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Abstract. The null space of the within-class scatter matrix is found to express 
most discriminative information for the small sample size problem (SSSP). The 
null space-based LDA takes full advantage of the null space while the other 
methods remove the null space. It proves to be optimal in performance. From 
the theoretical analysis, we present the NLDA algorithm and the most suitable 
situation for NLDA. Our method is simpler than all other null space approaches, 
it saves the computational cost and maintains the performance simultaneously. 
Furthermore, kernel technique is incorporated into discriminant analysis in the 
null space. Firstly, all samples are mapped to the kernel space through a better 
kernel function, called Cosine kernel, which is proposed to increase the 
discriminating capability of the original polynomial kernel function. Secondly, 
a truncated NLDA is employed. The novel approach only requires one 
eigenvalue analysis and is also applicable to the large sample size problem. 
Experiments are carried out on different face data sets to demonstrate the 
effectiveness of the proposed methods. 

1   Introduction 

Linear Discriminant Analysis (LDA) has been successfully applied to face recognition. 
The objective of LDA is to seek a linear projection from the image space onto a low 
dimensional space by maximizing the between-class scatter and minimizing the 
within-class scatter simultaneously. Belhumeur [1] compared Fisherface with 
Eigenface on the HARVARD and YALE face databases, and showed that LDA was 
better than PCA, especially under illumination variation. LDA was also evaluated 
favorably under the FERET testing framework [2], [7]. 

In many practical face recognition tasks, there are not enough samples to make the 
within-class scatter matrix Sw nonsingular, this is called a small sample size problem. 
Different solutions have been proposed to deal with it in using LDA for face 
recognition [1]-[6].   

The most widely used methods (Fisherface) [1, 2, 3] applies PCA firstly to reduce 
the dimension of the samples  to an intermediate dimension, which must be guaranteed 



 

not more than the rank of Sw so as to obtain a full-rank within-class scatter matrix. 
Then standard LDA is used to extract and represent facial features. All these methods 
above do not consider the importance of null space of the within-class scatter matrix, 
and remove the null space to make the resulting within-class scatter full-rank.  

Yang et al. [4] proposed a new algorithm which incorporates the concept of null 
space. It first removes the null space of the between-class scatter matrix Sb and seeks a 
projection to minimize the within-class scatter (called Direct LDA / DLDA). Because 
the rank of Sb  is smaller than that of Sw, removing the null space of Sb  may lose part of 
or the entire  null space of Sw, which is very likely to be full-rank after the removing 
operation.  

Chen et al. [5] proposed a more straightforward method that makes use of the null 
space of Sw. The basic idea is to project all the samples onto the null space of Sw, 
where the resulting within-class scatter is zero, and then maximize the between-class 
scatter. This method involves computing eigenvalue in a very large dimension since Sw 
is an n×n matrix. To avoid the great computational cost, pixel grouping method is 
used in advance to artificially extract features and to reduce the dimension of the 
original samples. 

Huang et al. [6] introduced a more efficient null space approach. The basic notion 
behind the algorithm is that the null space of Sw is particularly useful in discriminating 
ability, whereas, that of Sb is useless. They proved that the null space of the total 
scatter matrix St is the common null space of both Sw and Sb. Hence the algorithm 
firstly removes the null space of St and projects the samples onto the null space of Sw. 
Then it removes the null space of the between-class scatter in the subspace to get the 
optimal discriminant vectors. 

Although null space-based LDA seems to be more efficient than other linear 
subspace analysis methods for face recognition, it is still a linear technique in nature. 
Hence it is inadequate to describe the complexity of real face images because of 
illumination, facial expression and pose variations. The kernel technique has been 
extensively demonstrated to be capable of efficiently representing complex nonlinear 
relations of the input data. Kernel Fisher Discriminant Analysis [8, 9, 10] (KFDA) is 
an efficient nonlinear subspace analysis method, which combines the kernel technique 
with LDA. After the input data are mapped into an implicit feature space, LDA is 
performed to yield nonlinear discriminating features of the input data.  

In this paper, some elements of state-of-the-art null space techniques will be looked 
at in more depth and our null space approach is proposed to save the computational 
cost and maintain the performance simultaneously. Furthermore, we concentrate on 
the advantages of both the null space approach and the kernel technique. A kernel 
mapping based on an efficient kernel function, called Cosine kernel, is performed on 
all the samples firstly. In kernel space, we can find that the total scatter matrix is full-
rank, so the procedure of the null space approach is greatly simplified and more stable 
in numerical computation. 

The paper is laid out as follows. In Section 2, the related work on LDA-based 
algorithms will be reviewed. Next, our null space method (NLDA) will be presented. 
In Section 4 null space-based KFDA (NKFDA) will be proposed and some 
experiments will be reported in Section 5. Finally, Section 6 ends with some 
conclusions. 



 

2   Previous Work 

Some assumptions and definitions in mathematics are provided at first. Let n denote 
the dimension of the original sample space, and c is the number of classes. The 
between-class scatter matrix Sb  and the within-class scatter Sw are defined as below: 
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where Nj is the number of samples in class Ci  (i=1,2,…,c), N is the number of all 
samples, mj  is the mean of  the samples in the class Ci, and m is the overall mean of all 
samples. The total scatter matrix i.e. the covariance matrix of all the samples is 
defined as: 
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LDA tries to find an optimal projection: 1 2 3 1[ , , , ..., ]cW w w w w −= , which satisfies  
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that is just Fisher criterion function. 

2.1   Standard LDA and Direct LDA 

As well known, W can be constructed by the eigenvectors of Sw
-1Sb. But this method is 

numerically unstable because it involves the direct inversion of a likely high-
dimensional matrix. The most frequently used LDA algorithm in practice is based on 
simultaneous diagonalization. The basic idea of the algorithm is to find a matrix W 
that can simultaneously diagonalize both Sw and Sb, i.e., 

T
wW S W I= , T

bW S W = Λ  .          (5) 
Most algorithms require that Sw be non-singular, because the algorithms diagonalize 

Sw first. The above procedure will break down when Sw becomes singular. It surely 
happens when the number of training samples is smaller than the dimension of the 
sample vector, i.e. the small sample size problem (SSSP). The singularity exists for 
most face recognition tasks.  

An available solution to this problem is to perform PCA to project the n-
dimensional image space onto a lower dimensional subspace. The PCA step 
essentially removes null space from both Sw and Sb. Therefore, this step potentially 
loses useful information.  

In fact, the null space of Sw contains the most discriminative information especially 
when the projection of Sb is not zero in that direction. The Direct LDA (DLDA) 
algorithm [4] is presented to keep the null space of Sw. 



 

DLDA removes the null space of Sb firstly by performing eigen-analysis on Sb , then  
a simultaneous procedure is used to seek the optimal discriminant vectors in the 
subspace of Sb, i.e. 

                                     ,T T
b w wW S W I W S W D= =  .          (6) 

Because the rank of Sb is smaller than that of Sw in majority, removing the null 
space of Sb may lose part of or the entire null space of Sw, which is very likely to be 
full-rank after the removing operation. So, DLDA does not make full use of the null 
space. 

2.2   Null Space-based LDA  

From Fisher’s criterion that is objective function (4), we can find that: In standard 
LDA, W is seeked such that (5), so the form of the optimal solution provided by 
standard LDA is 

max / max/1T T
b w

WLDA
optimum W S W W S W opt= = Λ =  .        (7) 

In DLDA, W is seeked such that (6), so the form of the optimal solution provided by 
DLDA is 

max / 1/ 1/ minT T
b w w

WDLDA
optimum W S W W S W D opt= = =  .        (8) 

Compared with above LDA approaches, a more reasonable method (Chen [5]), we 
called Null Space-based LDA, has been presented. In Chen’s theory, null space-based 
LDA should reach below: 

max / max/ 0T T
b w

WNull
optimum W S W W S W opt= =  .         (9) 

That means the optimal projection W should satisfy 
0,T

wW S W = T
bW S W = Λ  ,        (10) 

i.e. the optimal discriminant vectors must exist in the null space of Sw.  
In a performance benchmark, we can conclude that null space-based LDA generally 

outperforms LDA (Fisherface) or DLDA since 

Null DLDA LDA
optimum optimum optimum= ≥ ≥∞  .        (11) 

Because the computational complexity of extracting the null space of Sw is very 
high because of the high dimension of Sw . So in [5] a pixel grouping operation is used 
in advance to extract geometric features and to reduce the dimension of the samples. 
However, the pixel grouping preprocess is irresponsible and may arouse a loss of 
useful facial features. 

3   Our Null Space Method (NLDA) 

In this section, the essence of null space-based LDA in the SSSP is revealed by 
theoretical justification, and the most suitable situation of null space methods is 



 

discovered. Next, we propose the NLDA algorithm, which is conceptually simple yet 
powerful in performance. 

3.1   Most Suitable Situation 

For the small sample size problem (SSSP) in which n>N, the dimension of null space 
of Sw is very large, and not all null space contributes to the discriminative power. 
Since both Sb and Sw are symmetric and semi-positive, we can prove, as mentioned in 
[6], that   

                                          ( ) ( ) ( )t b wN S N S N S= ∩ .        (12) 
From the statistical perspective, the null space of Sb  is of no use in its contribution 

to discriminative ability. Therefore, the useful subspace of null space of Sw is  

                             ˆ ( ) ( ) ( ) ( ) ( )w w t w tN S N S N S N S N S= − = ∩  .       (13) 
The sufficient and necessary condition so that null space methods work is 

ˆ ( ) ( ) ( ) dim ( ) dim ( )w w t w tN S N S N S N S N S≠ Φ⇒ ⊃ ⇒ > ⇒       

                                             ( ) ( )t wrank S rank S>  .        (14) 
In many cases,                            
                   ( ) min{ , 1}, ( ) min{ , }t wrank S n N rank S n N c= − = −  ,      (15) 

the dimension of discriminative null space of Sw can be evaluated from (12): 
ˆdim ( ) ( ) ( )w t wN S rank S rank S= −  .        (16) 

If n N c≤ − , due to ( ) ( )t wrank S n rank S N c= ≤ = − , the necessary condition (14) 
is not satisfied so that we can not extract any null space. That means any null space-
based method does not work in the large sample size case. 

If 1N c n N− < < − , due to ( ) ( )t wrank S n rank S N c= > = − , the dimension of 
effective null space can be evaluated from (16): ˆdim ( ) 1wN S n N c c= − + < − . Hence, 
the number of discriminant vectors would be less than c-1, and some discriminatory 
information maybe lost.  

Only when 1n N≥ − (SSSP), for ( ) 1 ( )t wrank S N rank S N c= − > = − , we derive 
ˆdim ( ) 1wN S c= − .The dimension of extracted null space is just c-1, which coincides 

with the number of ideal features for classification. Therefore, we can conclude that 
null space methods are always applicable to any small sample size problem.  

Especially when n is equal to N-1, St is full-rank and N(St) is null. By (13) we 
have ˆ ( ) ( )w wN S N S= , it follows all null space of Sw contributes to the discriminative 
power. Hence, we conclude the most suitable situation for null space-based methods: 
                                                            1n N= −  .         (17) 

3.2   NLDA  

Combining (12)-(16), we develop our null space method.  



 

algorithm I:      
1.  Remove the null space of St. 

Perform PCA to project the n-dimensional image space onto a low dimensional 
subspace, i.e. perform eigen-analysis on St., the dimension of the extracted subspace 
is usually N-1. The projection P, whose columns are all the eigenvectors of St 
corresponding to the nonzero eigenvalues, are calculated firstly, and then the 
within-class scatter and between-class scatter in the resulting subspace are obtained. 

,T
t tP S P D=  'T

w wP S P S= , 'T
b bP S P S=  . 

2.  Extract the null space of Sw
’. 

Diagonalize Sw
’, we have 

'T
w wV S V D= , 

where ,T
wV V I D= is diagonal matrix sorted in increasing order. Discard those 

with eigenvalues sufficiently far from 0, keep c-1 eigenvectors of Sw
’ in most cases. 

Let Y be the first c-1 columns of V, which is the null space of Sw
’, we have 

' 0T
wY S Y = , ' ''T

b bY S Y S=  . 
3.  Diagonalize Sb

’’ (usually a (c-1)×(c-1) matrix) which is full-rank. 
Perform eigen-analysis: 

''T
bU S U = Λ , 

where ,TU U I= Λ is diagonal matrix sorted in decreasing order.  
The final projection matrix is: 

W PYU= , 
W is usually an n×(c-1) matrix, which diagonalizes both the numerator and the 
denominator of Fisher’s criterion to (c-1)×(c-1) matrices as (10) , especially  leads to a 
denominator of  0 matrix.  

It is notable that the third step of Huang [6]’ algorithm is used to remove the null 
space of Sb

’’. In fact, we are able to prove that it is full-rank once through the previous 
two steps. 

Lemmas    Sb
’’ is full-rank, Sb

’’ is defined in step2 of algorithm I. 
Proof:  

From step1 and 2, we derive that '' ' ' ' ' '( )T T T T
b b b w b wS Y S Y Y S Y Y S Y Y S S Y= = + = + =  

( )T T T T T
b w t tY P S S PY Y P S PY Y D Y+ = = , for any vector α  whose dimension is 

equal to that of Sb
’’, '' 1/ 2 1/ 2( ) ( ) 0T T T T

b t t tS Y D Y D Y D Yα α α α α α= = ≥ , so Sb
’’ is semi-

positive. Suppose there exists α  such that '' 0T
bSα α = , then 1/ 2 0tD Yα = . By step1, 

we know Dt is full-rank, thus 0Yα = . And by step2, we derive that Y is full-rank in 
columns since it is the extracted null space. Hence 0α = , iff. '' 0T

bSα α = . Therefore 
Sb

’’ is a positive matrix which is of course full-rank.□ 
 
The third step is optional. Although it maximizes the between-class scatter in the 

null subspace, which appears to achieve best discriminative ability, it may incur 
overfitting. Because projecting all samples onto the null space of Sw is powerful 
enough in its clustering ability to achieve good generalization performance, step3 of 



 

algorithm I should be eliminated in order to avoid possible overfitting. 
 

NLDA algorithm:      
1.   Remove the null space of St, i.e. 

T
t tP S P D= , 'T

w wP S P S= , 
P is usually n×(N-1). 

 
2.   Extract the null space of  Sw

’ , i.e. 
' 0T
wY S Y =  , 

Y is the null space, and is usually (N-1)×(c-1). 
 
The final NLDA projection matrix is: 

W PY= , 
PY is the discriminative subspace of the whole null space of Sw and is really useful for 
discrimination. The number of the optimal discriminant vectors is usually c-1, which 
just coincides with the number of ideal discriminant vectors [1]. Therefore, removing 
step3 is a feasible strategy against overfitting.  

Under situation (17), St   is full-rank and step1 of the NLDA algorithm is skipped. 
The NLDA projection can be extracted by performing eigen-analysis on Sw directly. 
The procedure of NLDA under this situation is most straightforward and only requires 
one eigen-analysis. We can discover that NLDA will save much computational cost 
under the most suitable situation it is applicable to.  

4   Null Space-based Kernel Fisher Discriminant Analysis 

The key idea of Kernel Fisher Discriminant Analysis (KFDA) [8, 9, 10] is to solve the 
problem of  LDA in an implicit feature space F, which is constructed by the kernel 
trick: 

: ( )nx R x Fφ φ∈ → ∈  .        (18) 
The important feature of kernel techniques is that the implicit feature vector φ  

needn’t be computed explicitly, while the inner product of any two vectors in F need 
to be computed based a kernel function.  

In this section, we will present a novel method (NKFDA) in which kernel technique 
is incorporated into discriminant analysis in the null space. 

4.1   Kernel Fisher Discriminant Analysis (KFDA) 

The between-class scatter Sb   and the within-class scatter Sw in F are computed as (1) 
and (2). But at this time, we replace jx by ( )jxφ  as samples in F. Consider 
performing LDA in the implicit feature space F. It caters for maximizing the Fisher 
criterion function (4). 



 

Because any solution w F∈  must lie in the span of all the samples in F, there exist 
coefficients iα , i=1,2…N, such that  

1

N

i i
i

w αφ
=

=∑  .         (19) 

Substitute w  in (4), the solution of (4) can be obtained by solve a new Fisher 
problem: 

( ) arg max
T

b

T
w

K
J

Kα

α α
α

α α
=  ,         (20) 

where Kb and Kw (Liu [8]) are based on new samples: 

1 2( ( , ), ( , ),..., ( , )) 1,T
i i i N ik x x k x x k x x i Nζ = ≤ ≤ .      (21) 

As for the kernel function, Liu [13] proposed a novel kernel function called Cosine 
kernel, which is based on the original polynomial kernel, has been demonstrated to 
improve the performance of KFDA. It is defined as below: 

( , ) ( ( ) ( )) ( ( ) )dk x y x y a x y bφ φ= ⋅ = ⋅ +  ,       (22) 

( , )
( , )

( , ) ( , )

k x y
k x y

k x x k y y
=�  .  (23) 

In our experiments, Cosine kernel (a=10-3/sizeof (image), b=0, d=2) is adopted and 
shows good performance in face recognition. Cosine measurement should be more 
reliable than inner production measurement due to a better similarity representation in 
the implicit feature space. 

4.2   NKFDA 

Here we define a kernel sample set (corresponding to the kernel space in N 
dimensions) { }1i i Nζ ≤ ≤ .The optimal solution of (4) is equivalent to that of (20), so the 
original problem can be entirely converted to the problem of LDA on the kernel 
sample set. 

In section 3, we know that NLDA will save much computational cost under the 
most suitable situation. The null space projection can be extracted from the within-
class scatter directly. Our objective is just to transform the dimension of all the 
samples from n to N-1 through the kernel mapping, so that NLDA can work under the 
most suitable situation. Any method that can transform raw samples to (N-1)-
dimensional data without adding or losing main information, can exploit the merit of 
NLDA.  

In (19), all the training samples in F, 1{ } ,i i Nφ ≤ ≤  are used to represent w. Define the 
kernel matrix M,  

1 , , 1 ,( ( , )) ( )i j i j N i j i j NM k x x k≤ ≤ ≤ ≤= =  ,       (24) 

assume 1 2( , , ..., )Nφ φ φΦ = , then .TM = Φ Φ  In mathematics, 

                                               ( ) ( )rank rank MΦ =  .        (25) 



 

Because ( )rank M N< holds, especially when the training data set is very large, it 
follows that ( )rank M N<< [11][12], we conclude that 
                                                ( )rank NΦ <<  .         (26) 

Due to (26), we may assume Nφ  is not a basis vector of 1{ }i i Nφ ≤ ≤  without loss of 
generality, and consequently we can rewrite (19) as follows: 

1

1

N

i i
i

w α φ
−

=

=∑  ,          (27) 

subsequently, Kb and Kw are recomputed, we derive : 
                           1 2 1( ( , ), ( , ),..., ( , ))T

i i i N ik x x k x x k x xζ −=  .       (28) 
Now the dimension of our defined kernel space is N-1.  My objective is just to enable 
NLDA work on the (N-1) -dimensional kernel sample set.  
 
 
Input: 1) training samples 1{ }i i Nx ≤ ≤  and label set 1{ }j j cC ≤ ≤   

2) the kernel function and its parameters: k(x, y) 
Algorithm: 

1. For i = 1,2,…,N 
do kernel mapping on each training sample: 

1 2 1( ( ( , ), ( , ), ..., ( , ))) T
i i i N iK x k x x k x x k x x−= . 

     For a new sample x, whose corresponding point in the kernel space is 
    1 2 1( ( ( , ), ( , ), ..., ( , ))) T

NK x k x x k x x k x x−=  . 

2. Calculate class mean and within-class scatter: 
( ) /

j

j i j
i C

m K x N
∈

= ∑ , 

1

( ( ) )( ( ) )
j

c
T

w i j i j
j i C

K K x m K x m
= ∈

= − −∑∑ . 

3. Extract the null space Y of Kw  (N-1×N-1), such that  

0T
wY K Y = , Y  is usually in (N-1)×(c-1). 

Output:  The resulting mapping on the raw sample set: 

                       ( ) ( ) ( ) ( )T Tx Y K x Y K xΨ = =⋅ ⋅ . 
 

Fig. 1. NKFDA algorithm 
 
As shown in Fig. 1, NKFDA algorithm outputs the mappingΨ which is a nonlinear 

dimensionality reduction mapping (n dimensions reduce to c-1). For any sample 
(whether it is a prototype or a query), Ψ  provides a universal mapping to transform 
the raw sample point into a lower dimensional space. Such a technique can be applied 
with a reasonable implementation of generalization. 

It’s noticeable that our method NKFDA also cannot deal with the case that only one 
sample per person is available for training since KFDA can not achieve that.  



 

For the large sample size problem (n<<N), Sw is full-rank so that we can not extract 
any null space. That means any null space-based method does not work in the large 
sample size case. However, after the kernel mapping, NLDA can work on the kernel 
sample set. Hence the kernel mapping extends the ability of null space approaches to 
the large sample size problem.  

5   Experiments 

To demonstrate the efficiency of our method, extensive experiments are done on the 
ORL face database, the FERET database and the mixture database. All LDA methods 
were compared on the same training sets and testing sets, including Fisherface 
proposed in [1, 2, 3], Direct LDA proposed in [4], and our methods: NLDA and 
NKFDA. 

5.1   ORL Database 

There are 10 different images for each subject in the ORL face database composed of 
40 distinct subjects.  All the subjects are in up-right, frontal position. The size of each 
face image is 92×112. The first line of Fig. 2 shows 6 images of the same subject. 

 We listed the recognition rates with different number of training samples. The 
number of training samples per subject, k, increases from 2 to 9. In each round, k 
images are randomly selected from the database for training and the remaining images 
of the same subject for testing. For each k, 20 tests were performed and these results 
were averaged. Table 1 shows the average recognition rates (%). Without any pre-
processing, we choose 39 (i.e. c-1) as the final dimensions. Our methods NLDA, 
NKFDA show an encouraging performance. 

Table 1.  Recognition rates on the ORL database 

k    LDA DLDA NLDA NKFDA 
2 76.65 80.10 85.47 82.89 
3   87.09 87.54 90.91 89.13 
4   91.68   91.50 93.86 93.15 
5 93.17   94.65 95.45 95.13 
6 95.79   96.50 97.13 96.72 
7 96.85   97.12 97.54 97.21 
8 98.25   99.15 98.95 98.95 
9 99.00   99.95 99.15 99.38 

5.2   FERET Database 

We have to test our method on more complex and challenging datasets such as the 
FERET database. We selected 70 subjects from the FERET database [7] with 6 up-



 

right, frontal-view images of each subject. The face images involve much more 
variations in lighting, facial expressions and facial details. The second line of Fig. 2 
shows one subject from the selected data set. 

The eye locations are fixed by geometric normalization. The size of face images is 
normalized to 92×112, and 69 (i.e. c-1) features are extracted. Training and test 
process are similar to those on the ORL database. Similar comparisons between those 
methods are performed. This time k changes between 2 to 5, and the corresponding 
averaging recognition rates (%) are shown in table 2.  

Table 2.  Recognition rates on the FERET database 

k    LDA DLDA NLDA NKFDA 
2 56.04 63.25 75.20 72.21 
3   76.95 76.71 85.64 83.60 
4   87.23   88.30 92.79 93.85 
5 94.80   94.71 97.34 98.29 

5.3   Mixture Database 

To test NLDA and NKFDA on large datasets, we construct a mixture database of 125 
persons and 985 images, which is a collection of three databases: (a). The ORL 
database (10×40). (b). The YALE database (11×15, the third line of Fig. 2 shows one 
subject). (c). The FERET database (6×70). All the images are resized to 92×112. 
There are facial expression, illumination and pose variations.  
 

 
Fig. 2. Samples from the mixture database 

 
The mixture database is divided into two non-overlapping set for training and 

testing. The training dataset consists of 500 images: 5 images, 6 images and 3 images 
per person are randomly selected from the ORL, the YALE database and the FERET 
subset respectively. The remaining 485 images are used for testing. In order to reduce 
the influence of some extreme illumination, histogram equalization is applied to the 
images as pre-processing. We compare the proposed method with Fisherface and 
DLDA, and the experimental results are shown in Fig. 3. It can be seen that NKFDA 
largely outperforms the other three when over 100 features are used, and a recognition 
rate of 91.65% can be achieved at  the feature dimension of 124 (i.e. c-1). 



 

5.4   Discussion 

From the above three experiments, we can find that NKFDA is better than NLDA for 
large number of training samples (such as larger than 300), while worse than NLDA in 
the case of small training sample size (such as smaller than 200), and superior to 
DLDA in most situations. Consequently, NKFDA is more efficient in larger sample 
size, for the greater the sample size, the more accurately kernels can describe the 
nonlinear relations of samples. 

As to computational cost, the most time-consuming procedure, eigen-analysis, is 
performed on three matrices (one of N×N, and two of  (N-c) ×(N-c)) in Fisherface 
method, on two matrices (c×c and (c-1) ×(c-1)) in DLDA, on two matrices (N×N, (N-
1)×(N-1) ) in NLDA, and on one matrice ((N-1)×(N-1)) in NKFDA. Our method 
NKFDA only performs one eigen-analysis to achieve efficiency and good 
performance. 

 
                                          Fig. 3. Comparison of four methods 

6   Conclusion 

In this paper, we present two new subspace methods (NLDA, NKFDA) based on the 
null space approach and the kernel technique. Both of them effectively solve the small 
sample size problem and eliminate the possibility of losing discriminative information.  

The main contributions of this paper are summarized as follows: (a) The essence of 
null space-based LDA in the SSSP is revealed by theoretical justification, and the 
most suitable situation of null space method is discovered. (b) Propose the NLDA 
algorithm, which is simpler than all other null space methods and saves the 
computational cost and maintains the performance simultaneously. (c) A more 



 

efficient Cosine kernel function is adopted to enhance the capability of the original 
polynomial kernel. (d) Present the NKFDA algorithm, which performs only one eigen-
analysis and is more stable in numerical computation. (e) NKFDA is also applicable to 
the large sample size problem, and is superior to NLDA when the sample size is very 
large. 
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