%
. . and nonrelevant documents,, given by the user, the optimal
tween semantic concepts and low-level image features, which

e \ .
is the biggest problem in content-based image retrieval. For en)g—:_w query’, is the one that is moved toward positive example

ample, for different queries, different types of features have dﬁ_omts and away from negative example points. This technique

ferent significance; an issue is how to derive a weightin scher'ﬁealso implemented in many content-based image retrieval sys-
9 ' ghting tems [9], [12]. Experiments show that the retrieval performance

can be improved considerably by using this approach. Gen-
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feature: is described by the weighted sum of all positiveluring the feedback process, so as to reduce the dimensionality
feedback images as of feature spaces, reduce noise contained in the original feature
representation, and hence to define a proper subspace for each

T
q; = Z—Y‘ (2) type of feature as implied in the feedback. These are performed
Zi:l T according to positive feedbacks and hence consistently with the
whereY; is then x K; (K; is the length of featuré) training subjective image content.
sample matrix for featuré obtained by stacking the posi- The proposed new feedback algorithm uses a Gaussian es-

tive feedback training vectorK,jr into a matrix. The: element timator to incorporate positive examples in refining retrieval
vectorr = [y, ... T, represents the degree of relevance (to thesults. By assuming that all of the positive examples in one re-
query) of each of the positive feedback images, which can bérieval iteration belong to the same semantic class with common
determined by the user at each feedback iteration. The syste@mantic object(s) or meaning(s) and the features from that se-
then useg; as the optimal query to evaluate the relevance of thieantic class follow a Gaussian distribution, we use features
images in database. This strategy is widely used by many otlérall positive examples in a query iteration to calculate and
image retrieval and relevance feedback systems [9], [17], [19)pdate the parameters of its corresponding semantic Gaussian
Bayesian estimation methods have been used in the prob@ss. That s, the image retrieval becomes a process to estimate
bilistic approaches to relevance feedback. @bxl. [3], Vas- Gaussian parameters of a semantic class and the query refine-
concelos and Lippman [26], Meilhac and Nastar [13] all usedent becomes a process of updating the Gaussian parameters.
Bayesian learning to incorporate user feedbacks to update Tigen we use a Bayesian classifier to re-rank the images in the
probability distribution of all the images in the database. Thelatabase. This process is progressive so that every feedback can
consider the feedback examples as a sequence of indepentiame an impact on later retrieval processes. Experimental results
gueries and try to minimize the retrieval error by Bayesian ruleshow that such a feedback approach improves the retrieval ac-
That is, given a sequence of queries, they try to minimize tiegracy significantly compared with previous methods.
probability of retrieval error as Another objective of the work presented in this paper is to
extract more effective, lower-dimensional features from the
originally given ones, by constructing proper feature subspaces
=argmax{P(z; |y =i} Ply=1i|z1,...,24-1)} from the original spaces, to improve the retrieval performance
! 3) in terms of speed, storage and accuracy. In this paper, we
propose to use the PCA technique to derive a more effective,
where{z1,...,z;} is a sequence of queries (feedback exanefficient and compact feature representation supervised by the
ples)and’(y = i|z1,...,x;) is a prior belief about the ability relevance feedback process.
of theith image class to explain the queries. PCA is a statistical tool for data analysis [8]. It decorrelates
Efforts have also been made to address the problem of slsacond order moments corresponding to low frequencies, and
response time in content-based image retrieval, the probléfntifies directions of principal variations in the data. We
being caused mainly by the high dimensionality of the featuiecorporate PCA into the relevance feedback framework to
space, typically hundreds to thousands. Ng and Sedighian [&4jract feature subspaces in order to represent the subjective
made direct use of eigenimages, a method from face recognitmass implied in the positive feedback examples. This leads to
[10], to carry out the dimension reduction. Faloutsos and Lthe following benefits: 1) whitening feature distributions so that
[6], Chandrasekareet al.[2] and Brunelli and Mich [15] used distance metrics can be defined more rationally; 2) reducing
principal component analysis (PCA) to perform the dimensigrossible noise contained in the original feature representa-
reduction in feature spaces. Experimental results in these wotks; 3) reducing dimensionality of feature spaces, and hence
show that most real image feature sets can be considerad)ydefining a proper subspace for each type of feature, as
reduced in dimension without significant degradation in remplied in the feedback. As mentioned earlier, different types
trieval quality. However, there are two problems with the usef features have different significance for different queries,
of PCA in these works. Firstly, they adopted a fixed numbeand their subspaces should have varying dimensionalities. A
for the dimension size. This strategy is questionable becaysecedure is provided to adjust the dimensionalities based on
for images of different complexity, the intrinsic dimensionghe evidences provided by the feedback.
are usually different. Secondly, the subspaces are fixed onc@enefits brought about by the PCA-based extraction of fea-
the PCA is performed the first time and do not adapt to usetsire subspaces are much lower storage, much faster speed and
subjectivity. Generally, this kind of blind dimension reductiomigher accuracy. Our analysis shows that the computational time
can be dangerous, since information can be lost if the reductiamd memory requirements in online retrieval are linear with the
is below the embedded dimension. total feature dimension. When only about 30% of the original
In this paper, we propose a new relevance feedback approsmtal dimensions are used, which is the case in our system, only
[24], [25], which is based on a Bayesian classifier and trea@9% of the memory is needed and the proposed method is three
positive and negative feedback examples with different stratémes faster than of those methods without the PCA dimension
gies. Not only can the retrieval performance be improved foeduction. In other words, by applying PCA dimension reduc-
the current user, but the improvements can also help subsequiemt, the retrieval system can afford nine times more images.
users. Moreover, by applying the Principal Component Analydixperiments on more than 10 000 Corel images show that such a
(PCA) technique, the feature subspace is extracted and updajeeled-up is achieved without sacrifice in the retrieval accuracy.

g(x) =argmax P(y = i|xz1,...,2¢)
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TABLE |
Low LEVEL FEATURES USED IN THE EVALUATION

Features Dimension
Color histogram in HSV space with .
o 256
quantization 256
First and second color moments in Lab space 9
Color coherence vector in LUV space with
N 128
quantization 64
Tamura coarseness histogram 10
Tamura directionality 8
Pyramid wavelet texture feature 24

This paper is organized as follows. Section Il describes ourlLet us define some notations before going further. Denote the
method of relevance feedback based on Bayesian estimatiomage database b and letn be the total number of positive
Section lll first introduces the PCA process, followed by a déeedback examples for query image Suppose thatn types
tailed presentation on the Bayesian relevance feedback algbfeatures are used in the retrieval and so an image is repre-
rithm in PCA feature subspaces. Also, a complexity analysis eénted byz = [z71,...,%;,...,%n], Wherez; is the feature
the algorithm is given in this section. The experimental resuligctor in then;-dimensional feature spaée for type: features.
are shown in Section IV. The concluding remarks will be giveWe assume that each type of feature is Gaussian distributed,
in the final section. 7; ~ N(z;, R;), whereR; (more generallyR, in (4)) is the

n; X n; dimension covariance matrix ang (more generallyz
Il. RELEVENCE FEEDBACK BASED ONBAYESIAN ESTIMATION N (4)) is then; dimensional mean vector. That is, we calculate
... a Gaussian distribution for each type of feature used to repre-
In the proposed relevance feedback approach, positive

tive feedback | . ted in th t images in the image database. We use a diagonal matrix
Hr?grilvr?t ere ac W?[ﬁaé?f? ?snatlret:ntcoripora}re inm ] erqltJery cﬁ?aﬁg{af} to represent the intra-component correlation, for sim-
inément process with different strategies. 1o incorporate pq icity. This is to assume that the feature components we use to
itive feedback in refining image retrieval, we assume that

. . . . resent visual content of an image are orthogonal and inde-
of the positive examples in a feedback iteration belong to t P g 9

same semantic class whose features follow a Gaussian distri %(\dent to each other. The practical reason of this simplifica-
. ' Wh u w ussl 'SUER8E is that the intra-component correlation cannot be estimated
tion. Features of all positive examples are used to calculate

date th rameters of it i ndin mantic G ctically and reliably, especially when there are not enough
upcate the parameters of 1S Correspo g semantic ‘>ausslipack examples. We understand this is a strong assumption.
class and we use a Bayesian classifier to re-rank the IMages fvever, for the features we used in our system as listed in
the database. To incorporate negative feedback examples,.lsgsle | this assumption is appropriate

apply a penalty function in calculating the final ranking of an Our idea about relevance feedback is the following: It is

|mag$_ to the qultarytlmagtla(. Tna; ISI, i ag (:limaged[s S'm”?r: tc:jr%asonable to assume that all the positive examples belong to
negative exampie, Its rank wiil be lowed depending on € Ay aqq of images containing the desired object or semantic
gree of the similarity to the negative example. The details

these two strategies are described in detail in this section eaning and the features of images belonging to the semantic
9 * classes obey the Gaussian distribution. The parameters for a

semantic Gaussian class can be estimated using the feature
vectors of all the positive examples. Hence, the image retrieval

The Gaussian density is often used for characterizing proliecomes a process of estimating the probability of belonging
bility because of its computational tractability and the fact thad a semantic class and the query refinement by relevance
it adequately models a large number of cases. Consider a vefé@dback becomes a process of updating the Gaussian dis-
x that obeys a Gaussian distribution; then, the probability detnibution parameters. The log posterior probability that the

A. Positive Feedbacks and Progressive Learning Process

sity function is feature vector x belongs to the semantic clgssnplied in the
positive examples is estimated using the following Bayesian
p(x) = me—%(m—z)”m‘(r—x) ) formulation:
N gi(x) =In P(¢; |z) o< Inp(x|¢;) + In P(c;)
whereR,.(x — 7) is the covariance matrix of featuseand| R, | (x —z)T

1
is used to normalize the probability density function. T2 Y (x—z;) +In P(ei) + const; ©)
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where constare fixed in one feedback iteration. Assuming that

different feature types are independent of each other, the log

posterior probability is calculated as the sum of the individual

gi(x)'s. Experiments show that the use of this posterior proba-

bility as the ranking metric improves the performance of rele- J

vance feedback in content-based image retrieval [17], [19], [26]. e
There are three parameters in the Bayesian estimator in (5):

e;, X; and the probability of the semantic cla&:; ). They need 7

to be updated when more positive examples are provided by the

user through relevance feedback. Actually such a process could

be considered as the combination of two Gaussian classes. So

it is easy to get the updating process. Denote the current %I%t-l The left figure shows the contours of the Bayesian classifier function

of positive examples by/, in which each example is denotedhe

D space, where “c” is the class distribution center. Right-hand side shows
effect of considering the negative examples as belonging to the same

by w. In other words, there are totally/| positive examples distribution. The contours of the classifier turn out to be a set of hyperbola in
in the current feedback iteration. The updating of the Gaussi&R SPace. where "n”is the center of the negative examples.
parameters is performed as follows:

wheren andn’ are the total number of positive examples accu-

Our feedback algorithm is incremental. This has the fol-

n' =n+|U| (6) lowing advantages: Not only can the retrieval performance be
) n|UJZ2 = 2nZ; Y ey U improved for the current user, but the improvements can also
o' =no} + : T ue help the subsequent users. The parameters of the Gaussian
| |2 semantic class corresponding to each query will be refined by
+ Z u? — M @ its positive examples according to (6)—(8), and could be used
wel n+|U| for other users. The updating process is an online process, so
N+ Y ey u the cqmputauonal complexity is quite |m.portant. However, Fhe
T; = W (8) updating process only needs to deal with the current positive

examples, so the computation cost can be neglected compared
to the whole retrieval process.

mulated before and after the current feedback iteration, respec- ] e
tively; 3, < u represents the mean of the positive examples B Negative Feedbacks: “Dibbling” Process

the current iteration.

Most methods previously described in the literature apply the

In the current implementation, the probability of a semantigsame methodology to negative and positive examples, based on
classP(c;) is assumed equal for all semantic classes and t@e assumption that the negative examples have the same fea-
mains constant in the relevance feedback process. ture distribution as the positive ones; or otherwise ignore the

The following describes how positive feedback is performeglegative examples completely in the feedback process. In our

1)

Initialization of System: opinion, negative examples should be treated differently. Pos-

1) Feature Normalization: This allows equal emiive examples are usually considered to belong to the same

phasis on all the feature components. Fa; Semantic class. However, according to many experiment obser-

the normalized vector is® = [37/-1 . vations, negative examples are often not semantically related.
K2 w?rtran 1) . .
where o = (2 — Z(«" )/30(x, )) and Moreover, as we haV(_a discussed above, .the features of images
o/ = (z;, —min(z;, )/max(z;, ) — min(z;, )). [romacertain semantic class can be considered as Gaussian dis-
Tm ™ 2 b ™ .

If =; satisfies the Gaussian distribution, it is easy t§ibution. If we consider the negative examples to be a Gaussian
provg that the probability of/ being in the range of distribution as well and use the difference between the distance
tm

[—1,1] is 99%. to the positive center and that to the negative one as the final
2) Initialization: Initializes; = I (identity matrix) ands; = distance measure[17], the contours of the classifier will change
Z =1 from closed ellipses to open hyperboloids in feature space, and
iy this will induce a conflict between the original assumptions of
2) Retrieval and Feedback:

1)

2)

3)

the data distribution. Fig. 1 shows such a change in 2-D space.
Update the retrieval parameters z;, andn accordingto ~ Negative examples are oftésolated and independenthus
(6)—(8) using the information provided by the current seéhey need to be treated differently from the positive examples.
of positive example#/. We apply the following method to deal with the negative ex-
Distance Calculation: For each imafe K € D, its dis- amples. We only “punish” those images in the database that
tanced; is calculated using (5) in the retrieval after thare very near to the negative samples and do not let the neg-
feedbackd; = —g¢(K). That is, the similarity of each ative samples influence the other images. Under this strategy,
image in the database to the refined query is determine® penalize images near the negative examples by increasing
by (5) based on the positive examples. their distance to the query. Suclpanaltyfunction seems like
Sorting by distances and provide the new ranking list #‘dibbling’ process in feature space. By extensive simulation,
the user. we have found that the penalty function can be approximated by
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> Sample Image Input

v

Present retrieval results by sorting the
distance according to distance measurement

!

Positive and Negative samples input based on
the previous results

y

Using positive examples to update the
parameters of the classifier. Do "dibbling’
No process if negative examples exist

’

Update the retrieval results based on the
new distance calculation

Yes
User Feedback
Fig. 2. Flow chart of the whole feedback process.
a Gaussian function for each negative example. Denote the cur- 1ll. BAYESIAN RELEVENCE FEEDBACK IN THE PCA

rent set of negative examples by for each imagek, K € D FEATURE SUBSPACES

as before, the distance punish function is defined as The other major contribution in the proposed relevance feed-

back approach to content-based image retrieval is to apply the
Pun(d;) = Z go(dy) (9) principal component analysis technique to select and updated a
eV proper feature subspace during the feedback process. This algo-

rithm extracts more effective, lower-dimensional features from
whereg, (d,) is the Gaussian function whose parameters are (}g_e originally given ones, by constructing proper f(_eature sub-
: . i . . ; spaces from the original spaces, to improve the retrieval perfor-
termined experimentally; and, is the distance between image . .
mance in terms of speed, storage requirement and accuracy. In

K and a_n_egatl\_/e example,v € V. d, can be calculated_usmgthis section, we first present the PCA algorithm, followed by a
the Euclidian distance between the feature vectors of inkage : - .
detailed description of how we apply PCA in relevance feed-

and the negative examplg, cy sums up penalty contributions back in content-based image retrieval
from all negative examples to the imagfe That is, if an image '
in the database is close to all negative examples, the penalt)g\_isprincipm Component Analysis
high; in contrast, if the image is far away from all negative ex-

amples, the penalty function will decreased to zero, accordi?g
to the Gaussian distribution. z

So the distance after negative feedback is defined as

Consider an ensemble ofn-dimensional vectors
= |x1,...,2,)T} whose distribution is centered at

the origin E(z) = 0. The covariance between each pair of

variable isr;; = E{(z; — %;)(z; — z;)} = E{z;z;}, where E

is the expectation operator. The parametgy£an be arranged

d'; = d; + Pun(d;). (10) to form then x n covariance matrix

R, = E{(z — z)(x — 2)"} = E{zz"}. (12)

That is, if an image in the database is close to negative eXafksumingdet(R,) # 0, then by applying eigenvector de-
ples, its distance to the query is increased’lyi(d; ) as defined  oomposition,?, can be decomposed into the product of three

in (10). _ matrices
Fig. 2 shows the whole feedback process of using both the

positive and negative ones. R, = WAW™! (12)
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whereA = diag{\i,..., A\, } are the eigenvalues arllf =
[wy, ..., w,]T are the corresponding eigenvectors. W is orthogiuency components in PCA process will reduce the noise in
onal in thatW” W = I. So the columns o form a new or- retrieval.

thogonal basis thatis a linear transformation from of the original An issue should be mentioned here: Addition of new images

basis.
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Fig. 6. Retrieval accuracy for top 100 results in original feature space.

z onto the eigenvector basis (without dimension reduction), ob-
taining the coordinates, which is equivalent to rotating the fea-
ture basis; then rescale the coordinates by the factoy gfA;

to obtain the whitened feature vecipandy = Wz. After the
whitening, we are able to calculate the Mahalanobis distance
betweenz; andzs in the original feature space by the simple
Euclidean distance between the correspongingndys,, in the
whitened feature space, i.e.,

(13)

T
) T, —T
dist(z1,22) = (1 2) ) = |lys — |-

> (x1—

If we only select the firsin eigenvectors as the orthonormal
basis vectors to form a subspaEe= span (W’), then any
vectorz in the original space can be linearly transformed.to
with the new representatiayi

y =Wz (14)

An approximation to the originat can be reconstructed from
the projectiony’ asz’ = W’Z’ = W'"W'z. The mean squared
reconstruction error is

Je(m) = E{lle -2/’ = > Ao

i=m-+1

(15)

We can choose the set of eigenvectors used for the reconstruc-
tion to minimize this: Sort eigen values in descending order so
thatA; > A\; > 0, wherei > j; this also sorts the corresponding
eigenvectors in the descending order of their significance. The
mean square reconstruction erfrcan thus be minimized.

There are two advantages of using PCA: 1) dimension re-
duction is achieved wheh < n andz is represented by the
projected coefficients; 2) noise reduction is achieved because as
indicated in our experiments that high frequency components
corresponding the smallest eigenvalues often correspond noises
in image retrieval applications; thus, removing these high fre-

may require re-learning of the PCA basis vectors. For retrieval

The eigenvector decomposition can be used to whiten the fagistems that entirely rely on low-level image features, adding
ture distributions as follows. Project the original feature vectorew images simply involves extracting various feature vectors
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TABLE I
RETRIEVAL ACCURACY AFTER NEGATIVE FEEDBACK
Our Method Previous method
Accuracy Increase in Top 10 13.4% 2.1%
Accuracy Increase in Top 20 7.8% 0.1%
Accuracy Increase in Top 100 2.6% -0.1%
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Fig. 7. Accumulate eigenvalues of individual low-level features after PCA process.

for the set of new images. However, the insertion of new imagissbecause PCA subspaces need to be re-learned if new images
may need some processing in the approach proposed here. $lgaificantly change the covariance matrix.
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TABLE 1
RETRIEVAL ACCURACY AFTER NEGATIVE FEEDBACK
Our Method Previous method
Accuracy Increase in Top 10 13.4% 2.1%
Accuracy Increase in Top 20 7.8% 0.1%
Accuracy Increase in Top 100 2.6% -0.1%
B. Relevance Feedback in PCA Feature Subspaces where d( ) refers to the distance between two features in

As described in the last subsection, PCA can be used to redﬂE% PCA subspace_. We can see fr_om the above _eq“a“‘_"f‘ that
e good feature will have small distances from its positive

the dimensionality of the feature space, and to extract the prm-am les 1o the query class center compared to other images
cipal lower-dimensional subspace of the original feature spa gamp query P 9

A reasonable deduction in dimensionality causes little decreé@edatabases' ) _ .
in performance. This is especially true in content-based image\ter calculating)Z; for each feature typg we sort thel/; in
retrieval since the components removed from the original ima gscend|r_19 order to get the ra“*"?” M;. This rank can reflect )
feature space often correspond to noise. According to our expele e_ffectweness of the f_eature_ in the current retrieval session
imental results on a large amount of data, dropping 80% of tfgative to the others. It will be high for a good feature type and
feature dimensions leads to only about 5% reconstruction err3f¥/ for a bad one. So we can update the number of dimensions,
dropping 90% dimensions gives only about 10% reconstructigfy Of feature type based on the calculated rank value as
error. Yet the retrieval speed has been improved significantly as
a result of such dimension reductions. m'; = (mi +7X ([T] —r; = 1)) a7

A key issue is how to determine the intrinsic dimensionality 2
of the feature subspace for each feature, given that the rate %f : . . :
dimension reduction should vary for different types of featurely 1 o’ 15 @ constant factof,] is the floor operation, andh is

We propose to use the following idea to perform the PCA in ti‘ﬁée tofnal number of feature types and> 1. From the aboye
feedback framework. equation we can see that for a good feature, its corresponding

) . I ¥vi|l be increased so that more dimensionality could be availed
In the first round of retrieval, we use only a few significan

components for each feature. That is, for each feature ztypeOf in the next retrieval iteration. The choiceoflepends on the

. A : ~ " humber of feature types, the original dimension of each feature
select the firsim; most significant eigenvectors for the type e )
. : : L I type, and the desired increment scale. In our experiment, we set
feature, wheren; is quite small comparing with its original fea-

. i o 7 to 1 andm = 6. That is, if the feature type is ranked higher
ture dimensiom,;. The initial value ofm; of the type of feature o . . ! ) 3
. . : : than 3, then its dimension number will be increased; otherwise,
is calculated bym; = v x n; where is the dimension re- ., ~.
duction rate; e.gy = 0.1. In other words, for simplicity, the it will be lowered.
v SN ' The following describes the PCA embedded algorithm.
PCA process in our implementation is performed for each fea- e )
. . 1) Initialization of System:For each feature type
ture type, instead of all features together. It will be a much more -
; 1. = 1,...,m, do the following:

complicated process to perform the PCA process for all typés _ _ o
of features concatenated together. Also, as the Gaussian clask) Perform PCA on all the images in the original feature
discussed in Section 2 is also defined for each type of feature, it ~ SPaceS;, obtaining the eigenvalues and the corresponding
is much easier to embed the PCA process in the relevance feed- eigenvectors calculated by (11) and (12). Sort the eigen-
back and retrieval process. Therefore, instead of doing PCA for  vectors in the order of descending eigenvalues.
all features together, we introduce the following scheme for the 2) Whiten the distribution of the feature vectors by first ro-
determination of the dimensionality of feature subspaces for the  tating the feature space and then dividing the coordinate
subsequent iterations after initialization. by the square root of the corresponding eigenvalues (refer

Let the dimension reduction rate initially set to be the same,  to Section 3.1). Such pre-processing does not lose any in-
e.g.,y = 0.1, for all features before the relevance feedback be- ~ formation because the dimensionalities are not reduced in
gins. As iterative relevance feedback continues, the dimensions th_e_pr_ocess.
to be retained for good feature types are increased, while the3) Initialize the parameters of,c; andn as before.

number of dimensions for bad feature types is decreased. Thige following describes how to update the retrieval and feed-
is achieved by adjush; according to a goodness measure for gack process.

feature type as follows. 2) Retrieval and Feedback:
As before, let) be the queryK (K € D) be animage in the

image database and the current set of positive examplés be 1) Update the parameter of the Gaussian class according to

then the evaluation measurement can be defined as follows: 2) g\l_c(ﬁl)éteMi according to (16), wheré = 1.....m,
S ep d(K:,Q) sorting theM; in decreasing order to get the rankof
M; = =2<P 1D (16) M;

Yuev d(j”ﬁ?) 3) Update then,; according (17).



932 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 8, AUGUST 2003

1 T T 1 T T
098+ : 098t i
096 :
0.96 B
0941 E
092} Color histogram in HSV - 0.94F color moments in Lab space ]
N . 9 dimensions
256 dimensions
09t E 092+ .
088+ E osgl i
0.86 E
088} .
0841 1
082} 4 086 r i
UB 1 1 1 1 1 084 1 1 i L 1 1 1
0 50 100 150 200 250 0 1 2 3 4 5 6 7 8 9
1 T T T 1 T T T
098 B 098} .
096+ B 096} :
0.94} Color coherence vector in LUV space - 094} Tamura coarseness histogram 1
128 dimensions 10 dimensions
092r B 092} .
09} B 09t E
0.88 . 088 :
086 R 086} 8
084} b 084} :
082+ E 0821 E
08 1 1 1 1 1 DB 1 1 1 1 1 1
0 20 40 60 80 100 120 0 1 2 3 4 5 6 7 8 9 10
1 T T 1 T T
0.98 E
095 E 096 E
Tamura directionality 094} i
8 dimensions Pyramid wavelet texture feature
09+ 1 092+ 24 dimensions 4
09} e
085} B 0.88 | E
086 E
08t E 084 g
0821 B
075 L L 1 L 1 08 ) 1 L
[} 1 2 3 4 5 3] 7 8 5 10 15 20

Fig. 7. Accumulate eigenvalues of individual low-level features after PCA process.

4) Calculate the distance between all images in the database type i, we only use the firstn; dimensions to perform

D and the current querg in them,; dimensional feature the retrieval and feedback process.

subspace. 2) In addition to updating the parameters of Gaussian class
5) Sort by distances and provide the new ranking list to the  as before (this costs little because the number of positive

user. examplesis usually small), the; are also updated so that

The differences between the current retrieval and relevance Petter features will have more impact than bad ones.

feedback method and that described in Section Il are theln this way, the system learns from the user’s feedback in
following. a feature-based manner. The dimensionalities of the individual

feature subspaces are adjusted dynamically according to the re-
1) The retrieval and feedback are performed based on thieval performance of the corresponding features in the current
features in the extracted feature subspaces. For featfe@edback session.
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Comparison between dimension updating and no updating(Top 20)
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—8— in PCA space using 10% dimensionswithout dimension updating

Fig. 8. Comparing the retrieval accuracy of top 20 results in PCA feature space between the dimension updating and no dimension updating method.

C. Complexity Analysis of the PCA Subspace Relevance Therefore, the time and memory costs the relevance feedback
Feedback Algorithm process are linear with the total feature dimension. That s, if we

In this subsection, we briefly analyze the complexity of the>® only about) = 10% of the original total dimensions, only
proposed PCA subspace relevance feedback method and sh@yp Of the memory is required and the speed of a PCA method

that the proposed method can save memory and speed upvyﬂbbe'nine times faster than methods without PC_A dimen_sion
computation significantly. reduction. This clearly shows the advantage of using PCA in the

The requirements for memory consist of two parts: the badflevance feedback process.
vectors and the feature coordinates in the feature subspaces. The
size of the former part is fixed regardless of the database size
and hence can be ignored when the database is large. Therefore,
the memory requirement depends on the total number of imag_{as
in the database, which in turn depends, linearly, on the total di-
mension of the feature vectors, as we need to load the featur@he image set we used in our evaluation is the Corel Image
vector of each image in the database, at least one at a time, w@aiflery. 10 000 images of 79 semantic categories are selected
computing the similarities. The computation process of covatb calculate the performance statistics, of which 80% images
ance matrix off?,, in The PCA learning is very time consuming are used for learning PCA basis vectors and 20% for testing.
which is O(Total image number * n; * n;), wheren; is the \Whether a retrieved image is correct or incorrect is judged
feature dimensions of featuie Fortunately, this process is anaccording to the ground truth class.
offline procedure. Three types of color features and three types of texture fea-

The biggest bottleneck of online retrieval is the distance ca|yres are used in our system, as shown in Table I. The total
culation. The computation complexity of distance measure §gnension is 435.

O(N) whereN is the number of the vector dimension. For ex-

ample, the Euclidean distance ne&alsV) multiplication and )

O(N) addition operation, which is the same as our metholf: Retrieval Interface

Therefore, the total computation complexity in the online re- The MiAlbumimage retrieval system implements the frame-
trieval is work discussed in this paper. It is an image retrieval system
Ui . for PC users. In this paper, we only focus on retrieval based
Z O(Total image_number x n;) on low-level features. So search by example is the interaction
=t m mode we focus on here. However, tiéAlbumsystem also sup-

= O(Total_image_number x N), where N = Z n;. Ports cher two m.odgs of interaction: keyword-based search and
browsing the entire image database.

IV. EXPERIMENTAL RESULTS

Test Data and Features

i=1
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Retrieval Accuracy in Top 10 results
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Fig. 9. Comparing the retrieval accuracy in top ten results between the original feature space and PCA feature space.

Retrieval Accuracy in Top 20 Results
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—<—in PCA space using 30% (131) of the dimensions

Fig. 10. Comparing the retrieval accuracy in top 20 results between the original feature space and PCA feature space.

The main user interface is shown in Fig. 3. It has a simpfe. Experimental Results

interface to search images by examples. Users can select the e feedback process in the evaluation is carried out as fol-
ample image from the database or from the file system. Resyiis. Given a query example from the test set, one different
are returned as a ranked list show in the right image view. Th&st image of the same category as the query is used in each
ranking sequence is from left to right and from top to bottomeund of feedback iteration as the positive example for updating
During the retrieval process user can provide relevance fegde Gaussian parameters. For the negative feedback process, the
back by clicking the “Yes” or “No” icon below the results. Asfirst two irrelevant images are assigned as negative examples.
we can see from Fig. 3, there is an Option Dialog in the maive only pick one positive example at each iteration because
interface. The user can select the features and methods, as wellwant to illustrate the worst case scenarios in which the se-
as the choice between original features space and PCA feaimantic representation power of image features is low such that
space. the positive examples at each iteration is rare. Also, we only
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Retrieval Accuracy in Top 100 Results
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Fig. 11. Comparing the retrieval accuracy in top 100 results between the original feature space and PCA feature space.

consider two negative examples at each iteration because wetlas-reconstruction fidelity fixed, the minimum dimension for
sume users of image retrieval systems are impatient in genemalindividual subspace can vary when the type of the features

and not willing to pick up more negative examples. is different, as can be seen from the differences of the six plots.
The accuracy is defined as Also, the dimensions should be adjusted dynamically according
relevant images retrieved in top T returns to the evidence gathered thus far. Therefore, the PCA dimension

Accuracy = T * reduction must be completed by an appropriate method for the

(18) dynamic adjustment of subspace dimensions in order to achieve

A number of experiments have been performed as followdgnificant reduction with little loss of accuracy. _
For all the experiments, the accuracy numbers are averaged ovd/€Xt, we compare the results obtained with and without the
all test queries, which is totally 20% of the image database gynamic adjustment of the dimensionalities of feature sub-
20 000 images. spaces. As we can see from Fig. 8, the retrieval accuracy can be
Firstly, our Bayesian feedback scheme is compared wifProved by the dynamic adjustment scheme, especially when
previous feedback approaches presented by Nuno [26] 4hg feature dlmens_lo_ns are S|gn_|f|cantly redut_:ed, e.g., Iqwer
Rui [17], [19]. This comparison is done in the original feathan 30% of the original dmensmns. As the flna! dlmenspn
ture space. Figs. 4, 5 and 6 show that the accuracy of dggulted from each query image after the dynamic dimension
Bayesian feedback method becomes higher than the otngatl_ng varies according to (17), the final dimension numbers
two methods after two feedback iterations. This demonstrafii{ed in Fig. 8 are for references. o
that the incorporated Bayesian estimation with the Gaussiarf inally, the accuracy after PCA reduction is compared
parameter-updating scheme can improve the performance"‘{_bth that obtained in the original feature space. _The_ results in
image retrieval with relevance feedback. Figs. 9-11 show that the accuracy can be maintained when
Table Il shows the experimental results after one iteration Bt retained total dimension is 30% of the original or above;
negative feedback. Clearly, our strategy on negative feedbdBg Penefit brought about by this reduction is that the retrieval
increases the retrieval accuracy much more than the previG@§€ed is tripled and that the memory requirement is one third
method [17]. of the original.
Fig. 7 demonstrates the fidelity of the reconstruction, which
can be defined 5. , A; (see Section IlI-A), as a function of
retained dimensiom;, for the six types of features. It is shown
that significant dimension reductions cause little reconstructionin this paper, we have presented a new relevance feedback ap-
errors, for all the six cases: Dropping 80% of the dimensiomsoach to content-based image retrieval by integrating a feature
causes only about 5% reconstruction error; cutting off 90% sfibspace extraction process into a Bayesian feedback process.
the dimensions causes about 10% of loss. The discarded inférincipal Component Analysis is used to reduce feature sub-
mation can be due to noise because it corresponds to the |lesgastce dimensionalities. When multiple types of features (e.g.,
significant or high frequency components. However, keepirgglor and texture) are used, a method is proposed to adjust the

V. CONCLUSION
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subspace dimensionality for each type of feature, based on ej6]
idence obtained, to account for differences between individual
feature subspaces as reflected in the recent feedback. This dy-
namic dimension adjusting method is especially effective wheiu7]
the feature dimensions are significantly reduced, e.g., lower than
30% of the original dimensions. The feedback process plays twag;
roles: providing information for updating the Gaussian param-
eters in the Bayesian feedback, and providing evidence for thﬁ
adjustment of feature subspace dimensionalities. Experiment ]19]
results show that the proposed method can significantly improveo]
the retrieval performance in speed, memory and the accuracy. In

- . Lo1]
principle, the proposed feature subspace extraction method can
be incorporated in any other content-based retrieval methods tee]
save memory and to speed-up computation.
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