
CONTENTS

1 FACE DETECTION, ALIGNMENT AND RECOGNITION 1
1.1 Introduction 1
1.2 Face Detection 4

1.2.1 Appearance and Learning Based Approach 4
1.2.2 Preprocessing 6
1.2.3 Neural and Kernel Methods 8
1.2.4 Boosting Based Methods 9
1.2.5 Post-Processing 14
1.2.6 Evaluation 16

1.3 Face Alignment 18
1.3.1 Active Shape Model 19
1.3.2 Active Appearance Model 20
1.3.3 Modeling Shape from Texture 21
1.3.4 Dealing with Head Pose 27
1.3.5 Evaluation 28

1.4 Face Recognition 31
1.4.1 Preprocessing 31
1.4.2 Feature Extraction 32
1.4.3 Pattern Classification 42
1.4.4 Evaluation 49

BIBLIOGRAPHY 55

v

vi

Chapter 1

FACE DETECTION,
ALIGNMENT AND

RECOGNITION

1.1 Introduction

A face recognition system identifies faces in images and videos automatically using
computers. It has a wide range of applications, such as biometric authentication,
and surveillance, human-computer interaction, and multimedia management. A face
recognition system generally consists of four processing parts as depicted in Fig.1.1:
face detection, face alignment, facial feature extraction, and face classification. Face
detection provides information about the location and scale of each detected face.
In the case of video, the found faces may be tracked. In face alignment, facial
components, such as eyes, nose, and mouth and facial outline are located, and
thereby the input face image is normalized in geometry and photometry. In features
extraction, features useful for distinguishing between different persons are extracted
from the normalized face. In face classification, the extracted feature vector of the
input face is matched against those of enrolled faces in the database, outputting
the identity of the face when a match is found with a sufficient confidence or as an
unknown face otherwise.

The underlying problems can be treated using pattern recognition and machine
learning techniques. There two central issues: (i) what features to use to represent
a face, and (ii) how to classify a new face image based on the chosen representation.
A capable face recognition system should be able to deal with variations of face
images in viewpoint, illumination, expression and so on.

The geometric feature-based approach [44], [57], [101], [17] is based on the tra-
ditional computer vision framework [81]. Facial features such as eyes, nose, mouth,
and chin are detected. Properties and relations (e.g. areas, distances, angles)
between the features are used as descriptors of faces for recognition. Using this ap-
proach, Kanade built the first face recognition system in the world [57]. Advantages
include economy and efficiency in achieving data reduction and insensitivity to vari-

1

2 Face Detection, Alignment and Recognition Chapter 1

Face IDImage/Video
Aligned

Face
Face

Location,
Size & Pose

Feature
VectorFace

Detection

Tracking

Enrolled
Users

Feature
Matching

Feature
Extraction

Face
Alignment

Figure 1.1. Structure of a face recognition system.

ations in illumination and viewpoint. Disadvantages are that so far, facial feature
detection and measurement techniques developed to date have not been reliable
enough [25], and geometric information only is insufficient for face recognition.

Great progress has been made in the past 15 or so years due to advances in
the template matching or appearance based approach [122]. Such an approach
generally operates directly on an image-based representation (i.e. pixel intensity
array). It extracts features in a face subspace from images, instead of the over-
abstract features. A face subspace is constructed to best represent the face object
only. Although it is much less general, it is more efficient and effective for face
recognition. In the eigenface [122] or PCA method, the face space is spanned by
a number of eigenfaces [111] derived from a set of training face images by using
Karhunen-Loeve transform or the principal component analysis (PCA) [42]. A face
image is efficiently represented by a feature point (i.e. a vector of weights) of low
(e.g. 40 or lower) dimensionality. Such subspace features are more salient and richer
for recognition.

Face recognition performance has been much improved as compared to that of
the first automatic face recognition system of Kanade [57]. Nowadays, face detec-
tion, facial feature location, and recognition can be performed for image data of
reasonable conditions, which was un-achievable by the pioneer systems.

Although the progress has been encouraging, the task has also turned out to
be a very difficult endeavor [121]. Face recognition evaluation reports such as [95],
[1] and other independent studies indicate that the performance of many state-of-
the-art face recognition methods deteriorates with changes in lighting, pose, and
other factors [123], [18], [140]. The key technical challenges are summarized in the
following.
Immense Variability of Facial Appearance. Whereas shape and reflectance
are intrinsic properties of a face object, the appearance (i.e. the texture look) of
a face is also subject to several other factors, including the facial pose (or, equiva-
lently, camera viewpoint), the illumination, facial expression, and various imaging
parameters such as aperture, exposure time, lens aberrations and sensor spectral

Section 1.1. Introduction 3

response. All these factors are confounded in the image data, so that “the variations
between the images of the same face due to illumination and viewing direction are
almost always larger than the image variation due to change in face identity” [89].
The complexity makes it very difficult to extract the intrinsic information of the
face objects from their respective images.

Highly Complex and Nonlinear Manifolds. As illustrated above, the face
manifold, as opposed to the manifold of non-face patterns, is highly non-convex,
and so is face manifolds of any individual under changes due pose, lighting, facial
ware and so on. As linear subspace method, such as principal component analysis
(PCA) [111], [122], independent component analysis (ICA) [10], or linear discrimi-
nant analysis (LDA) [12]) projects the data in a high dimensional space, such as the
image space, to a low dimensional subspace in an optimal direction in a linear way,
they are unable to preserve the non-convex variations of face manifolds necessary to
differentiate between different individuals. In a linear subspace, Euclidean distance
and more generally M-distance, which are normally used in template matching, does
not apply well to the problem of classification between manifolds of face/nonface
manifolds and between manifolds of different individuals. This is a crucial fact that
limits the power of the linear methods to achieve highly accurate face detection and
recognition.

High Dimensionality and Small Sample Size. Another challenge is the ability
to generalize. A canonical face example used in face recognition is an image of size
112 × 92 and resides in a 10304-dimensional real space. Nevertheless, the number
of examples per person available for learning is usually much smaller than the di-
mensionality of the image space, e.g. < 10 in most cases; a system trained on so
few examples may not generalize well to unseen face instances. Besides, the com-
putational cost caused by high dimensionality is also a concern for real-time systems.

Methods for dealing with to the above problems are two ways. One is to normal-
ize face images in geometry and photometry. This way, the face manifolds become
simpler, i.e. less nonlinear and less non-convex, so that the complex problems be-
come easier to tackle. The other ways is to devise powerful engines able to perform
difficult nonlinear classification and regression and generalize better. This relies on
advances in pattern recognition and learning and clever applications of them.

Both prior and observation constraints are needed for such powerful engines.
Most successful approaches for tackling the above difficulties are based on subspace
modeling of facial appearance and statistical learning. Constraints about the face
include facial shape, texture, head pose, illumination effect. Recent advances allow
these to be effectively encoded into the system by learning from training data.

This chapter presents advanced techniques for face detection, face alignment,
and face recognition (feature extraction and matching). The presentation is focused
on appearance and learning based approaches.

4 Face Detection, Alignment and Recognition Chapter 1

1.2 Face Detection

Face detection is the first step in automated face recognition. Its reliability has
a major influence on the performance and usability of the whole system. Given a
single image or a video, an ideal face detection system should be able to identify and
locate all faces regardless of their positions, scales, orientations, lighting conditions,
expressions, and so on.

Face detection can be performed based on several different cues: skin color
(for faces in color images), motion (for faces in videos), facial/head shape, and
facial appearance, or a combination of them. Prior knowledge about them can be
embedded into the system by learning from training data.

Appearance and learning based approaches have so far been the most effec-
tive ones for face detection, and this section focuses on such approaches for face
detection. The reader is referred to recent surveys [32], [136] for other methods.
Great resources such as publications, databases, codes, etc. can be found from face
detection websites [41], [133].

1.2.1 Appearance and Learning Based Approach

In appearance based approach, face detection is treated as an intrinsically two-
dimensional (2-D) problem. It is done in three steps: First, scan I exhaustively at
all possible locations (u, v) and scales s, resulting in a large number of sub-windows
x = x(u, v, s | I). Second, test for each x if it is a face

H(x)
≥ 0 ⇒ x is a face pattern
< 0 ⇒ x is a nonface pattern

(1.2.1)

Third, post-process to merge multiple detects.
The key issue is the construction of a face detector which classifies a sub-window

into either face or nonface. Face and non-face examples are given as the training
set (See Fig.1.2 for a random sample of 10 face and 10 nonface examples). Taking
advantage of the fact that faces are highly correlated, it is assumed that human
faces can be described by some low dimensional features which may be derived
from a set of example face images. Large variation and complexity brought about by
changes in facial appearance, lighting and expression makes the face manifold highly
complex [14], [110], [121]. Changes in facial view (head pose) further complicate
the situation. Nonlinear classifiers are training to classify each subwindow into face
or nonface. The following gives a brief review of exiting work.

Turk and Pentland [122] describe a detection system based on a Principal Com-
ponent Analysis (PCA) subspace or eigenface representation. Moghaddam and
Pentland [87] present an improved method for Bayesian density estimation, where
the high dimensional image space is decomposed into a PCA subspace for prior dis-
tribution and the null space for the likelihood distribution. Sung and Poggio [114]
first partition the image space is into several clusters for face and non-face clusters.
Each cluster is then further decomposed into the PCA and null subspaces. The

Section 1.2. Face Detection 5

Figure 1.2. Face (top) and nonface (bottom) examples.

Bayesian estimation is then applied to obtain useful statistical features. Rowley et
al. ’s system [100] uses retinally connected neural networks. Through a sliding win-
dow, the input images are examined after going through an extensive preprocessing
stage. Osuna et al. [91] train support vector machines to classify face and non-face
patterns. Roth et al. [99] use SNoW learning structure for face detection. In these
systems, a bootstrap algorithm is used to iteratively collect meaningful non-face
examples into the training set.

Viola and Jones [128], [127] build a successful face detection system, in which
AdaBoost learning is used to construct nonlinear classifier (earlier work in applica-
tion of Adaboost for image classification and face detection can be found in [117]
and [104]). There, AdaBoost is adapted to solving the following three fundamental
problems in one boosting procedure: (1) learning effective features from a large
feature set, (2) constructing weak classifiers each of which is based on one of the se-
lected features, and (3) boosting the weak classifiers into a stronger classifier. Also,
that work makes ingenues use of several techniques for effective computation of a
large number of Haar wavelet like features. Such features are steerable filters [92],
[128]. Moreover, the simple-to-complex cascade of classifiers structure makes the
computation even more efficient, which is in the principle of pattern rejection [8],
[30] and coarse-to-fine search [5], [36]. Each such feature has a scalar value which
can be computed very efficiently [109] from the summed-area table [26] or integral
image [128]. Their system is the first real-time frontal-view face detector which runs
at about 14 frame per second for a 320x240 image [128].

Ability to deal with non-frontal faces is important for many real applications
because statistics show that approximately 75% of the faces in home photos are
non-frontal [60]. A reasonable treatment for multi-view is the view-based method
[93], in which several face models are built, each describing faces in a certain view
range. This way, explicit 3D modeling is avoided. Feraud et al. [34] adopt the view-
based representation for face detection, and use an array of 5 detectors with each
detector responsible for one view. Wiskott et al. [130] build elastic bunch graph
templates for multi-view face detection and recognition. Gong and colleagues [45]
study the trajectories of faces in linear PCA feature spaces as they rotate, and
use kernel support vector machines (SVMs) for multi-pose face detection and pose
estimation [90], [70]. Huang et al. [51] use SVM’s to estimate facial poses.

In the system of Schneiderman and Kanade [105], multi-resolution information

6 Face Detection, Alignment and Recognition Chapter 1

is used for different levels of wavelet transform. The algorithm consists of an array
of 5 face detectors in the view-based framework. Each is constructed using statistics
of products of histograms computed from examples of the respective view. It takes 1
min for a 320x240 image over only 4 octaves of candidate size according as reported
in [105].

Li et al. [68], [67] present a multi-view face detection system, extending the
work of [128], [127] and [105]. A new boosting algorithm called FloatBoost is pro-
posed to incorporate Floating Search [97] into AdaBoost. The backtrack mechanism
therein allows deletions of weak classifiers that are ineffective in terms of the error
rate, leading to a strong classifier consisting of fewer weak classifiers. An extended
Haar feature set is proposed for dealing with out-of-plane rotations and a detector
pyramid for improving the speed. A coarse-to-fine, simple-to-complex architecture
called detector-pyramid is designed for the fast detection of multi-view faces. This
work leads to the first real-time multi-view face detection system in the world. It
runs at 200 ms per image of size 320x240 pixels on a Pentium-III CPU of 700 MHz.

Lienhart et al. [71] propose an extended set of rotated Haar features for dealing
with in-plane rotations. Also, they use Gentle Adaboost [37] with small CART
trees as base classifiers and show that this combination outperforms that of Discrete
Adaboost and stumps.

In the following, face processing techniques are presented, including pre- and
post-processing, neural network based methods and boosting based methods. Given
that the boosting learning with Haar-like feature approach has achieved the best
performance, the presentation will focus on such state-of-the-art methods.

1.2.2 Preprocessing

Skin Color Filtering

Human skin has its own distribution that differ from that of most of nonface objects.
It can be used to filtering the input image to obtain candidate regions of faces, and
as a standalone face detector (not an appearance based detector). A simple color
based face detection algorithm can consists of two steps: (1) segmentation of likely
face regions and (2) region merge.

Skin color likelihood model, p(color | face), can be derived from skin color
samples. This may be done in the H (of HSV) color space or in the normalized
RGB color space (cf. a comparative evaluation in [138]). A Gaussian mixture
model for p(color | face) can give a better skin color modeling [132], [135]. Fig.1.3
shows a skin color segmentation map. A skin colored pixel is found if p(H | face),
where H is the hue component of the pixel, is greater than a threshold (0.3), and its
saturation (S) and value (V) are between some upper and lower bounds. A skin color
map consists of a number of skin color regions which indicate potential candidate
face areas. Refined face regions can be obtained by merging adjacent similar and
homogeneous skin color pixels based on the color and spatial information. Heuristic
postprocessing could be performed to remove false detection. For example, a human
face contains eyes where the eyes correspond to darker regions inside the face region.

Section 1.2. Face Detection 7

Figure 1.3. Skin color filtering: Input image with single (a) and multiple (c)
people. Skin color filtered maps (b) and (d).

While a color based face detection system may work fast, however, the color
constraint alone is insufficient for achieving high performance face detection, due
to color variations for different lighting, shadow, and ethic groups. Indeed, it is the
appearance, albeit colored or gray levelled, rather than the color that is essential
for face detection. In fact, most successful systems need not use color and achieve
good performance.

Image Normalization

Preprocessing operations are usually performed to normalize the image pattern in
a subwindow in its size, pixel value distribution and lighting condition. These
include resizing (say, 20x20 pixels), lighting correction, mean value normalization,
and histogram equalization. A simple lighting correction operation is to subtract
a best fit plane I ′(x, y) = a × x + b × y + c from the subwindow I(x, y), where
the values of a, b and c can be estimated using the least squares method. Fig.1.4
gives an example of the effect. The mean value normalization operation subtracts
the mean value of the window pattern from the window pixels so that the average
intensity of all the pixels in the subwindow is zero. See Fig.1.5.

Multi-Gaussian Clustering

The distribution of training patterns is very complex because of the variety of
changes and high dimensionality. Therefore a single distribution is hard to explain
all such variations. Sung and Poggio [114] propose to deal with the complexity by
dividing the face training data into Lf = 6 face clusters, and nonface training data
into Ln = 6 non-face clusters where cluster numbers 6 and 6 are empirically chosen.
The clustering is performed by using a modified k-mean clustering algorithm based
on the Mahalanobis distance [114]. Fig.1.6 shows the centroids of the obtained Lf

face clusters and Ln non-face clusters. After the clustering, nonlinear classification
is then based on the partition.

8 Face Detection, Alignment and Recognition Chapter 1

Figure 1.4. Effect of lighting correction. (a): before illumination correction; (b):
best fit linear function; (c): after illumination correction.

Figure 1.5. Mean value normalization and histogram equalization. (a): original
image window; (b): linear stretch after mean value normalization; (c): histogram
equalization after mean value normalization.

Figure 1.6. Centroids of six face clusters in (a) and six non-face clusters in (b)

1.2.3 Neural and Kernel Methods

Here we describe the methods of [100], [114]. In the training phase, a neural network
(NN) classifier is trained by using normalized face and nonface training images.

Section 1.2. Face Detection 9

A bootstrap algorithm is used to collect meaningful non-face examples into the
training set. In the test phase, the trained NN classifies each subwindow into either
face or nonface. The main issue here is to train a nonlinear neural classifier by which
highly nonlinear manifolds of face and nonface in the space of image subwindows
are separated.

An NN is a fully connected feed-forward multi-layer perceptron. The input
feature vector can be simply the raw image in the subwindow or a feature vector
extracted from it. For the latter case, it can be a preprocessed subimage [100] or
vector of the distances from subspaces of face and nonface clusters [114]. A back-
propagation (BP) algorithm is used for the training. Several copies of the same
NN can be trained and their outputs combined by arbitration (ANDing) [100] –
hopefully this would give more reliable results than can be obtained by using a
single NN.

Nonlinear classification for face detection can also be done using kernel support
vector machines (SVMs) [91], [90], [70]. While such methods are able to learn
nonlinear boundaries, a large number of support vectors may result in order to
capture high nonlinearity. This would create an issue un-favorable to real-time
performance.

1.2.4 Boosting Based Methods

In AdaBoost based classification, a highly complex nonlinear classifier is constructed
as a linear combination of many simpler, easily constructible weak classifiers [37].
In AdaBoost face detection [128], [127], [68], [71], each weak classifier is build by
thresholding on a scalar feature selected from an overcomplete set of Haar wavelet
like features [92], [117]. Such methods have so far been the most successful ones for
face detection.

Haar-Like Features

Viola and Jones propose four basic types of scalar features for face detection [92],
[128], as shown in Fig.1.7. Recently, such features have been extended for dealing
with head rotations [68], [71]. Each such feature has a scalar value which can be
computed very efficiently [109] from the summed-area table [26] or integral image
[128]. Feature k, taking the value zk(x) ∈ R, can be considered as a transform from
the n-dimensional (400-D if a face example x is of size 20x20) data space to the real
line. For a face example of size 20x20, there are tens of thousands of such features.
These form an over-complete feature set for the intrinsically low-dimensional face
pattern.

Learning Feature Selection

A weak classifier is associated with a single scalar feature; to find the best new weak
classifier is to choose the best corresponding feature. Adaboost learning is used to
select most significant features from the feature set. More specifically, AdaBoost

10 Face Detection, Alignment and Recognition Chapter 1

Figure 1.7. Rectangular Haar wavelet like features. A feature takes a scalar value
by summing up the white region and subtracting the dark region.

is adapted to solving the following three fundamental problems in one boosting
procedure: (1) learning effective features from a large feature set, (2) constructing
weak classifiers each of which is based on one of the selected features, and (3)
boosting the weak classifiers into a stronger classifier.

The basic form of (discrete) AdaBoost [37] is for two class problems. A set of N
labelled training examples is given as (x1, y1), . . . , (xN , yN), where yi ∈ {+1,−1}
is the class label for the example xi ∈ Rn. AdaBoost assumes that a procedure
is available for learning sequence of weak classifiers hm(x) (m = 1, 2, . . . ,M) from
the training examples, with respect to the distributions w

(m)
i of the examples. A

stronger classifier is a linear combination of the M weak classifiers

HM (x) =
∑M

m=1 αmhm(x)∑M
m=1 αm

(1.2.2)

where αm ≥ 0 are the combining coefficients. The classification of x is obtained as
ŷ(x) = Sign[HM(x)] and the normalized confidence score is |HM (x)|. The AdaBoost
learning procedure is aimed to derive αm and hm(x).

Learning Weak Classifiers

A weak classifier is constructed by thresholding one of those features according
to the likelihoods (histograms) of the feature values for the target faces and the
imposter faces

h
(M)
k (x) = +1 ifzk(x) > τ

(M)
k (1.2.3)

= −1 otherwise (1.2.4)

Section 1.2. Face Detection 11

where zk(x) is feature k extracted from x, and τ
(M)
k is the threshold for weak

classifier k chosen to ensure a specified accuracy. The best weak classifier is the one
for which the false alarm is minimized:

k∗ = argmin
k

FA(h(M)
k (x)) (1.2.5)

where FA is the false alarm caused by h
(M)
k (x) (also w.r.t. w(M−1)). This gives us

the best weak classifier as

hM (x) = h
(M)
k∗ (x) (1.2.6)

Boosted Strong Classifier

AdaBoost leans to boost weak classifiers hm into a strong one HM effectively by
minimizing the upper bound on classification error achieved by HM . The bound
can be derived as the following exponential loss function [102]

J(HM) =
∑
i

e−yiHM (xi) =
∑
i

e−yi

∑ M
m=1 αmhm(x) (1.2.7)

AdaBoost construct hm(x) by stagewise minimization of Eq.(1.2.7). Given the
current HM−1(x) =

∑M−1
m=1 αmhm(x), and the newly learned weak classifier hM , the

best combining coefficient αM for the new strong classifier HM (x) = HM−1(x) +
αMhM (x) minimizes the cost:

αM = argmin
α

J(HM−1(x) + αhM (x)) (1.2.8)

The minimizer is

αM = log
1− εM
εM

(1.2.9)

where εM is the weighted error

εM =
∑
i

w
(M−1)
i 1[sign(HM (xi))
= yi] (1.2.10)

where 1[C] is one if C is true, or 0 otherwise.
Each example is re-weighted after an iteration, i.e. w

(M−1)
i is updated according

to the classification performance of HM :

w(M)(x, y) = w(M−1)(x, y) exp (−αMyhM (x))
= exp (−yHM(x)) (1.2.11)

which will be used for calculating the weighted error or another cost for training
the weak classifier in the next round. This way, a more difficult example will be
associated with a larger weight so that it will be more emphasized in the next round
of learning. The algorithm is summarized in Fig.1.8.

12 Face Detection, Alignment and Recognition Chapter 1

0. (Input)
(1) Training examples Z = {(x1, y1), . . . , (xN , yN)},

where N = a + b; of which a examples have yi = +1
and b examples have yi = −1;

(2) The number M of weak classifiers to be combined;
1. (Initialization)

w
(0)
i = 1

2a
for those examples with yi = +1 or

w
(0)
i = 1

2b
for those examples with yi = −1.

2. (Forward Inclusion)
For m = 1, . . . , M :

(1) Choose optimal hm to minimize weighted error;
(2) Choose αm according to Eq.1.2.9;

(3) Update w
(m)
i ← w

(m)
i exp[−yihm(xi)], and

normalize to
∑

i w
(m)
i = 1;

3. (Output)

H(x) = sign[
∑M

m=1 hm(x)].

Figure 1.8. AdaBoost Learning Algorithm.

FloatBoost Learning

AdaBoost attempts to boost the accuracy of an ensemble of weak classifiers to a
strong one. The AdaBoost algorithm [37] solved many of the practical difficulties of
earlier boosting algorithms. Each weak classifier is trained one stage-wise to mini-
mize the empirical error in a given distribution re-weighted according classification
errors of the previously trained classifier. It is shown that AdaBoost is a sequential
forward search procedure using the greedy selection strategy to minimize a certain
margin on the training set [102].

A crucial heuristic assumption made in such a sequential forward search proce-
dure is the monotonicity, i.e. that when adding a new weak classifier to the current
set, the value of the performance criterion does not decrease. The premise offered
by the sequential procedure can be broken-down when the assumption is violated,
i.e. when the performance criterion function is non-monotonic. This is the first
topic to be dealt with in this paper.

Floating Search [97] is a sequential feature selection procedure with backtrack-
ing, aimed to deal with non-monotonic criterion functions for feature selection. A
straight sequential selection method like sequential forward search (SFS) or sequen-
tial backward search (SBS) adds or deletes one feature at a time. To make this
work well, the monotonicity property has to be satisfied by the performance cri-
terion function. Feature selection with a non-monotonic criterion may be dealt
with by using a more sophisticated technique, called plus-'-minus-r, which adds or
deletes ' features and then backtracks r steps [113], [59].

The Sequential Floating Search methods [97] allows the number of backtrack-

Section 1.2. Face Detection 13

ing steps to be controlled instead of being fixed beforehand. Specifically, it adds or
deletes ' = 1 feature and then backtracks r steps where r depends on the current sit-
uation. It is such a flexibility that amends limitations due to the non-monotonicity
problem. Improvement on the quality of selected features is gained with the cost of
increased computation due to the extended search. The SFFS algorithm performs
very well in several applications [97], [54]. The idea of Floating Search is further
developed in [112] by allowing more flexibility for the determination of '.

0. (Input)
(1) Training examples Z = {(x1, y1), . . . , (xN , yN)},

where N = a + b; of which a examples have
yi = +1 and b examples have yi = −1;

(2) The maximum number Mmax of weak classifiers;
(3) The cost function J(HM) (e.g., error rate made by HM), and

the maximum acceptable cost J∗.
1. (Initialization)

(1) w
(0)
i = 1

2a
for those examples with yi = +1 or

w
(0)
i = 1

2b
for those examples with yi = −1;

(2) Jmin
m =max-value (for m = 1, . . . , Mmax),

M = 0, H0 = {}.
2. (Forward Inclusion)

(1) M ←M + 1;
(2) Choose hM according to Eq.1.2.8;

(3) Update w
(M)
i ← w

(M−1)
i exp[−yihM (xi)],

normalize to
∑

i w
(M)
i = 1;

(4) HM = HM−1 ∪ {hM};
If Jmin

M > J(HM), then Jmin
M = J(HM);

3. (Conditional Exclusion)
(1) h′ = arg minh∈HM J(HM − h);
(2) If J(HM − h′) < Jmin

M−1, then
(a) HM−1 = HM − h′;

Jmin
M−1 = J(HM − h′); M = M − 1;

(b) if h′ = hm′ , then

re-calculate w
(j)
i and hj for j = m′, . . . , M ;

(c) goto 3.(1);
(3) else

(a) if M = Mmax or J(HM) < J∗, then goto 4;
(b) goto 2.(1);

4. (Output)

H(x) = sign[
∑M

m=1 hm(x)].

Figure 1.9. FloatBoost Algorithm.

Let HM = {h1, . . . , hM} be the so-far-best set of M weak classifiers; J(HM) be
the criterion which measures the overall cost of the classification function HM (x) =

14 Face Detection, Alignment and Recognition Chapter 1

∑M
m=1 hm(x) build on HM ; Jmin

m be the minimum cost achieved so far with a linear
combination of m weak classifiers for m = 1, . . . ,Mmax (which are initially set to a
large value before the iteration starts). As shown in Fig.1.9, the FloatBoost Learn-
ing procedure involves training inputs, initialization, forward inclusion, conditional
exclusion and output.

In Step 2 (forward inclusion), the currently most significant weak classifier is
added one at a time, which is the same as in AdaBoost. In Step 3 (conditional
exclusion), FloatBoost removes the least significant weak classifier fromHM , subject
to the condition that the removal leads to a lower cost than Jmin

M−1. Supposing that
the removed weak classifier was the m′-th in HM , then hm′ , . . . , hM will be re-
learned. These are repeated until no more removals can be done.

For face detection, the acceptable cost J∗ is the maximum allowable risk, which
can be defined as a weighted sum of missing rate and false alarm rate. The algorithm
terminates when the cost is below J∗ or the maximum number M of weak classifiers
is reached.

FloatBoost usually needs fewer weak classifiers than AdaBoost to achieve a given
objective J∗. One have two options with such a result: (1) Use the FloatBoost-
trained strong classifier with its fewer weak classifiers to achieve similar performance
as can be done by a AdaBoost-trained classifier with more weak classifiers. (2)
Continue FloatBoost learning to add more weak classifiers even if the performance
on the training data does not increase. The reason for (2) is that even if the
performance does not improve on the training data, adding more weak classifiers
may lead to improvements on test data [102].

Cascade of Strong Classifiers

A boosted strong classifier effectively eliminates a large portion of nonface sub-
windows while maintaining a high detection rate. Nontheless, such a single strong
classifier may not meet the requirement of extremely low false alarm rate, e.g. 10−6

or even lower. A solution is to arbitrate between several detectors (strong classifier)
[100], e.g. using “AND” operation.

Viola and Jones [128], [127] further extend this idea by training a serial cas-
cade of a number of strong classifiers, as illustrated in Fig.1.10. A strong classifier
is trained using bootstrapped nonface examples that pass through the previously
trained cascade. Usually, 10 to 20 strong classifiers are cascaded. In detection, sub-
windows which fail to pass a strong classifier will not be further processed by the
subsequent strong classifiers. This strategy can significant speed up the detection,
and reduce false alarm, but these are achieved with a little sacrifice of the detection
rate.

1.2.5 Post-Processing

A face may be detected several times at close locations or multiple scales. False
alarms may also occur but usually with less consistency than multiple face detec-
tions. The number of the multiple detections at a close location can be used as

Section 1.2. Face Detection 15

SC 1 SC nSC 2

N NN

FF F
...

x

Figure 1.10. A cascade of n strong classifiers (SC’s). The input is a subwindow x.
It is sent to the next SC for further classification only it has passed all the previous
SC’s as face (F) pattern; otherwise it exits as nonface (N). x is finally considered
to be a face when it passes all the n SC’s.

Figure 1.11. Merging Multiple Detections.

an effective indication for the existence of a face at the location. The observation
leads to a heuristic for resolving the ambiguity caused by multiple detections and
eliminate many false detections. A detection is confirmed if the number of multiple
detections is large enough, and multiple detections are merged into one consistent
detect. This is practiced in most face detection systems e.g. [114], [100]. Fig.1.11
gives an illustration. The image on the left shows a typical output of initial de-
tection, where the face is detected four times with four false alarms on the cloth.
On the right is the final result after merging. We can see that multiple detections
are merged and false alarms eliminated. Fig.1.12 and Fig.1.13 show some typical
detection examples.

16 Face Detection, Alignment and Recognition Chapter 1

Figure 1.12. Results of face detection in gray images. 42 faces are detected, 6
faces are missing, and no false alarms occur.

1.2.6 Evaluation

AdaBoost learning based face detection methods have been the most effective of
all methods developed so far. In terms of detection and false alarm rates, it is
comparable to the neural network method of Henry Rowley [100]. But it is several
times faster [128], [127].

Regarding the AdaBoost approach, the following conclusions can be made in
terms of different feature sets, boosting algorithms, weak classifiers, subwindow
sizes, and training set sizes according to studies in [128], [127], [68], [71]:

• A set of Haar-like features, which can be computed very efficiently using the
integral image, achieves true scale invariance and reduces the initial image
processing required for object detection significantly. For the extended set of
Haar features introduced in [71], the in-plane rotated features increased the
accuracy though frontal faces exhibit little diagonal structures.

• AdaBoost learning can select best subset from a large feature set and construct
a powerful nonlinear classifier.

• The cascade structure significantly improves the speed and is effective to re-

Section 1.2. Face Detection 17

Figure 1.13. Results of face detection in gray images. 21 faces are detected, with
one face with large rotation missing and one false detect in the first image.

duce false alarms, but with a little sacrifice of the detection rate [128], [127].

• FloatBoost effectively improves booting learning result [68]. It needs fewer
weaker classifiers than AdaBoost to achieve a similar error rate, or achieve a
lower error rate with the same number of weak classifiers. Such a performance
improvement is achieved with the cost of longer training time, about 5 times

18 Face Detection, Alignment and Recognition Chapter 1

longer.

• Gentle Adaboost outperforms Discrete and Real Adaboost [71].

• It is beneficial not just to use the simplest of all tree classifiers, i.e. stumps,
as the basis for the weak classifiers, but representationally more powerful
classifiers such as small CART trees, which can model second and/or third
order dependencies.

• 20x20 is the optimal input pattern size for frontal face detection.

Face detection technologies have now been mature enough to meet minimum
needs of many practical applications. However, much work is needed before auto-
mated face detection can achieve performance comparable with the human. The
Harr+AdaBoost approach is effective and efficient. However, the current form has
almost reached its power limit. Within such a framework, possible improvements
may be made by designing additional new set of features complement to the existing
ones and adopting more advanced learning techniques which could lead to classifiers
which had complex enough boundaries yet did not overfit.

1.3 Face Alignment

Both shape and texture (i.e. image pixels enclosed in the facial outline) provide im-
portant clues useful for characterizing the face [13]. Accurate extraction of features
for the representation of faces in images offers advantages for many applications,
and is crucial for highly accurate face recognition and synthesis. The task of face
alignment is to accurately locate facial features such as the eyes, nose, mouth and
outline, and normalize facial shape and texture.

Active Shape Model (ASM) [23] and Active Appearance Model (AAM) [22],
[29] are two popular models for the purpose of shape and appearance modeling
and extraction. The standard ASM consists of two statistical models: (1) global
shape model, which is derived from the landmarks in the object contour; (2) local
appearance models, which is derived from the profiles perpendicular to the object
contour around each landmark. ASM uses local models to find the candidate shape
and the global model to constrain the searched shape. AAA makes use of subspace
analysis techniques, PCA in particular, to model both shape variation and texture
variation, and the correlations between them. In searching for a solution, it assumes
linear relationships between appearance variation and texture variation and between
texture variation and position variation; and learns the two linear regression models
from training data. The minimizations in high dimensional space is reduced in two
models facilitate. This strategy is also developed in the active blob model of Sclaroff
and Isidoro [108].

ASM and AAM can be expanded in several ways. The concept, originally pro-
posed for the standard frontal view, can be extended to multi-view faces, either by
using piecewise linear modeling [24] or nonlinear modeling [98]. Cootes and Tay-
lor show that imposing constraints such as fixing eye locations can improve AAM

Section 1.3. Face Alignment 19

search result [21]. Blanz and Vetter extended morphable models and AAM to model
relationship of 3D head geometry and facial appearance [16]. Li et al. [69] present
a method for learning 3D face shape model from 2D images based on a shape-and-
pose-free texture model. In Duta et al. [28], the shapes are automatically aligned
using procrustes analysis, and clustered to obtain cluster prototypes and statis-
tical information about intra-cluster shape variation. In Ginneken et al. [124], a
K-nearest-neighbors classifier is used and a set of features are selected for each land-
mark to build local models. Baker and colleagues [7] propose an efficient method
called ”inverse compositional algorithm” for alignment. Ahlberg [4] extends AAM
to a parametric method called Active Appearance algorithm to extract positions
parameterized by 3D rotation, 2D translation, scale, and six Action Units (control-
ling the mouth and the eyebrows). In direct appearance model (DAM) [50], [66],
shape is modeled as a linear function of texture. Using such an assumption, Yan et
al. [131] propose texture-constrained ASM (TC-ASM), which has the advantage of
ASM in having good localization accuracy and that of AAM in having insensitivity
to initialization.

The following describes ASM and AAM, DAM, TC-ASM. A training set of
shape-texture pairs is assumed to be available and denoted as Ω = {(S0, T0)} where
a shape S0 = ((x1, y1), . . . , (xK , yK)) ∈ R2K is a sequence of K points in the 2D
image plane, and a texture T0 is the patch of pixel intensities enclosed by S0. Let
S be the mean shape of all the training shapes, as illustrated in Fig.1.14. All the
shapes are aligned or warping to the tangent space of the mean shape S. After that
, the texture T0 is warped correspondingly to T ∈ RL, where L is the number of
pixels in the mean shape S. The warping may be done by pixel value interpolation,
e.g. using a triangulation or thin plate spline method.

Figure 1.14. Two face instaces labelled with 83 landmarks and the mesh of the
mean shape.

1.3.1 Active Shape Model

In ASM, a shape is represented as a vector s in the low dimensional shape subspace,
denoted Ss, in Rk spanned by the k (< 2K) principal modes learned from the
training shapes.

S = S +Us (1.3.1)

20 Face Detection, Alignment and Recognition Chapter 1

where U is the matrix consisting of k principal orthogonal modes of variation in
{S0}. Because the training shapes have been aligned to the tangent space of S,
the eigenvectors in U is orthogonal to the mean shape S, i.e. UTS = 0, and the
projection from S to s is

s = UT (S − S) = UTS (1.3.2)

The local appearance models describing the typical images structure around each
landmark are obtained from the sampled profiles perpendicular to the landmark
contour. The first derivatives of the profiles are used to build these models. For a
landmark, the mean profile and g and the covariance matrix Sg can be computed
from the example profiles directly. The best candidate can by found by minimizing
Mahalanobis distance between the candidate profile g and mean profile g:

dist(g, g) = (g − g)TS−1
g (g − g) (1.3.3)

After relocating all the landmarks from local models, the result shape Ŝ in the
Ss can be derived from the likelihood distribution :

p(Ŝ|s) = exp{−E(Ŝ|s)}
Z

(1.3.4)

where Z is the normalizing constant, and the corresponding likelihood energy func-
tion can be defined as:

E(Ŝ|s) = ‖Ŝ − S′‖
2σ2

1

+
k∑
i=1

{‖s
′
i − si‖2

2εi
} (1.3.5)

where σ1 is a constant, εi is the i-th largest eigenvalue of the covariance matrix
of the training data {S0}, S′ ∈ R2K is the projection of Ŝ in Ss, and s′ is the
corresponding shape parameters. The first term in Equ.(1.3.5) is the Euclidean
distance of Ŝ to the shape space Ss , and the second term is is the Mahalanobis
distance between s′ and s.

The maximum likelihood solution, sML = argmax
s∈Ss

p(Ŝ|s), is the projection of Ŝ

to the shape space Ss, i.e.
sML = UT (Ŝ − S) (1.3.6)

Its corresponding shape in R2K is

S = S +UsML (1.3.7)

1.3.2 Active Appearance Model

After aligning each training shape S0 to the mean shape and warping the corre-
sponding texture T0 to T , the warped textures are aligned to the tangent space of
the mean texture T by using an iterative approach [22]. The PCA model for the
warped texture is obtained as

T = T +Vt (1.3.8)

Section 1.3. Face Alignment 21

where V is the matrix consisting of ' principal orthogonal modes of variation in
{T }, t is the vector of texture parameters. The projection from T to t is

t = VT (T − T) = VTT (1.3.9)

By this, the L pixel values in the mean shape is represented as a point in the texture
subspace St in R�.

The appearance of each example is a concatenated vector

A =
(
Λs
t

)
(1.3.10)

where Λ is a diagonal matrix of weights for the shape parameters allowing for the
difference in units between the shape and texture variation, typically defined as rI.
Again, by applying PCA on the set {A}, one gets

A =Wa (1.3.11)

whereW is the matrix consisting of principal orthogonal modes of the variation in
{A | for all training samples}. The appearance subspace Sa is modelled by

a =WTA (1.3.12)

The search for an AAM solution is guided by the following difference between the
texture Tim in the image patch and the texture Ta reconstructed from the current
appearance parameters

δT = Tim − Ta (1.3.13)

More specifically, the search for a face in an image is guided by minimizing the norm
‖δT ‖. The AAM assumes that the appearance displacement δa and the position
(including coordinates (x, y), scale s, and rotation parameter θ) displacement δp
are linearly correlated to δT :

δa = AaδT (1.3.14)
δp = ApδT (1.3.15)

The prediction matrices Aa,Ap are to be learned from the training data by using
linear regression. In order to estimate Aa, a is displaced systematically to induce
(δa, δT) pairs for each training image. Due to large consumption of memory required
by the learning of Aa and Ap, the learning has to be done with a small, limited set
of {δa, δT }.

1.3.3 Modeling Shape from Texture

An analysis on mutual dependencies of shape, texture and appearance parameters
in the AAM subspace models shows that there exist admissible appearances that
are not modeled and hence cannot be reached by AAM search processing [50]. Let

22 Face Detection, Alignment and Recognition Chapter 1

us look into relationship between shape and texture from an intuitive viewpoint.
A texture (i.e. the patch of intensities) is enclosed by a shape (before aligning to
the mean shape); the same shape can enclose different textures (i.e. configurations
of pixel values). However, the reverse is not true: different shapes can not enclose
the same texture. So the mapping from the texture space to the shape space is
many-to-one. The shape parameters should be determined completely by texture
parameters but not vice versa.

Then, let us look further into the correlations or constraints between the linear
subspaces Ss, St and Sa in terms of their dimensionalities or ranks. Let denote the
rank of space S by dim(S). The following analysis is made in [50]:

1. When dim(Sa)=dim(St)+dim(Ss), the shape and texture parameters are in-
dependent of each other, and there exist no mutual constraints between the
parameters s and t.

2. When dim(St)<dim(Sa)<dim(St)+dim(Ss), not all the shape parameters are
independent of the texture parameters. That is, one shape can correspond to
more than one texture configuration in it, which conforms an intuition.

3. One can also derive the relationship dim(St)<dim(Sa) from Eq.(1.3.10) and
(1.3.11) the formula

Wa =
(
Λs
t

)
(1.3.16)

when that s contains some components which are independent of t.

4. However, in AAM, it is often the case where dim(Sa)<dim(St) if the dimen-
sionalities of Sa and St are chosen to retain, say 98%, of the total variations
[22]. The consequence is that some admissible texture configurations cannot
been seen in the appearance subspace because dim(Sa)<dim(St), and there-
fore cannot be reached by the AAM search. This a flaw of AAM’s modeling
of its appearance subspace.

From the above analysis, It is concluded in [50] that the ideal model should be
such that dim(Sa)=dim(St) and hence that s completely linearly determinable by
t. In other words, the shape should be linearly dependent on the texture so that
dim(St ∪ Ss)=dim(St).

Direct Appearance Models

A solution to this problem is made by assuming that the shape is linearly dependent
on the texture [50], [66]:

s = Rt+ ε (1.3.17)

where ε = s − Rt is noise and R is a k × l projection matrix. Denoting the
expectation by E(·), if all the elements in the variance matrix E(εεT) are small

Section 1.3. Face Alignment 23

enough, the linear assumption made in Eq.(1.3.17) is approximately correct. This
is true as will be verified later by experiments. Define the objective cost function

C(R) = E(εT ε) = trace[E(εεT)] (1.3.18)

R is learned from training example pairs {(s, t)} by minimizing the above cost
function. The the optimal solution is

R∗ = E(stT)[E(ttT)]−1 (1.3.19)

The minimized cost is the trace of the following

E(εεT) = E(ssT)−R∗E(ttT)R∗T (1.3.20)

DAM [50], [66] assumes that the facial shape is a linear regression function of
the facial texture and hence overcomes a defect in AAM; the texture information
is used directly to predict the shape and to update the estimates of position and
appearance (hence the name DAM). Also, DAM predicts the new face position and
appearance based on the principal components of texture difference vectors, instead
of the raw vectors themselves as in AAM. This cuts down the memory requirement
to a large extent, and further improves the convergence rate and accuracy.

Learning in DAM

The DAM consists of a shape model, two texture (original and residual) model
and two prediction (position and shape prediction) model. The shape, texture
models and the position prediction model (1.3.15) are built in the same way as in
AAM. The residual texture model is built using the subspace analysis technique
PCA. Abandoning AAM’s crucial idea of combining shape and texture parameters
into an appearance model, it predicts the shape parameters directly from the texture
parameters. In the following, the last two models are demonstrated in detail.

Instead of using δT directly as in the AAM search (cf. Eq.(1.3.15), its principal
components, denoted δT ′, is used to predict the position displacement

δp = RpδT
′ (1.3.21)

where Rp is the prediction matrix learned by using linear regression. To do this,
samples of texture differences induced by small position displacements in each train-
ing image are collected, and PCA is performed to get the projection matrix HT . A
texture difference is projected onto this subspace as

δT ′ =HT δT (1.3.22)

δT ′ is normally about 1/4 of δT in dimensionality. Results have shown that the use
of δT instead of δT ′ as in Eq.(1.3.21) makes the prediction more stable and more
accurate.

24 Face Detection, Alignment and Recognition Chapter 1

Assume that a training set be given as A = {(Si, T o
i)} where a shape Si =

((xi1, yi1), . . . , (xiK , yiK)) ∈ R2K is a sequence of K points in the 2D image plane, and
a texture T o

i is the patch of image pixels enclosed by Si. The DAM learning consists
of two parts: (1) learning R, and (2) learning H and Rp: (1) R is learned from the
shape-texture pairs {s, t} obtained from the landmarked images. (2) To learn H
and Rp, artificial training data is generated by perturbing the position parameters
p around the landmark points to obtain {δp, δT }; then learn H from {δT } using
PCA; δT ′ is computed after that; and finally Rp is derived from {δp, δT ′}.

The DAM regression in Eq.(1.3.21) requires much less memory than the AAM
regression in Eq.(1.3.14), typically DAM needs only about 1/20 of memory required
by AAM. For DAM, there are 200 training images, 4 parameters for the position:
(x, y, θ, scale), and 6 disturbances for each parameter to generate training data for
the training Rp. So, the size of training data for DAM is 200 × 4 × 6 = 4, 800.
For AAM, there are 200 training images, 113 appearance parameters, and 4 distur-
bances for each parameter to generate training data for training Aa. The size of
training data for Aa is 200× 113× 4 = 90, 400. Therefore, the size of training data
for AAM’s prediction matrices is 90, 400 + 4, 800 = 95, 200, which is 19.83 times
that for DAM. On a PC, for example, the memory capacity for AAM training with
200 images would allow DAM training with 3,966 images.

DAM Search

The DAM prediction models leads to the following search procedure: The DAM
search starts with the mean shape and the texture of the input image enclosed by
the mean shape, at a given initial position p0. The texture difference δT is computed
from the current shape patch at the current position, and its principal components
are used to predict and update p and s using the DAM linear models described
above. Note that the p can be computed from δT in one step as δp = RT δT ,
where RT = RpHT , instead of two steps as in Eqns.(1.3.21) and (1.3.22). If ‖δT ‖
calculated using the new appearance at the position is smaller than the old one,
the new appearance and position are accepted; otherwise the position is updated
by amount κδp with varied κ values. The search algorithm is summarized below:

1. Initialize the position parameters p0 (with a given pose); set shape parameters
s0 = 0;

2. Get texture Tim from the current position, project it into the texture subspace
St as t, reconstruct the texture Ta, and compute texture difference δT0 =
Tim − Ta and the energy E0 = ‖δT0‖2;

3. Compute δT ′ =HT δT , get the position displacement δp = RpδT
′;

4. Set step size κ = 1;

5. Update p = p0 − κδp, s = Rt;

Section 1.3. Face Alignment 25

6. Compute the difference texture δT using the new shape at the new position,
and its energy E = ‖δT ‖2;

7. If |E − E0| < ε, the algorithm is converged; exit;

8. If E < E0, then let p0 = p, s0 = s, δT0 = δT,E0 = E, goto 3;

9. Change κ to the next number in {1.5, 0.5, 0.25, 0.125, . . . , }, goto 5;

Texture-Constrained Active Shape Model

TC-ASM [131] imposes the linear relationship of direct appearance model (DAM)
to improve ASM search. The motivation is the following: ASM has better accuracy
in shape localization than AAM when the initial shape is placed close enough to
the true shape whereas the latter model incorporates information about texture
enclosed in the shape and hence yields lower texture reconstruction error. However,
ASM makes use of constraints near the shape only, without a global optimality
criterion, and therefore the solution is sensitive to the initial shape position. In
AAM, the solution finding process is based on the linear relationship between the
variation of the position and the texture reconstruct error. The reconstruct error δT
is influenced very much by the illumination. Since δT is orthogonal to St (projected
back to RL) and dim(St) � dim(T), the dimension of the space {δT } is very high,
and it is hard to train the regression matrix Aa,Ap and the prediction of the
variance of position can be subject to significant errors. Also it is time and memory
consuming. TC-ASM is aimed to overcome the above problems.

TC-ASM consists of a shape model, a global texture model, K local appearance
(likelihood) models and a texture-shape model. The shape and texture model are
built based on PCA in the way as in AAM. The K local appearance models are
build from the sampled profiles around each landmark, and the texture-shape model
is learned from the pairs {(s,t)} obtained from the landmarked images.

It assumes a linear relationship between shape and texture as in DAM. The
shape (∈ Ss) with a given texture (∈ St) can be approximately modelled by Gaussian
distribution:

s ∼ N(st,Λ′) (1.3.23)

where
st = Rt+ ε (1.3.24)

where ε is the noise, and Λ′ can be defined as diagonal matrix for simplicity.
The matrix R can be pre-computed from the training pairs {(s,t)} obtained

from the labelled images using the Least Square method. The matrix R will map
the texture to the mean shape of all shapes with the same texture, i.e. E(s| shape S
with parameter s encloses the given texture t), and it’s right to be the expectation
of the distribution, i.e. st. Denoting:

RV T = RV T (1.3.25)

26 Face Detection, Alignment and Recognition Chapter 1

From Equ.(1.3.9) and Equ.(1.3.24), one can get

st = RV T (T − T) (1.3.26)

Then the prior conditional distribution of s ∈ Ss, for a given st can be represented
as:

p(s|st) = exp{−E(s|st)}
Z ′ (1.3.27)

where Z ′ is the normalizing constant and the corresponding energy function is:

E(s|st) =
k∑
i=1

‖si − sti‖2

2ε′i
(1.3.28)

TC-ASM search is formulated in the Bayesian framework. Intuitively, one could
assume ε′ = βε or ε′ = σ2I, where ε = (ε1, ..., εk)T is the k largest eigenvalues of the
covariance matrix of the training data {S0} and β is a constant. Using the prior
distribution of Equ.(1.3.27) and the likelihood distribution in Equ.(1.3.5).

Let Ŝ be the shape derived from local appearance models, and st be the pre-
dicted shape from the global texture constrains. Ŝ and st can be considered to be
independent each other, i.e.

p(Ŝ, st) = p(Ŝ)p(st) and p(Ŝ|st) = p(Ŝ) (1.3.29)

Shape extraction is posed as a problem of maximum a posterior (MAP) estimation.
The posteriori distribution of s ∈ Ss is:

p(s|Ŝ, st) =
p(Ŝ|s, st)p(s, st)

p(Ŝ, st)
(1.3.30)

=
p(Ŝ|s)p(s|st)

p(Ŝ)
(1.3.31)

The corresponding energy is

E(s|Ŝ, st) = E(Ŝ|s) + E(s|st) (1.3.32)

And the MAP estimation can be defined as

sMAP = arg min
s∈Ss

E(s|Ŝ, st) (1.3.33)

The relationship between Ŝ, st and the MAP estimation s can be represented as in
Fig.(1.15), where the shape space, spanned by {e1, e2}, is assumed to be 2-D.

Unlike ASM, TC-ASM uses the additional prior constrains between the shape
and the texture, and this helps to avoid stagnating at the local minimum location in
the shape search, and tends to drive the shape to a more reasonable position. The
shape is driven by the local appearance model instead of regression prediction as in

Section 1.3. Face Alignment 27

Figure 1.15. The relationship between Ŝ (found from local appearance models),
st (derived from the enclosed texture) and the MAP estimation s ∈ Rk.

AAM, so TC-ASM is more robust to illumination variation than AAM. Unlike AAM,
which need manually generate huge number of samples for training the regression
matrix, TC-ASM has much lower memory consuming for it’s training.

The search in TC-ASM contains three main steps: (1) Search the candidate
shape Ŝ using local appearance models, (2) Warp the texture enclosed by the pro-
jection of Ŝ in Ss and compute st using the texture-shape matrix R, (3) Make the
MAP estimation from Ŝ and st, goto step (1) unless more than K ∗ θ(0 < θ < 1)
points in Ŝ are converged or Nmax iterations have been done. A multi-resolution
pyramid structure is used to improve speed and accuracy.

1.3.4 Dealing with Head Pose

We illustrate by using multi-view DAM, a view-based approach with DAM as the
base algorithm. The whole range of views from frontal to side views are partitioned
into several sub-ranges, and one DAM model is trained to represent the shape and
texture for each sub-range. Which view DAM model to use may be decided by using
some pose estimate for static images. In the case of face alignment from video, the
previous view plus the two neighboring view DAM models may be attempted, and
then the final result is chosen to be the one with the minimum texture residual
error.

The full range of face poses are divided into 5 view sub-ranges: [−90◦,−55◦],
[−55◦,−15◦], [−15◦, 15◦], [15◦, 55◦], and [55◦, 90◦] with 0◦ being the frontal view.
The landmarks for frontal, half-side and full-side view faces are illustrated in Fig.1.16.
The dimensions of shape and texture vectors before and after the PCA dimension
reductions are shown in Table 1.1 where the dimensions after PCA are chosen to
be such that 98% of the corresponding total energies are retained. The texture
appearances due to respective variations in the first three principal components of
texture are demonstrated in Fig.1.17.

The left side models and right side models are reflections of each other, so models
for views on one side, plus the ceter view, need be trained, eg [−15◦, 15◦], [15◦, 55◦],
and [55◦, 90◦] for the 5 models.

28 Face Detection, Alignment and Recognition Chapter 1

Figure 1.16. Frontal, half-side, and full-side view faces and the labeled landmark
points.

View #1 #2 #3 #4 #5
Fontal 87 69 3185 144 878
Half-Side 65 42 3155 144 1108
Full-Side 38 38 2589 109 266

Table 1.1. Dimensionalities of shape and texture variations for face data. #1
Number of landmark points. #2 Dimension of shape space Ss. #3 Number of pixel
points in the mean shape. #4 Dimension of texture space St. #5 Dimension of
texture variation space (δT ′).

1.3.5 Evaluation

DAM

Table 1.2 compares DAM and AAM in terms of the quality of position and texture
parameter estimates [50], and the convergence rates. The effect of using δT ′ instead
of δT is demonstrated through DAM’, which is DAM minus the PCA subspace mod-
eling of δT . The initial position is a shift from the true position by dx = 6, dy = 6.
The ‖δp‖ is calculated for each image as the averaged distance between correspond-
ing points in the two shapes, and therefore it is also a measure of difference in shape.
The convergence is judged by the satisfaction of two conditions: ‖δT ‖2 < 0.5 and
‖δp‖ < 3.

Fig.1.18 demonstrates scenarios of how DAM converges for faces of different pose

E(‖δT‖2) std(‖δT‖2) E(‖δp‖) std(‖δp‖) cvg rate

DAM 0.156572 0.065024 0.986815 0.283375 100%
DAM’ 0.155651 0.058994 0.963054 0.292493 100%
AAM 0.712095 0.642727 2.095902 1.221458 70%

DAM 1.114020 4.748753 2.942606 2.023033 85%
DAM’ 1.180690 5.062784 3.034340 2.398411 80%
AAM 2.508195 5.841266 4.253023 5.118888 62%

Table 1.2. Comparisons of DAM, DAM’ and AAM in terms of errors in estimated
texture (appearance) parameters δT and position δp and convergence rates for the
training images (first block of three rows) and test images (second block).

Section 1.3. Face Alignment 29

Mean 1st 2nd 3rd

Figure 1.17. Texture and shape variations due to variations in the first three
principal components of the texture (The shapes change in accordance with s = Rt)
for full-side (±1σ), half-side (±2σ), and frontal (±3σ) views. .

Figure 1.18. DAM aligned faces (from left to right) at the 0-th, 5-th, 10-th, and
15-th iterations, and the original images for (top-bottom) frontal, half-side and
full-side view faces.

[66]. By looking at ‖δT ‖ (cf. Eq.(1.3.13)) as a function of iterate number, and by
looking at the percentage of images whose texture reconstruction error δT is smaller
than 0.2, it is concluded that DAM has faster convergence rate and smaller error
than AAM. When the face is undergone large variation due to stretch in either the
x or y direction, the model fitting can be improved by allowing different scales in
the two directions. This is done by splitting the scale parameter into two: sx and
sy.

The DAM search is fairly fast. It takes on average 39 ms per iteration for
frontal and half-side view faces, and 24 ms for full-side view faces in an image of
size 320x240 pixels. Every view model takes about 10 iterations to converge. If 3
view models are searched with per face, as is done with image sequences from video,
the algorithm takes about 1 second to find the best face alignment.

30 Face Detection, Alignment and Recognition Chapter 1

TC-ASM

Experiments are performed in both training data and testing data and results are
compared with ASM and AAM. A data set containing 700 face images with different
illumination conditions and expressions selected from the AR database[82] is used
in our experiments. They are all in frontal view with out-of-plane rotation within
[−10◦,10◦]. 83 landmark points of the face are labelled manually. 600 images are
randomly selected for the training set and the other 100 for testing.

TC-ASM are compared with ASM and AAM using the same data sets. The
shape vector in the ASM shape space is 88 dimensional. The texture vector in the
AAM texture space is 393 dimensional. The concatenated vector of 88+393 dimen-
sions is reduced with the parameter r = 13.77 to a 277 dimensional vector which
retains 98% of the total variation. Two types of experiments are presented: (1) com-
parison of the position accuracy and (2) comparison of the texture reconstruct error.

Position Accuracy

Consider the displacement D, i.e. the point-point Euclidean distance (in pix-
els) between the found shape and the manually labelled shape. One measure is
the percentage of resulting shapes whose displacements are smaller than a given
bound, given an initial displacement condition. Statistics calculated from 100 test
images with different initial positions show that TC-ASM significantly improves the
accuracy with all different initial conditions [131]. Stabilities of ASM and TC-ASM
can be compared based the average standard deviation of the shape results obtained
with different initial positions deviated from the ground truth, say by approximately
20, pixels. Results show TC-ASM is more stable than ASM to initialization.

Texture Reconstruction

The global texture constrains used in TC-ASM can improve the accuracy of
texture matching in ASM. Results from [131] suggest that the texture accuracy of
TC-ASM is close to that of AAM while its position accuracy is much better than
AAM. Fig.1.19 gives an example comparing the sensitivity of AAM and TC-ASM
to illumination. While AAM is more likely to result in incorrect solution, TC-ASM
is relatively robust to the illumination variation.

In terms of speed, the standard ASM is a fast algorithm, and TC-ASM is compu-
tationally more expensive but still much faster than AAM. The training of TC-ASM
is very fast, which takes only about one tenth of AAM. In our experiment (600 train-
ing images, 83 landmarks and P-III 700 computer), TC-ASM takes on average 32
ms per iteration, which is twice of ASM (16 ms), while only one fifth of AAM(172
ms). The training time of AAM is more than two hours, while TC-ASM is only
about 12 minutes.

Section 1.4. Face Recognition 31

Figure 1.19. Sensitivity of AAM (upper) and TC-ASM (lower) to illumination
condition not seen in the training set. From left to right are the results obtained at
the 0-th, 2-th, and 10-th iterations.

1.4 Face Recognition

To date, the appearance-based learning framework has been most influential in
the face recognition (FR) research. Under this framework, the FR problem can be
stated as follows: Given a training set, Z = {Zi}Ci=1, containing C classes with each
class Zi = {zij}Ci

j=1 consisting of a number of localized face images zij , a total of

N =
∑C

i=1 Ci face images are available in the set. For computational convenience,
each image is represented as a column vector of length J(= Iw×Ih) by lexicographic
ordering of the pixel elements, i.e. zij ∈ RJ , where (Iw × Ih) is the image size,
and R

J denotes the J-dimensional real space. Taking as input such a set Z, the
objectives of appearance-based learning are: (1) to find based on optimization of
certain separability criteria a low-dimensional feature representation yij = ϕ(zij),
yij ∈ RM and M � J , with enhanced discriminatory power; (2) to design based
on the chosen representation a classifier, h : RM → Y = {1, 2, · · · , C}, such that h
will correctly classify unseen examples ϕ(z, y), where y ∈ Y is the class label of z.

1.4.1 Preprocessing

It has been shown that irrelevant facial portions such as hair, neck, shoulder and
background often provide misleading information to the FR systems [20]. A normal-
ization procedure is recommended in [95], using geometric locations of facial features
found in face detection and alignment. The normalization sequence consists of four
steps: (1) the raw images are translated, rotated and scaled so that the centers of the
eyes are placed on specific pixels, (2) a standard mask as shown in Fig.1.20:Middle
is applied to remove the non-face portions, (3) histogram equalization is performed
in the non masked facial pixels, (4) face data are further normalized to have zero

32 Face Detection, Alignment and Recognition Chapter 1

Figure 1.20. Left: Original samples in the FERET database [3]. Middle: The
standard mask. Right: The samples after the preprocessing sequence.

mean and unit standard deviation. Fig.1.20:Right depicts some samples obtained
after the preprocessing sequence was applied.

1.4.2 Feature Extraction

The goal of feature extraction is to generate a low-dimensional feature representa-
tion intrinsic to face objects with good discriminatory power for pattern classifica-
tion.

PCA Subspace

In the statistical pattern recognition literature, Principle Component Analysis (PCA)
[55] is one of the most widely used tools for data reduction and feature extraction.
The well-known FR method, Eigenfaces [122] built on the PCA technique, has been
proved to be very successful. In the Eigenfaces method [122], the PCA is applied
to the training set Z to find the N eigenvectors (with non zero eigenvalues) of the
set’s covariance matrix,

Scov =
1
N

C∑
i=1

Ci∑
j=1

(zij − z̄)(zij − z̄)T (1.4.1)

where z̄ = 1
N

∑C
i=1

∑Ci

j=1 zij is the average of the ensemble. The Eigenfaces are
the first M(≤ N) eigenvectors (denoted as Ψef) corresponding to the largest eigen-
values, and they form a low-dimensional subspace, called “face space” where most
energies of the face manifold are supposed to lie. Fig.1.21(1st row) shows the first
6 Eigenfaces, which appear as some researchers said ghostly faces. Transforming
to the M -dimensional face space is a simple linear mapping: yij = ΨT

ef (zij − z̄),
where the basis vectors Ψef are orthonormal. The subsequent classification of face
patterns can be performed in the face space using any classifier.

Dual PCA Subspaces

The Eigenfaces method is built on a single PCA, which suffers from a major draw-
back, that is, it can not explicitly account for the difference between two types of
face pattern variations key to the FR task: between-class variations and within-class

Section 1.4. Face Recognition 33

variations. To this end, Moghaddam et al. [86] proposed a probabilistic subspace
method, also known as dual Eigenfaces. In the method, the distribution of face pat-
tern is modelled by the intensity difference between two face images, ∆ = z1 − z2.
The difference ∆ can be contributed by two distinct and mutually exclusive classes
of variations: intrapersonal variations ΩI and extrapersonal variations ΩE . In this
way, the C-class FR task is translated to a binary pattern classification problem.
Each class of variations can be modelled by a high-dimensional Gaussian distribu-
tion, P (∆|Ω). Since most energies of the distribution are assumed to exist in a
low-dimensional PCA subspace, it is shown in [86] that P (∆|Ω) can be approxi-
mately estimated by

P (∆|Ω) = P (z1 − z2|Ω) = exp(−‖y1 − y2‖2 /2)/β(Ω) (1.4.2)

where y1 and y2 are the projections of z1 and z2 in the PCA subspace, and β(Ω) is
a normalization constant for a given Ω. Any two images can be determined if come
from the same person by comparing the two likelihoods, P (∆|ΩI) and P (∆|ΩE),
based on the maximum-likelihood (ML) classification rule. It is commonly believed
that the extrapersonal PCA subspace as shown in Fig.1.21(2nd row) represents more
representative variations, such as those captured by the standard Eigenfaces method
whereas the intrapersonal PCA subspace shown in Fig.1.21(3rd row) accounts for
variations due mostly to changes in expression. Also, it is not difficult to see that the
two Gaussian covariance matrices in P (∆|ΩI) and P (∆|ΩE) are equivalent to the
within- and between-class scatter matrices of Linear Discriminant Analysis (LDA)
mentioned later respectively. Thus, the dual Eigenfaces method can be regarded as
a quadratic extension of the so-called Fisherfaces method [12].

Other PCA Extensions

The PCA-based methods are simple in theory, but they started the era of the
appearance-based approach to visual object recognition [121]. In addition to the
dual Eigenfaces method, numerous extensions or variants of the Eigenfaces method
have been developed for almost every area of face research. For example, a multiple-
observer Eigenfaces technique is presented to deal with view-based face recognition
in [93]. Moghaddam and Pentland derived two distance metrics, called distance
from face space (DFFS) and distance in face space (DIFS), by performing density
estimation in the original image space using Gaussian models, for visual object
representation [87]. Sung and Poggio built six face spaces and six non-face spaces,
extracted the DEFS and DIFS of the input query image in each face/non-face space,
and then fed them to a multi-layer perceptron for face detection [114]. Tipping and
Bishop [118] presented a probabilistic PCA (PPCA), which connects the conven-
tional PCA to a probability density. This results in some additional practical ad-
vantages, e.g. (i) In classification, PPCA could be used to model class-conditional
densities, thereby allowing the posterior probabilities of class membership to be
computed; (ii) The single PPCA model could be extended to a mixture of such
models. Due to its huge influences, the Eigenfaces [122] was awarded to be the

34 Face Detection, Alignment and Recognition Chapter 1

Figure 1.21. Visualization of four types of basis vectors obtained from a normal-
ized subset of the FERET database.. Row 1: the first 6 PCA bases. Row 2: the
first 6 PCA bases for the extrapersonal variations. Row 3: the first 6 PCA bases
for the intrapersonal variations. Row 4: the first 6 LDA bases.

“Most influential paper of the decade” by Machine Vision Applications in 2000.

ICA-based Subspace Methods

PCA is based on Gaussian models, that is, the found principal components are
assumed to be subjected to independently Gaussian distributions. It is well-known
that the Gaussian distribution only depends on the first and second order statistical
dependencies such as the pair-wise relationships between pixels. However, for com-
plex objects such as human faces, much of the important discriminant information,
such as phase spectrum, may be contained in the high-order relationships among
pixels [9]. Independent Component Analysis (ICA) [61], a generalization of PCA,
is one such method which can separate the high-order statistics of the input images
in addition to the second-order statistic.

The goal of ICA is to search for a linear non-orthogonal transformation B =
[b1, · · · ,bM] to express a set of random variables z as linear combinations of sta-
tistically independent source random variables y = [y1, · · · ,yM],

z ≈
M∑
m=1

bmym = By, BBT
= I, p(y) =
M∏
m=1

p(ym) (1.4.3)

Section 1.4. Face Recognition 35

Figure 1.22. Left: PCA bases vs ICA bases. Right: PCA basis vs LDA basis.

These source random variables {ym}Mm=1 are assumed to be subjected to non-
Gaussian such as heavy-tailed distributions. Compared to PCA, these characteris-
tics of ICA often lead to a superior feature representation in terms of best fitting
the input data, for example in the case shown in Fig.1.22:Left. There are several
approaches for performing ICA, such as minimum mutual information, maximum
neg-entropy, and maximum likelihood, and reviews can be found in [61], [43]. Re-
cently, ICA has been widely attempted in FR studies such as [72], [9], where better
performance than PCA-based methods was reported. Also, some ICA extensions
like ISA [52] and TICA [53] have been shown to be particularly effective in view-
based clustering of un-labeled face images [65].

LDA-based Subspace Methods

Linear Discriminant Analysis (LDA) [35] is also a representative technique for data
reduction and feature extraction. In contrast with PCA, LDA is a class specific
one that utilizes supervised learning to find a set of M(� J) feature basis vectors,
denoted as {ψm}Mm=1, in such a way that the ratio of the between- and within-class
scatters of the training image set is maximized. The maximization is equivalent to
solve the following eigenvalue problem,

Ψ = argmax
Ψ

∣∣ΨTSbΨ
∣∣

|ΨTSwΨ| , Ψ = [ψ1, . . . , ψM], ψm ∈ R
J (1.4.4)

where Sb and Sw are the between- and within-class scatter matrices, having the
following expressions,

Sb =
1
N

C∑
i=1

Ci(z̄i − z̄)(z̄i − z̄)T =
C∑
i=1

Φb,iΦT
b,i = ΦbΦT

b (1.4.5)

36 Face Detection, Alignment and Recognition Chapter 1

Sw =
1
N

C∑
i=1

Ci∑
j=1

(zij − z̄i)(zij − z̄i)T (1.4.6)

where z̄i is the mean of class Zi, Φb,i = (Ci/N)1/2(z̄i− z̄) and Φb = [Φb,1, · · · ,Φb,c].
The LDA-based feature representation of an input image z can be obtained simply
by a linear projection, y = ΨT z.

Fig.1.21(4th row) visualizes the first 6 basis vectors {ψi}6
i=1 obtained by using

the LDA version of [79]. Comparing Fig.1.21(1-3 rows) to Fig.1.21(4th row), it can
be seen that the Eigenfaces look more like a real human face than those LDA basis
vectors. This can be explained by the different learning criteria used in the two
techniques. LDA optimizes the low-dimensional representation of the objects with
focus on the most discriminant feature extraction while PCA achieves simply object
reconstruction in a least-square sense. The difference may lead to significantly dif-
ferent orientations of feature bases as shown in Fig.1.22:right. As a consequence, it
is not difficult to see that when it comes to solving problems of pattern classification
such as face recognition, the LDA based feature representation is usually superior
to the PCA based one (see e.g. [12], [19], [137]).

When Sw is non-singular, the basis vectors Ψ sought in Eq.1.4.4 correspond
to the first M most significant eigenvectors of (S−1

w Sb). However, in the particular
tasks of face recognition, data are highly dimensional, while the number of available
training samples per subject is usually much smaller than the dimensionality of the
sample space. For example, a canonical example used for recognition is a (112×92)
face image, which exists in a 10304-dimensional real space. Nevertheless, the number
(Ci) of examples per class available for learning is not more than ten in most cases.
This results in the so-called small sample size (SSS) problem, which is known to
have significant influences on the design and performance of a statistical pattern
recognition system. In the application of LDA into FR tasks, the SSS problem
often gives rise to high variance in the sample-based estimation for the two scatter
matrices, which are either ill- or poorly-posed.

There are two methods for tackling the problem. One is to apply linear algebra
techniques to solve the numerical problem of inverting the singular within-class
scatter matrix Sw. For example, the pseudo inverse is utilized to complete the
task in [116]. Also, small perturbation may be added to Sw so that it becomes
nonsingular [49], [139]. The other method is a subspace approach, such as the one
followed in the development of the Fisherfaces method [12], where PCA is firstly
used as a pre-processing step to remove the null space of Sw, and then LDA is
performed in the lower dimensional PCA subspace. However, it should be noted
at this point that the discarded null space may contain significant discriminatory
information. To prevent this from happening, solutions without a separate PCA
step, called direct LDA (D-LDA) methods have been presented recently in [19],
[137], [79].

The basic premise behind the D-LDA approach is that the null space of Sw may
contain significant discriminant information if the projection of Sb is not zero in
that direction, while no significant information, in terms of the maximization in

Section 1.4. Face Recognition 37

Input: A training set Z with C classes: Z = {Zi}Ci=1, each class contains
Zi = {zij}Ci

j=1 face images, where zij ∈ RJ .
Output: An M -dimensional LDA subspace spanned by Ψ, an M × J matrix

with M � J .
Algorithm:

Step 1. Find the eigenvectors of ΦT
b Φb with non-zero eigenvalues,

and denote them as Em = [e1, . . . , em], m ≤ C − 1.
Step 2. Calculate the first m most significant eigenvectors (U) of Sb

and their corresponding eigenvalues (Λb) by U = ΦbEm and
Λb = UTSbU.

Step 3. Let H = UΛ−1/2
b . Find eigenvectors of HT (Sb + Sw)H, P.

Step 4. Choose the M(≤ m) eigenvectors in P with the smallest
eigenvalues. Let PM and Λw be the chosen eigenvectors and
their corresponding eigenvalues respectively.

Step 5. Return Ψ = HPMΛ−1/2
w .

Figure 1.23. The pseudo code implementation of the LD-LDA method

Eq.1.4.4, will be lost if the null space of Sb is discarded. Based on the theory, it can
be concluded that the optimal discriminant features exist in the complement space
of the null space of Sb, which has M = C − 1 nonzero eigenvalues denoted as v =
[v1, · · · , vM]. Let U = [u1, · · · ,uM] be the M eigenvectors of Sb corresponding to
the M eigenvalues v. The complement space is spanned by U, which is furthermore
scaled by H = UΛ−1/2

b so as to have HTSbH = I, where Λb = diag(v), and I is
the (M × M) identity matrix. The projection of Sw in the subspace spanned by
H, HTSwH, is then estimated using sample analogs. However, when the number
of training samples per class is very small, even the projection HTSwH is ill- or
poorly-posed. To this end, a modified optimization criterion represented as Ψ =

argmax
Ψ

|ΨT SbΨ|
|ΨT SbΨ+ΨT SwΨ| , was introduced in the D-LDA of [79] (hereafter LD-LDA)

instead of Eq.1.4.4 used in the D-LDA of [137] (hereafter YD-LDA). As will be seen
later, the modified criterion introduces a considerable degree of regularization, which
helps to reduce the variance of the sample-based estimates in ill- or poorly-posed
situations. The detailed process to implement the LD-LDA method is depicted in
Fig.1.23.

The classification performance of traditional LDA may be degraded by the fact
that their separability criteria are not directly related to their classification accuracy
in the output space [74]. To this end, an extension of LD-LDA, called DF-LDA is
also introduced in [79]. In the DF-LDA method, the output LDA subspace is
carefully rotated and re-oriented by an iterative weighting mechanism introduced

38 Face Detection, Alignment and Recognition Chapter 1

into the between-class scatter matrix,

Sb,t =
C∑
i=1

C∑
j=1

;ij,t(z̄i − z̄j)(z̄i − z̄j)T (1.4.7)

In each iteration, object classes that are closer together in the preceding output
space, and thus can potentially result in mis-classification, are more heavily weighted
(through ;ij,t) in the current input space. In this way, the overall separability of
the output subspace is gradually enhanced, and different classes tend to be equally
spaced after a few iterations.

Gabor Feature Representation

The appearance images of a complex visual object are composed of many local struc-
tures. The Gabor wavelets are particularly aggressive at capturing the features of
these local structures corresponding to spatial frequency (scale), spatial localiza-
tion, and orientation selectively [103]. Consequently, it is reasonably believed that
the Gabor feature representation of face images is robust against variations due to
illumination and expression changes [73]

Figure 1.24. Gabor filters generalized at 5 scales ν ∈ U = {0, 1, 2, 3, 4} and 8
orientations µ ∈ V = {0, 1, 2, 3, 4, 5, 6, 7} with σ = 2π.

The kernels of the 2D Gabor wavelets, also known as Gabor filters have the
following expression at the spatial position ?x = (x1, x2) [27],

Gµ,ν(?x) =
‖κµ,ν‖2

σ2
exp(−‖κµ,ν‖2 ‖?x‖2

2σ2
)[exp(ikµ,ν?x)− exp(−σ2/2)] (1.4.8)

where µ and ν define the orientation and scale of the Gabor filter, which is a product
of a Gaussian envelope and a complex plane wave with wave vector κu,v. The family

Section 1.4. Face Recognition 39

of Gabor filters is self-similar, since all of them are generated from one filter, the
mother wavelet, by scaling and rotation via the wave vector kµ,ν . Fig.1.24 depicts
commonly used 40 Gabor kernels generalized at 5 scales ν ∈ U = {0, 1, 2, 3, 4} and
8 orientations µ ∈ V = {0, 1, 2, 3, 4, 5, 6, 7} with σ = 2π. For an input image z, its
2D Gabor feature images can be extracted by convoluting z with a Gabor filter,
gµ,ν = z∗Gµ,ν , where ∗ denotes the convolution operator. Thus, a total of (|U|×|V|)
Gabor feature images gµ,ν can be obtained, where |U| and |V| denote the sizes of
U and V respectively.

In [73], all the Gabor images gµ,ν are down sampled, and then concatenated
to form an augmented Gabor feature vector representing the input face image.
In the sequence, PCA or LDA is applied to the augmented Gabor feature vector
for dimensionality reduction and further feature extraction before it is fed to a
classifier. Also, it can be seen that due to the similarity between the Gabor filters,
there is a great deal of redundancy in the overcomplete Gabor feature set. To
this end, Wiskott et al. [130] proposed to utilize the Gabor features corresponding
to some specific facial landmarks, called Gabor jets instead of the holistic Gabor
images. Based on the jet representation, the Elastic Graph Matching (EGM) was
then applied for landmark matching and face recognition. The Gabor-based EGM
method was one of the top performers in the 1996/1997 FERET competition [95].

Mixture of Linear Subspaces

Although successful in many circumstances, linear appearance-based methods in-
cluding the PCA- and LDA-based ones may fail to deliver good performance when
face patterns are subject to large variations in viewpoints, illumination or facial
expression, which result in a highly non convex and complex distribution of face
images. The limited success of these methods should be attributed to their linear
nature. A cost effective approach to address the non convex distribution is with a
mixture of the linear models. The mixture- or ensemble- based approach embodies
the principle of “divide and conquer”, by which a complex FR problem is decom-
posed into a set of simpler ones, in each of which a locally linear pattern distribution
can be generalized and dealt with by a relatively easy linear solution (see e.g. [93],
[114], [38], [15], [75], [39], [77]).

From the designer’s point of view, the central issue to the ensemble-based ap-
proach is to find an appropriate criterion to decompose the complex face manifold.
Existing partition techniques, whether nonparametric clustering such as K-means
[48] or model-based clustering such as EM [84], unanimously adopt similarity cri-
terion, based on which similar samples are within the same cluster and dissimilar
samples are in different clusters. For example, in the view-based representation
[93], every face pattern is manually assigned to one of several clusters according to
its view angle with each cluster corresponding to a particular view. In the method
considered in [114] and [38], the database partitions are automatically implemented
using the K-means and EM clustering algorithms respectively. However, although
such criterion may be optimal in the sense of approximating real face distribution

40 Face Detection, Alignment and Recognition Chapter 1

for tasks such as face reconstruction, face pose estimation and face detection, they
may not be good for the recognition task considered in the section. It is not hard to
see that from a classification point of view, the database partition criterion should
be aimed to maximize the difference or separability between classes within each
“divided” subset or cluster, which as a sub-problem then can be relatively easy to
be “conquered” by a linear FR method.

Input: A training set Z with C classes: Z = {Zi}Ci=1, each class contains
Zi = {zij}Ci

j=1 face images.
Output: K maximally separable clusters {Wk}Kk=1, each class of images Zi

are assigned into one of K clusters.
Algorithm:

Step 1. Calculate z̄i = 1
Ci

∑Ci

j=1 zij for class Zi where i = [1 · · · C].
Step 2. Randomly partition {z̄i}Ci=1 into K initial clusters {Wk}Kk=1,

calculate their cluster center {wk}Kk=1, and initial Ŝt by Eq.1.4.9.
Step 3. Find ẑk = argmin

z̄i∈Wk

{
(z̄i −wk)T (z̄i −wk)

}
, k = [1 · · · K].

Step 4. Compute distances of ẑk to other cluster centers:
dkh = (ẑk −wh)T (ẑk −wh), h = [1 · · · K].

Step 5. Find the cluster ĥ so that ĥ = argmax
h

{dkh}, h = [1 · · · K],

and re-set ẑk ∈ Wĥ.
Step 6. Update the cluster centers wk and recompute the total scatter St.
Step 7. if Ŝt < St then Ŝt = St; return to Step 3;

else proceed to Step 8; /* Maximal St has been found. */
Step 8. Return current K clusters {Wk}Kk=1 and their centers {wk}Kk=1.

Figure 1.25. The pseudo code implementation of the CSC method.

With such a motivation, a novel method of clustering based on separability cri-
terion (CSC) was introduced recently in [75]. Similar to LDA, the separability
criterion is optimized in the CSC method by maximizing a widely used separa-
bility measure, the between-class scatter (BCS). Let Wk denote the k-th cluster,
k = [1 · · · K] with K: the number of clusters. Representing each class Zi by its
mean: z̄i, the total within-cluster BCS of the training set Z can be defined as,

St =
K∑
k=1

∑
z̄i∈Wk

Ci · (z̄i −wk)
T (z̄i −wk) (1.4.9)

where wk = (
∑

z̄i∈Wk
Ci · z̄i)/(

∑
z̄i∈Wk

Ci) is the center of the cluster Wk. Eq.1.4.9
implies that a better class-separability intra cluster is achieved if St has a larger

Section 1.4. Face Recognition 41

value. The clustering algorithm maximizes St by iteratively reassigning those classes
whose means have the minimal distances to their own cluster centers, so that the
separability between classes is enhanced gradually within each cluster. The maxi-
mization process can be implemented by the pseudo codes depicted in Fig.1.25.

With the CSC process, the training set Z is partitioned into a set of subsets
{Wk}Kk=1 called maximally separable clusters (MSCs). To take advantage of these
MSCs, a two-stage hierarchical classification framework (HCF) was then proposed
in [75]. The HCF consists of a group of FR sub-systems, each one targeting a
specific MSC. This is not a difficult task for most traditional FR methods such as
the YD-LDA [137] used in [75] to work as such a sub-system in a single MSC with
limited-size subjects and high between-class separability.

Nonlinear Subspace Analysis Methods

In addition to the approach using mixture of locally linear models, another option
to generate a representation for nonlinear face manifold is with globally nonlinear
approach. Recently, the so-called kernel machine technique has become one of the
most popular tools for designing nonlinear algorithms in the communities of machine
learning and pattern recognition [125], [106]. The idea behind the kernel-based
learning methods is to construct a nonlinear mapping from the input space (RJ) to
an implicit high-dimensional feature space (F) using a kernel function φ : z ∈ RJ →
φ(z) ∈ F. In the feature space, it is hoped that the distribution of the mapped data
is linearized and simplified, so that traditional linear methods could perform well.
However, the dimensionality of the feature space could be arbitrarily large, possibly
infinite. Fortunately, the exact φ(z) is not needed, and the nonlinear mapping can
be performed implicitly in RJ by replacing dot products in F with a kernel function
defined in the input space RJ , k(zi, zj) = φ(zi) · φ(zj). Examples based on such
a design include support vector machines (SVM) [125], kernel PCA (KPCA) [107],
kernel ICA (KICA) [6], and Generalized Discriminant Analysis (GDA, also known
as kernel LDA) [11].

In the kernel PCA [107], the covariance matrix in F can be expressed as

S̃cov =
1
N

C∑
i=1

Ci∑
j=1

(φ(zij)− φ̄)(φ(zij)− φ̄)T (1.4.10)

where φ̄ = 1
N

∑C
i=1

∑Ci

j=1 φ(zij) is the average of the ensemble in F. The KPCA
is actually a classic PCA performed in the feature space F. Let g̃m ∈ F (m =
1, 2, . . . ,M) be the first M most significant eigenvectors of S̃cov, and they form
a low-dimensional subspace, called “KPCA subspace” in F. For any face pattern
z, its nonlinear principal components can be obtained by the dot product, (g̃m ·
(φ(z) − φ̄)), computed indirectly through the kernel function k(). When φ(z) = z,
KPCA reduces to PCA, and the KPCA subspace is equivalent to the Eigenface
space introduced in [122].

As such, GDA [11] is to extract a nonlinear discriminant feature representation
by performing a classic LDA in the high-dimensional feature space F. However,

42 Face Detection, Alignment and Recognition Chapter 1

GDA solves the SSS problem in F simply by removing the null space of the within-
class scatter matrix S̃b, although the null space may contain the most significant
discriminant information as mentioned earlier. To this end, a kernel version of LD-
LDA [79], also called KDDA, is introduced recently in [78]. In the feature space,
the between- and within-class scatter matrices are given as follows,

S̃b =
1
N

C∑
i=1

Ci(φ̄i − φ̄)(φ̄i − φ̄)T (1.4.11)

S̃w =
1
N

C∑
i=1

Ci∑
j=1

(φ(zij)− φ̄i)(φ(zij)− φ̄i)T (1.4.12)

where φ̄i = 1
Ci

∑Ci

j=1 φ(zij). Through eigen-analysis of S̃b and S̃w in the feature
space F, KDDA finds a low-dimensional discriminant subspace spanned by Θ, an
M ×N matrix. Any face image z is first nonlinearly transformed to an N×1 kernel
vector,

γ(φ(z)) = [k(z11, z), k(z12, z), · · · , k(zccc , z)]
T (1.4.13)

Then, the KDDA-based feature representation y can be obtained by a linear pro-
jection: y = Θ · γ(φ(z)).

1.4.3 Pattern Classification

Given the feature representation of face objects, a classifier is required to learn a
complex decision function to implement final classification. Whereas the feature
representation optimized for the best discrimination would help reduce the com-
plexity of the decision function, easy for the classifier design, a good classifier would
be able to further learn the separability between subjects.

Nearest Feature Line Classifier

The nearest neighbor (NN) is a simplest yet most popular method for template
matching. In the NN based classification, the error rate is determined by the rep-
resentational capacity of a prototype face database. The representational capacity
depends two issues: (i) how the prototypes are chosen to account for possible vari-
ations; (ii) how many prototypes are available. However, in practice only a small
number of them are available for a face class, typically from one to about a dozen.
It is desirable to have a sufficiently large number of feature points stored to account
for as many variations as possible. To this end, Stan et al. [64] proposed a method,
called the nearest feature line (NFL), to generalize the representational capacity of
available prototype images.

The basic assumption behind the NFL method is based on an experimental find-
ing, which revealed that although the images of appearances of the face patterns
may vary significantly due to differences in imaging parameters such as lighting,
scale, orientation, etc., these differences have an approximately linear effect when

Section 1.4. Face Recognition 43

Figure 1.26. Generalizing two prototype feature points y1 and y2 by the feature
line y1y2. A query feature point y is projected onto the line as point b.

they are small [121]. Consequently, it is reasonable to use a linear model to in-
terpolate and extrapolate the prototype feature points belonging to the same class
in a feature space specific to face representation such as the Eigenfaces space. In
the simplest case, the linear model is generalized by a feature line (FL), passing
through a pair of prototype points (y1,y2), as depicted in Fig.1.26. Denoting the
FL as y1y2, the FL distance between a query feature point y and y1y2 is defined
as

d(y,y1y2) = ‖y− b‖, b = y1 + ς(y2 − y1) (1.4.14)

where b is y’s projection point on the FL, and ς = (y−y1)·(y2−y1)
(y2−y1)·(y2−y1) is a position pa-

rameter relative to y1 and y2. The FL approximates variants of the two prototypes
under variations in illumination and expression, i.e. possible face images derived
from the two. It virtually provides an infinite number of prototype feature points of
the class. Also, assuming that there are Ci > 1 prototype feature points available
for class i, a number of Ki = Ci(Ci − 1)/2 FLs can be constructed to represent the
class, e.g. Ki = 10 when Ci = 5. As a result, the representational capacity of the
prototype set is significantly enhanced in this way.

The class label (y) of the query feature point y can be inferred by the following
NFL rule,

Decide y = i∗ if d(y,yi∗j∗yi∗k∗) = min
1≤i≤C

min
1≤j<k≤Ci

d(y,yijyik) (1.4.15)

The classification results do not only determine the class label y, but also provide a
quantitative position number ς∗ as a by-product which can be used to indicate the
relative changes (in illumination and expression) between the query face and the
two associated face images yi∗j∗ and yi∗k∗ .

Regularized Bayesian Classifier

LDA has its root in the optimal Bayesian classifier. Let P (y = i) and p(z|y = i)
be the prior probability of class i and the class-conditional probability density of
z given the class label is i, respectively. Based on the Bayes formula, we have the

44 Face Detection, Alignment and Recognition Chapter 1

following a posteriori probability P (y = i|z), i.e. the probability of the class label
being i given that z has been measured,

P (y = i|z) = p(z|y = i)P (y = i)∑C
i=1 p(z|y = i)P (y = i)

(1.4.16)

The Bayes decision rule to classify the unlabeled input z is then given as,

Decide y = j if j = argmax
i∈Y

P (y = i|z) (1.4.17)

The Eq.1.4.16 is also known as the maximum a posteriori (MAP) rule, and it
achieves minimal misclassification risk among all possible decision rules.

The class-conditional densities p(z|y = i) are seldom known. However, often it
is reasonable to assume that p(z|y = i) is subjected to a Gaussian distribution. Let
µi and Σi are the mean and covariance matrix of the class i, we have

p(z|y = i) = (2π)−J/2|Σi|−1/2 exp [−di(z)/2] (1.4.18)

where di(z) = (z−µi)TΣ−1
i (z−µi) is the squared Mahalanobis (quadratic) distance

from z to the mean vector µi. With the Gaussian assumption, the classification rule
of Eq.1.4.17 turns to

Decide y = j if j = argmin
i∈Y

(di(z) + ln |Σi| − 2 lnP (y = i)) (1.4.19)

The decision rule of Eq.1.4.19 produces quadratic boundaries to separate different
classes in the J-dimensional real space. Consequently, this is also referred to as
quadratic discriminant analysis (QDA). Often the two statistics (µi,Σi) are esti-
mated by their sample analogs,

µi = z̄i, Σi =
1
Ci

Ci∑
j=1

(zij − z̄i)(zij − z̄i)T (1.4.20)

LDA can be viewed as a special case of QDA when the covariance structure of all
classes are identical, i.e. Σi = Σ. However, the estimation for either Σi or Σ is
ill-posed in the small sample size (SSS) settings, giving rise to high variance. This
problem becomes extremely severe due to Ci � J in FR tasks, where Σi is singular
with rank≤ (Ci − 1). To deal with such a situation, a regularized QDA, built
on the D-LDA idea and Friedman’s regularization technique [40], called RD-QDA
is introduced recently in [80]. The purpose of the regularization is to reduce the
variance related to the sample-based estimation for the class covariance matrices at
the expense of potentially increased bias.

In the RD-QDA method, the face images (zij) are first projected into the
between-class scatter matrix Sb’s complement null subspace spanned by H, ob-
taining a representation yij = HT zij . The regularized sample covariance matrix

Section 1.4. Face Recognition 45

estimate of class i in the subspace spanned by H, denoted by Σ̂i(λ, γ), can be
expressed as,

Σ̂i(λ, γ) = (1− γ)Σ̂i(λ) +
γ

M
tr[Σ̂i(λ)]I (1.4.21)

where

Σ̂i(λ) =
1

Ci(λ)
[(1 − λ)Si + λS] , Ci(λ) = (1 − λ)Ci + λN (1.4.22)

Si =
Ci∑
j=1

(yij − ȳi)(yij − ȳi)T , S =
C∑
i=1

Si = N ·HTSwH (1.4.23)

ȳi = HT z̄i, and (λ, γ) is a pair of regularization parameters. The classification rule
of Eq.1.4.19 then turns to

Decide y = j if j = argmin
i∈Y

(
di(y) + ln |Σ̂i(λ, γ)| − 2 lnπi

)
(1.4.24)

where di(y) = (y − ȳi)T Σ̂−1
i (λ, γ)(y − ȳi) and πi = Ci/N is the estimate of the

prior probability of class i. The regularization parameter λ (0 ≤ λ ≤ 1) controls
the amount that the Si are shrunk toward S. The other parameter γ (0 ≤ γ ≤ 1)
controls shrinkage of the class covariance matrix estimates toward a multiple of the
identity matrix. Under the regularization scheme, the classification rule of Eq.1.4.24
can be performed without experiencing high variance of the sample-based estimation
even when the dimensionality of the subspace spanned by H is comparable to the
number of available training samples, N .

RD-QDA has close relationship with a series of traditional discriminant analysis
classifiers, such as LDA, QDA, nearest center (NC) and weighted nearest center
(WNC). Firstly, the four corners defining the extremes of the (λ, γ) plane represent
four well-known classification algorithms, as summarized in Table 1.3, where the
prefix ‘D-’ means that all these methods are developed in the subspace spanned by
H derived from the D-LDA technique. Based on Fisher’s criterion (Eq.1.4.4) used in
YD-LDA [137], it is obvious that the YD-LDA feature extractor followed by an NC
classifier is actually a standard LDA classification rule implemented in the subspace
H. Also, we have Σ̂i(λ, γ) = α

(
S
N + I

)
= α

(
HTSwH+ I

)
when (λ = 1, γ = η),

where α =
(

tr[S/N]
tr[S/N]+M

)
and η = M

tr[S/N]+M . In this situation, it is not difficult
to see that RD-QDA is equivalent to LD-LDA followed by an NC classifier. In
addition, a set of intermediate discriminant classifiers between the five traditional
ones can be obtained when we smoothly slip the two regularization parameters in
their domains. The purpose of RD-QDA is to find the optimal (λ∗, γ∗) that give
the best correct recognition rate for a particular FR task.

Neural Networks Classifiers

Either linear or quadratic classifiers may fail to deliver good performance when the
feature representation y of face images z is subject to a highly non convex distribu-
tion, for example, in the case depicted in Fig.1.27:Right, where a nonlinear decision

46 Face Detection, Alignment and Recognition Chapter 1

Table 1.3. A series of discriminant analysis algorithms derived from RD-QDA.
Algs. D-NC D-WNC D-QDA YD-LDA LD-LDA

λ 1 0 0 1 1
γ 1 1 0 0 η

Σ̂i(λ, γ) 1
M tr[S

N]I 1
M tr[Si

Ci
]I Si

Ci

S
N α

(
S
N + I

)

boundary much more complex than the quadratic one is required. One option to
construct such a boundary is to utilize a neural network classifier. Fig.1.27:Left
depicts the architecture of a general multilayer feedforward neural network (FNN),
which consists of one input-layer, one hidden-layer and one output-layer. The input-
layer has M units to receive the M -dimensional input vector y. The hidden layer
is composed of L units, each one operated by a nonlinear activation function hl(·),
to nonlinearly map the input to an L-dimensional space RL, where the patterns
are hoped to become linearly separable, so that linear discriminants can be imple-
mented by the activation function f(·) in the output layer. The process can be
summarized as,

tk(y) = f

{∑L

j=0
h

(∑M

i=0
wh
jiyi

)
· wo

kj

}
(1.4.25)

where wh
ji and wo

kj are the connecting weights between neighboring layers of units.

Figure 1.27. Left: A general multilayer feedforward neural network; Right: An
example requires complex decision boundaries.

The key to the neural networks is to learn the involved parameters. One of
the most popular methods is the backpropagation algorithm based on error gradient
descent. The most widely used activation function in both hidden and output units
of a BP network is a sigmoidal function given by f(·) = h(·) = 1/(1 + e(·)). Most
BP like algorithms utilize local optimization techniques. As a result, the training
results are very much dependent on the choices of initial estimates. Recently, a

Section 1.4. Face Recognition 47

global FNN learning algorithm is proposed in [120], [119]. The global FNN method
was developed by addressing two issues: (i) characterization of global optimality
of an FNN learning objective incorporating the weight decay regularizer, and (ii)
derivation of an efficient search algorithm based on results of (i). The FR simula-
tions reported in [120] indicate that the global FNN classifier can perform well in
conjunction with various feature extractors including Eigenfaces [122], Fisherfaces
[12] and D-LDA [137].

In addition to the classic BP networks, the radial basis function (RBF) neural
classifiers have recently attracted extensive interests in the community of pattern
recognition. In the RBF networks, the Gaussian function is often preferred as the
activation function in the hidden units, hl(y) = exp(−‖y − ui‖ /σ2

i), while the
output activation function f(·) is usually a linear function. In this way it can
be seen that the output of the RBF networks is actually a mixture of Gaussians.
Consequently, it is generally believed that the RBF networks possess the best ap-
proximation property. Also, the learning speed of the RBF networks is fast due to
locally tuned neurons. Attempts to apply the RBF neural classifiers to solve FR
problems have been reported recently. For example, in [31], an FR system built on
a LDA feature extractor and an enhanced RBF neural network, produced one of
the lowest error rates reported on the ORL face database [2].

Support Vector Machine Classifiers

Assuming that all the examples in the training set Z are drawn from a distribution
P (z, y) where y is the label of the example z, the goal of a classifier learning from
Z is to find a function f(z, α∗) to minimize the expected risk:

R(α) =
∫

|f(z, α)− y|dP (z, y) (1.4.26)

where α is a set of abstract parameters. Since P (z, y) is unknown, most traditional
classifiers, such as Nearest Neighbor, Bayesian Classifier and Neural Network, solve
the specific learning problem using the so-called empirical risk (i.e. training error)
minimization (ERM) induction principle, where the expected risk function R(α) is
replaced by the empirical risk function: Remp(α) = 1

N

∑N
i=1 |f(zi, α)− yi|. As a

result, the classifiers obtained may be entirely unsuitable for classification of unseen
test patterns, although they may achieve the lowest training error. To this end,
Vapnik and Chervonenkis [126] provide a bound on the deviation of the empirical
risk from the expected risk. The bound, also called Vapnik-Chervonenkis (VC)
bound holding with probability (1− η) has the following form:

R(α) ≤ Remp(α) +

√
1
N

(
h

(
ln

2N
h

+ 1
)
− ln

η

4

)
(1.4.27)

where h is the VC-dimension as a standard measure to the complexity of the function
space that f(zi, α) is chosen from. It can be seen from the VC bound that both
Remp(α) and (h/N) have to be small to achieve good generalization performance.

48 Face Detection, Alignment and Recognition Chapter 1

Figure 1.28. A binary classification problem solved by hyperplanes: (A) Arbitrary
separating hyperplanes; (B) the optimal separating hyperplanes with the largest
margin.

Based on the VC theory, the so-called support vector machines (SVMs) embody
the Structural Risk Minimization principle, which aims to minimize the VC bound.
However, often it is intractable to estimate the VC dimension of a function space.
Fortunately, it has been shown in [125] that for the function class of hyperplanes:
f(z) = w · z + b, its VC dimension can be controlled by increasing the so-called
margin, which is defined as the minimal distance of an example to the decision sur-
face (see Fig.1.28). The main idea behind SVMs is to find a separating hyperplane
with the largest margin as shown in Fig.1.28, where the margin is equal to 2/ ‖w‖.

For a binary classification problem where yi ∈ {1,−1}, the general optimal
separating hyperplane sought by SVM is the one that,

Minimizes : P =
1
2
‖w‖2 + ζ

∑n

i=1
ξi (1.4.28)

subject to yi(wT zi + b) ≥ 1 − ξi, ξi ≥ 0, where ξi are slack variables, ζ is a
regularization constant, and the hyperplane is defined by parameters w and b.
After some transformations, the minimization in Eq.1.4.28 can be reformulated as

Maximizing : D =
∑N

i=1
αi − 1

2

∑N

i=1

∑N

j=1
αiαjyiyjzi · zj (1.4.29)

subject to 0 ≤ αi ≤ ζ and
∑N

i=1 αiyi = 0, where αi are positive Lagrange multi-
pliers. Then, the solution, w∗ =

∑N
i=1 α∗

i yizi and b∗ = yi − w∗ · zi (α∗
i > 0), can

be derived from Eq.1.4.29 using quadratic programming. The support vectors are
those examples (zi, yi) with α∗

i > 0.
For a new data point z, the classification is performed by a decision function,

f(z) = sign (w∗ · z+ b∗) = sign

(∑N

i=1
α∗
i yi(zi · z) + b∗

)
(1.4.30)

Section 1.4. Face Recognition 49

In the case where the decision function is not a linear function of the data, SVMs
firstly map the input vector z into a high dimensional feature space by a nonlinear
function φ(z), and then construct an optimal separating hyperplane in the high
dimensional space with linear properties. The mapping φ(z) is implemented using
kernel machine techniques as it is done in KPCA and GDA. Examples of applying
SVMs into the FR tasks can be found in [94], [56], [47], [76].

1.4.4 Evaluation

In this section, we introduce several experiments from our recent studies on subspace
analysis methods. Following standard FR practices, any evaluation database (G)
used here is randomly partitioned into two subsets: the training set Z and the
test set Q. The training set consists of N(=

∑C
i=1 Ci) images: Ci images per

subject are randomly chosen. The remaining images are used to form the test
set Q = G − Z. Any FR method evaluated here is first trained with Z, and the
resulting face recognizer is then applied to Q to obtain a correct recognition rate
(CRR), which is defined as the fraction of the test examples correctly classified. To
enhance the accuracy of the assessment, all the CRRs reported here are averaged
over ≥ 5 runs. Each run is executed on a random partition of the database G into
Z and Q.

Linear and Quadratic Subspace Analysis

The experiment is designed to assess the performance of various linear and quadratic
subspace analysis methods including Eigenfaces, YD-LDA, LD-LDA, RD-QDA and
those listed in Table 1.3. The evaluation database used in the experiment is a
middle-size subset of the FERET database. The subset consists of 606 gray-scale
images of 49 subjects, each one having more than 10 samples. The performance is
evaluated in terms of the CRR and the sensitivity of the CRR measure to the SSS
problem, which depends on the number of training examples per subject Ci. To
this end, six tests were performed with various values of Ci ranging from Ci = 2 to
Ci = 7.

The CRRs obtained by RD-QDA in the (λ, γ) grid are depicted in Fig.1.29.
Also, a quantitative comparison of the best found CRRs and their corresponding
parameters among the seven methods is summarized in Table 1.4. The parameter λ
controls the degree of shrinkage of the individual class covariance matrix estimates
Si toward the within-class scatter matrix, (HTSwH). Varying the values of λ
within [0, 1] leads to a set of intermediate classifiers between D-QDA and YD-LDA.
In theory, D-QDA should be the best performer among the methods evaluated here
if sufficient training samples are available. It can be observed at this point from
Fig.1.29 that the CRR peaks gradually moved from the central area toward the
corner (0, 0) that is the case of D-QDA as Ci increases. Small values of λ have been
good enough for the regularization requirement in many cases (Ci ≥ 3). However,
both of D-QDA and YD-LDA performed poorly when Ci = 2. This should be
attributed to the high variance of the estimates of Si and S due to insufficient

50 Face Detection, Alignment and Recognition Chapter 1

Figure 1.29. CRRs obtained by RD-QDA as functions of (λ, γ). Top: Ci = 2, 3, 4;
Bottom: Ci = 5, 6, 7.

training samples. In this case, Si and even S are singular or close to singular, and
the resulting effect is to dramatically exaggerate the importance associated with
the eigenvectors corresponding to the smallest eigenvalues. Against the effect, the
introduction of another parameter γ helps to decrease the larger eigenvalues and
increase the smaller ones, thereby counteracting for some extent the bias. This
is also why LD-LDA greatly outperformed YD-LDA when Ci = 2. Although LD-
LDA seems to be a little over-regularized compared to the optimal RD-QDA(λ∗, γ∗),
the method almost guarantees a stable sub-optimal solution. A CRR difference of
4.5% on average over the range Ci ∈ [2, 7] has been observed between the top
performer RD-QDA(λ∗, γ∗) and LD-LDA. It can be concluded therefore that LD-
LDA should be preferred when insufficient prior information about the training
samples is available and a cost effective processing method is sought.

In addition to the regularization, it is found that the performance of the LDA-
based methods can be further improved with an ensemble-based approach [75]. The
approach uses cluster analysis techniques like the K-mean and the CSC method
mentioned earlier to form a mixture of LDA subspaces. Experiments conducted on
a compound database with 1654 face images of 157 subjects and a large FERET
subset with 2400 face images of 1200 subjects indicate that, the performance of both
YD-LDA and LD-LDA can be greatly enhanced under the ensemble framework. The
average CRR improvement that has been observed so far is up to 6%− 22%.

Section 1.4. Face Recognition 51

Table 1.4. Comparison of correct recognition rates (CRRs) (%).
Ci = 2 3 4 5 6 7

Eigenfaces 59.8 67.8 73.0 75.8 81.3 83.7
D-NC 67.8 72.3 75.3 77.3 80.2 80.5

D-WNC 46.9 61.7 68.7 72.1 73.9 75.6
D-QDA 57.0 79.3 87.2 89.2 92.4 93.8
YD-LDA 37.8 79.5 87.8 89.5 92.4 93.5
LD-LDA 70.7 77.4 82.8 85.7 88.1 89.4

(η) 0.84 0.75 0.69 0.65 0.61 0.59
RD-QDA 73.2 81.6 88.5 90.4 93.2 94.4

(λ∗) 0.93 0.93 0.35 0.11 0.26 0.07
(γ∗) 0.47 0.10 0.07 0.01 1e-4 1e-4

Nonlinear Subspace Analysis

Applications of kernel-based methods in face research have been widely reported
(see e.g. [69], [63], [58], [134], [78], [62]). Here, we introduce two experiments to
illustrate the effectiveness of the kernel-based discriminant analysis methods in FR
tasks. Both the two experiments were conducted on a multi-view face database, the
UMIST database [46], consisting of 575 images of 20 people, each covering a wide
range of poses from profile to frontal views.

The first experiment provided insights on the distribution of face pattern in four
types of subspaces generalized by utilizing the PCA [122], KPCA [107], LD-LDA [79]
and KDDA [78] algorithms respectively. The projections of five face subjects in the
first two most significant feature bases of each subspace are visualized in Fig.1.30. In
Fig.1.30:upper, the visualized are the first two most significant principal components
extracted by PCA and KPCA, and they provide a low-dimensional representation
for the samples in a least-square sense. Thus we can roughly learn the original
distribution of the samples from Fig.1.30:upper A, where it can been seen that the
distribution is as expected non convex and complex. Also, it is hard to find any
useful improvement in Fig.1.30:upper B for the purpose of pattern classification.
Fig.1.30 depicts the first two most discriminant features extracted by LD-LDA and
KDDA respectively. Obviously these features outperform, in terms of discriminant
power, those obtained by using the PCA like techniques. However, subject to
limitation of linearity, some classes are still non-separable in Fig.1.30:lower A. In
contrast to this, we can see the linearization property of the KDDA-based subspace
as shown in Fig.1.30:lower B, where all of classes are well linearly separable.

The second experiment compares the CRR performance among the three kernel-
based methods, KPCA [107], GDA (also called KDA) [11] and KDDA [78]. The two
most popular FR algorithms, Eigenfaces [122] and Fisherfaces [12], were also imple-
mented to provide performance baselines. Ci = 6 images per person were randomly

52 Face Detection, Alignment and Recognition Chapter 1

Figure 1.30. Distribution of five subjects in four subspaces, upper A: PCA-based,
upper B: KPCA-based, lower A: LD-LDA-based, and lower B: KDDA-based.

chosen to form the training set Z. The nearest neighbor was chosen as the classifier
following these feature extractors. The obtained results with best found parameters
are depicted in Fig.1.31, where KDDA is clearly the top performer among all the
methods evaluated here. Also, it can be observed that the performance of KDDA
is more stable and predictable than that of GDA. This should be attributed to the
introduction of the regularization, which significantly reduces the variance of the
estimates of the scatter matrices arising from the SSS problem.

Other Performance Evaluations

Often it is desired in the FR community to give the overall evaluation and bench-
marking of various FR algorithms. Here we introduce several recent FR evaluation
reports in literature. Before we proceed to an evaluation, it should be noted at this
point that the performance of a learning-based pattern recognition system is very
data/application-dependent, and there is no theory that is able to accurately pre-
dict them for unknown-distribution data/new applications. In other words, some
methods that have reported almost perfect performance in certain scenarios may

Section 1.4. Face Recognition 53

Figure 1.31. A comparison of CRR based on a RBF kernel, k(z1, z2) =
exp

(− ||z1 − z2| |2/σ2
)
. A: CRR as a function of the parameter σ2 with best

found M∗. B: CRR as a function of the feature number M with best found σ∗.

fail in other scenarios.
To date, the FERET program incepted in 1993 has made a significant contribu-

tion to the evaluation research of FR algorithms by building the FERET database
and the evaluation protocol [3], [96], [95]. The availability of the two later issues
has made it possible to objectively assess the laboratory algorithms under close to
real-world conditions. In the FERET protocol, an algorithm is given two sets of
images: the target set and the query set. The target set is a set of known facial
images, while the query set consists of unknown facial images to be identified. Fur-
thermore, multiple galleries and probe sets can be constructed from the target and
query sets respectively. For a pair of given gallery G and probe set P , the CRR is
computed by examining the similarity between the two sets of images. Table 1.5
depicts some test results reported in the Sep96 FERET evaluation [95]. B-PCA
and B-Corr are two baseline methods, based on PCA and normalized correlation
[122], [88]. D-Eigenfaces is the dual Eigenfaces method [86]. LDA.M [115] and
LDA.U1/U2 [33], [141] are three LDA based algorithms. GrayProj is a method
using grayscale projection [129]. EGM-GJ is the Elastic Graph Matching method
with Gabor Jet [130]. ‘X’ denotes an unknown algorithm from Excalibur Corpora-
tion. It can be seen that among these evaluated methods D-Eigenfaces, LDA.U2
and EGM-GJ are the three top performers. Based on the FERET program, the
Face Recognition Vendor Tests (FRVT) that systematically measured commercial
FR products were also developed, and the latest FRVT 2002 reports can be found
in [1].

Recently, Moghaddam [85] evaluated several unsupervised subspace analysis
methods, and showed that dual PCA (dual Eigenfaces) > KPCA > PCA ≈ ICA,
where > denotes “outperform” in terms of the average CRR measure. Compared
to these unsupervised methods, it is generally believed that algorithms based on

54 Face Detection, Alignment and Recognition Chapter 1

Table 1.5. CRR performance rank of algorithms in the Sep96 FERET evaluation
[95].

on FB Probes on Duplicate I Probes

Algorithms G1 G2 G3 G4 G5 G6 G1 G2 G3 G4 G5

B-PCA 9 10 8 8 10 8 6 10 5 5 9
B-Corr 9 9 9 6 9 10 10 7 6 6 8

X 6 7 7 5 7 6 3 5 4 4 3
Eigenfaces 4 2 1 1 3 3 2 1 2 2 3

D-Eigenfaces 7 5 4 4 5 7 7 4 7 8 10
LDA.M 3 4 5 8 4 4 9 6 8 10 6

GrayProj 7 8 9 6 7 9 5 7 10 7 6
LDA.U1 4 6 6 10 5 5 7 9 9 9 3
LDA.U2 1 1 3 2 2 1 4 2 3 3 1
EGM-GJ 2 3 2 2 1 1 1 3 1 1 1

LDA are superior in FR tasks. However, it is shown recently in [83] that this is not
always the case. PCA may outperform LDA when the number of training sample
per subject is small or when the training data non-uniformly sample the underlying
distribution. Also, PCA is shown to be less sensitive to different training datasets.
More recent evaluation results of subspace analysis methods in different scenarios
can be found in Table 1.6, where LDA is based on the version of [33], [12], PPCA
is the probabilistic PCA [118] and KICA is the kernel version of ICA [6]. The
overall performance of linear subspace analysis methods was summarized as LDA
> PPCA > PCA > ICA, and it was also observed that kernel-based methods are
not necessarily be better than linear methods [62].

Table 1.6. CRR performance rank of subspace methods in [62].
Rank 1 2 3 4 5 6 7
Pose KDA PCA KPCA LDA KICA ICA PPCA

Expression KDA LDA PPCA PCA KPCA ICA KICA
Illumination LDA PPCA KDA KPCA KICA PCA ICA

Acknowledgments

Portions of the research in this chapter use the FERET database of facial images
collected under the FERET program [96]. The authors would like to thank the
FERET Technical Agent, the U.S. National Institute of Standards and Technology
(NIST) for providing the FERET database.

BIBLIOGRAPHY

[1] Web site of face recognition vendor tests (FRVT). http://www.frvt.org.

[2] Web site of ORL face database: http://www.cam-orl.co.uk/facedatabase.html.
Released by AT&T Laboratories Cambridge.

[3] Web site of FERET, http://www.itl.nist.gov/iad/humanid/feret/. Released by
Image Group, Information Access Division, ITL, NIST, USA, March 2001.

[4] J. Ahlberg. “Using the active appearance algorithm for face and facial feature
tracking”. In IEEE ICCV Workshop on Recognition, Analysis and Tracking of Faces
and Gestures in Real-time Systems, pages 68–72, Vancouver, Canada, July 13 2001.

[5] Y. Amit, , D. Geman, and K. Wilder. “Joint induction of shape features and
tree classifiers”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19:1300–1305, 1997.

[6] F. R. Bach and M. I. Jordan. “Kernel independent component analysis”. Com-
puter Science Division, University of California Berkeley, Available as Technical
Report No. UCB/CSD-01-1166, November 2001.

[7] S. Baker and I. Matthews. “Equivalence and efficiency of image alignment algo-
rithms”. In Proceedings of IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, volume 1, pages 1090–1097, Hawaii, December 11-13 2001.

[8] S. Baker and S. Nayar. “Pattern rejection”. In Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 544–549,
June 1996.

[9] M. Bartlett, J. Movellan, and T. Sejnowski. “Face recognition by independent
component analysis”. IEEE Transactions on Neural Networks, 13(6):1450–1464,
Nov. 2002.

[10] M. S. Bartlett, H. M. Lades, and T. J. Sejnowski. Independent component
representations for face recognition. Proceedings of the SPIE, Conference on Human
Vision and Electronic Imaging III, 3299:528–539, 1998.

55

56 Bibliography

[11] G. Baudat and F. Anouar. “Generalized discriminant analysis using a kernel
approach”. Neural Computation, 12:2385–2404, 2000.

[12] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. “Eigenfaces vs. Fish-
erfaces: Recognition using class specific linear projection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(7):711–720, July 1997.

[13] D. Beymer. “Vectorizing face images by interleaving shape and texture compu-
tations”. A. I. Memo 1537, MIT, 1995.

[14] M. Bichsel and A. P. Pentland. “Human face recognition and the face image
set’s topology”. CVGIP: Image Understanding, 59:254–261, 1994.

[15] C. M. Bishop and J. M. Winn. “Non-linear bayesian image modelling”. In
ECCV (1), pages 3–17, 2000.

[16] V. Blanz and T.Vetter. “A morphable model for the synthesis of 3d faces”. In
SIGGRAPH’99 Conference Proceedings, pages 187–194, 1999.

[17] R. Brunelli and T. Poggio. “Face recognition: Features versus templates”.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(10):1042–
1052, 1993.

[18] R. Chellappa, C. Wilson, and S. Sirohey. “Human and machine recognition of
faces: A survey”. PIEEE, 83:705–740, 1995.

[19] L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu. “A new LDA-
based face recognition system which can solve the small sample size problem”.
Pattern Recognition, 33:1713–1726, 2000.

[20] L.-F. Chen, H.-Y. M. Liao, J.-C. Lin, and C.-C. Han. “Why recognition in a
statistics-based face recognition system should be based on the pure face portion:
a probabilistic decision-based proof”. Pattern Recognition, 34(7):1393–1403, 2001.

[21] T. Cootes and C. Taylor. ”Constrained active appearance models”. Proceedings
of IEEE International Conference on Computer Vision, 1:748–754, 2001.

[22] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In
ECCV98, volume 2, pages 484–498, 1998.

[23] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. “Active shape models:
Their training and application”. CVGIP: Image Understanding, 61:38–59, 1995.

[24] T. F. Cootes, K. N. Walker, and C. J. Taylor. View-based active appearance
models. In Proc. Int. Conf. on Face and Gesture Recognition, pages 227–232, 2000.

[25] I. J. Cox, J. Ghosn, and P. Yianilos. “Feature-based face recognition using
mixture-distance”. In Proceedings of IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pages 209–216, 1996.

Bibliography 57

[26] F. Crow. “Summed-area tables for texture mapping”. In SIGGRAPH, volume
18(3), pages 207–212, 1984.

[27] J. G. Daugman. “Complete discrete 2-d gabor transform by neural network for
image analysis and compression”. IEEE Trans. On Acoustics, Speech and Signal
Processing, 36(7):1169–1179, July 1988.

[28] N. Duta, A. Jain, and M. Dubuisson-Jolly. ”automatic construction of 2-d
shape models”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(5):433–446, 2001.

[29] G. J. Edwards, T. F. Cootes, and C. J. Taylor. “Face recognition using ac-
tive appearance models”. In Proceedings of the European Conference on Computer
Vision, volume 2, pages 581–695, 1998.

[30] M. Elad, Y. Hel-Or, and R. Keshet. “Pattern detection using a maximal rejection
classifier”. Pattern Recognition Letters, 23:1459–1471, October 2002.

[31] M. J. Er, S. Wu, J. Lu, and H. L. Toh. “Face recognition with radial basis func-
tion (RBF) neural networks”. IEEE Transactions on Neural Networks, 13(3):697–
710, May 2002.

[32] B. K. L. Erik Hjelmas. “Face detection: A survey”. Computer Vision and Image
Understanding, 3(3):236–274, September 2001.

[33] K. Etemad and R. Chellappa. “Discriminant analysis for recognition of human
face images”. J. Optical Soc. Am. A, 14(8):1724–1733, August 1997.

[34] J. Feraud, O. Bernier, and M. Collobert. “A fast and accurate face detector for
indexation of face images”. In Proc. Fourth IEEE Int. Conf on Automatic Face and
Gesture Recognition, Grenoble, 2000.

[35] R. Fisher. “The use of multiple measures in taxonomic problems”. Ann. Eu-
genics, 7:179–188, 1936.

[36] F. Fleuret and D. Geman. “Coarse-to-fine face detection”. International Journal
of Computer Vision, 20:1157–1163, 2001.

[37] Y. Freund and R. Schapire. “A decision-theoretic generalization of on-line learn-
ing and an application to boosting”. Journal of Computer and System Sciences,
55(1):119–139, August 1997.

[38] B. J. Frey, A. Colmenarez, and T. S. Huang. “Mixtures of local linear subspaces
for face recognition”. In Proceedings of The IEEE Conference on Computer Vision
and Pattern Recognition, Santa Barbara, CA, June 1998.

[39] B. J. Frey and N. Jojic. “Transformation-invariant clustering using the em algo-
rithm”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1):1–
17, JANUARY 2003.

58 Bibliography

[40] J. H. Friedman. “Regularized discriminant analysis”. Journal of the American
Statistical Association, 84:165–175, 1989.

[41] R. Frischholz. The face detection homepage. http://home.t-
online.de/home/Robert.Frischholz/face.htm.

[42] K. Fukunaga. Introduction to statistical pattern recognition. Academic Press,
Boston, 2 edition, 1990.

[43] M. Girolami. “Advances in Independent Component Analysis.”. Springer-Verlag,
Berlin, 2000.

[44] A. J. Goldstein, L. D. Harmon, and A. B. Lesk. “Identification of human faces”.
Proceedings of the IEEE, 59(5):748–760, May 1971.

[45] S. Gong, S. McKenna, and J. Collins. “An investigation into face pose distribu-
tion”. In Proc. IEEE International Conference on Face and Gesture Recognition,
Vermont, 1996.

[46] D. B. Graham and N. M. Allinson. “Characterizing virtual eigensignatures
for general purpose face recognition”. In H. Wechsler, P. J. Phillips, V. Bruce,
F. Fogelman-Soulie, and T. S. Huang, editors, Face Recognition: From Theory to
Applications, NATO ASI Series F, Computer and Systems Sciences, volume 163,
pages 446–456. 1998.

[47] G. Guo, S. Li, and K. Chan. “Face recognition by support vector machines”.
In Proceedings of Fourth IEEE International Conference on Automatic Face and
Gesture Recognition 2000, Grenoble, France, March 2000.

[48] J. Hartigan. “Statistical theory in clustering”. Journal of Classification, 2:63–76,
1985.

[49] Z.-Q. Hong and J.-Y. Yang. “Optimal discriminant plane for a small number
of samples and design method of classifier on the plane”. Pattern Recognition,
24(4):317–324, 1991.

[50] X. W. Hou, S. Z. Li, and H. J. Zhang. “Direct appearance models”. In Pro-
ceedings of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, volume 1, pages 828–833, Hawaii, December 11-13 2001.

[51] J. Huang, X. Shao, and H. Wechsler. “Face pose discrimination using sup-
port vector machines (SVM)”. In Proceedings of International Conference Pattern
Recognition, Brisbane, Queensland, Australia, 1998.

[52] A. Hyvrinen and P. Hoyer. “Emergence of phase and shift invariant features
by decomposition of natural images into independent feature subspaces”. Neural
Computation, 12:1705–1720, 2000.

Bibliography 59

[53] A. Hyvrinen and P. Hoyer. “Emergence of topography and complex cell prop-
erties from natural images using extensions of ica”. In Proceedings of Advances in
Neural Information Processing Systems, volume 12, pages 827–833, 2000.

[54] A. Jain and D. Zongker. Feature selection: evaluation, application, and samll
sample performance. IEEE Trans. on PAMI, 19(2):153–158, 1997.

[55] L. Jolliffe. Principle Component Analysis. New York: Springer-Verlag, 1986.

[56] K. Jonsson, J. Matas, J. Kittler, and Y. Li. “Learning support vectors for
face verification and recognition”. In Proceedings of Fourth IEEE International
Conference on Automatic Face and Gesture Recognition 2000, Grenoble, France,
March 2000.

[57] T. Kanade. Picture Processing by Computer Complex and Recognition of Human
Faces. PhD thesis, Kyoto University, 1973.

[58] K. I. Kim, K. Jung, and H. J. Kim. “Face recognition using kernel principal
component analysis”. IEEE Signal Processing Letters, 9(2):40–42, FebFebruary
2002.

[59] J. Kittler. “Feature set search algorithm”. In C. H. Chen, editor, Pattern
Recognition in Practice, pages 41–60. NorthHolland, Sijthoff and Noordhoof, 1980.

[60] A. Kuchinsky, C. Pering, M. L. Creech, D. Freeze, B. Serra, and J. Gwizdka.
”FotoFile: A consumer multimedia organization and retrieval system”. In Proceed-
ings of ACM SIG CHI’99 Conference, Pittsburg, May 1999.

[61] T.-W. Lee. “Independent Component Analysis: Theory and Applications.”.
Kluwer Academic, 1998.

[62] J. Li, S. Zhou, and C. Shekhar. “A comparison of subspace analysis for face
recognition”. In Proceedings of the 28th IEEE International Conference on Acous-
tics, Speech, and Signal Processing, Hong Kong, China, April 2003.

[63] S. Z. Li, Q. D. Fu, L. Gu, B. Scholkopf, Y. M. Cheng, and H. J. Zhang. “Kernel
machine based learning for multi-view face detection and pose estimation”. In
Proceedings of 8th IEEE International Conference on Computer Vision, Vancouver,
Canada, July 2001.

[64] S. Z. Li and J. Lu. “Face recognition using the nearest feature line method”.
IEEE Transactions on Neural Networks, 10:439–443, March 1999.

[65] S. Z. Li, X. G. Lv, and H. .Zhang. “View-based clustering of object appearances
based on independent subspace analysis”. In Proceedings of The Eighth IEEE In-
ternational Conference on Computer Vision, volume 2, pages 295–300, Vancouver,
Canada, July 2001.

60 Bibliography

[66] S. Z. Li, S. C. Yan, H. J. Zhang, and Q. S. Cheng. “Multi-view face alignment
using direct appearance models”. In Proceedings of IEEE International Conference
on Automatic Face and Gesture Recognition, Washington, DC, 20-21 May 2002.

[67] S. Z. Li, Z. Zhang, H.-Y. Shum, and H. Zhang. “FloatBoost learning for classi-
fication”. In Proceedings of Neural Information Processing Systems, pages –, Van-
couver, Canada, December 9-14 2002.

[68] S. Z. Li, L. Zhu, Z. Q. Zhang, A. Blake, H. Zhang, and H. Shum. “Statistical
learning of multi-view face detection”. In Proceedings of the European Conference
on Computer Vision, volume 4, pages 67–81, Copenhagen, Denmark, May 28 - June
2 2002.

[69] Y. Li, S. Gong, and H. Liddell. “Constructing facial identity surfaces in a non-
linear discriminating space.”. In Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Hawaii, December 2001.

[70] Y. M. Li, S. G. Gong, and H. Liddell. “Support vector regression and classifica-
tion based multi-view face detection and recognition”. In IEEE Int. Conf. Oo Face
& Gesture Recognition, pages 300–305, France, March 2000.

[71] R. Lienhart, A. Kuranov, and V. Pisarevsky. “Empirical analysis of detection
cascades of boosted classifiers for rapid object detection”. Mrl technical report,
Intel Labs, Dec 2002.

[72] C. Liu and H. Wechsler. “Comparative assessment of independent component
analysis (ica) for face recognition”. In Proceedings of the 2nd International Con-
ference on Audioand Video-based Biometric Person Authentication, Washington D.
C., March 22-24 1999.

[73] C. Liu and H. Wechsler. “Gabor feature based classification using the enhanced
fisher linear discriminant model for face recognition”. IEEE Transactions on Image
Processing, 11(4):467–476, April 2002.

[74] R. Lotlikar and R. Kothari. “Fractional-step dimensionality reduction”. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(6):623–627, 2000.

[75] J. Lu and K. Plataniotis. “Boosting face recognition on a large-scale database”.
In Proceedings of the IEEE International Conference on Image Processing, pages
II.109–II.112, Rochester, New York, USA, September 2002.

[76] J. Lu, K. Plataniotis, and A. Venetsanopoulos. “Face recognition using fea-
ture optimization and ν-support vector learning”. In Proceedings of the IEEE In-
ternational Workshop on Neural Networks for Signal Processing, pages 373–382,
Falmouth, MA., USA, September 2001.

[77] J. Lu, K. Plataniotis, and A. Venetsanopoulos. “Boosting linear discriminant
analysis for face recognition”. In Proceedings of the IEEE International Conference
on Image Processing, Barcelona, Spain, September 2003.

Bibliography 61

[78] J. Lu, K. Plataniotis, and A. Venetsanopoulos. “Face recognition using kernel
direct discriminant analysis algorithms”. IEEE Transactions on Neural Networks,
14(1), January 2003.

[79] J. Lu, K. Plataniotis, and A. Venetsanopoulos. “Face recognition using LDA
based algorithms”. IEEE Transactions on Neural Networks, 14(1), January 2003.

[80] J. Lu, K. Plataniotis, and A. Venetsanopoulos. “Regularized discriminant anal-
ysis for the small sample size problem in face recognition”. Accepted for publication
in Pattern Recognition Letter, July 2003.

[81] D. Marr. Vision. W. H. Freeman and Co, San Francisco, 1982.

[82] A. Martinez and R. Benavente. “The AR face database”. Technical Report 24,
CVC, June 1998.

[83] A. M. Martnez and A. C. Kak. “PCA versus LDA”. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(2):228–233, 2001.

[84] G. McLachlan and D. Peel. “Finite Mixture Models”. John Wiley & Sons, 2000.

[85] B. Moghaddam. “Principal manifolds and probabilistic subspaces for visual
recognition”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(6):780–788, June 2002.

[86] B. Moghaddam, T. Jebara, and A. Pentland. “Bayesian face recognition”. Pat-
tern Recognition, 33:1771–1782, 2000.

[87] B. Moghaddam and A. Pentland. “Probabilistic visual learning for object rep-
resentation”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
7:696–710, July 1997.

[88] H. Moon and P. Phillips. “Analysis of pca-based face recognition algorithms”. In
K. Bowyer and P. Phillips, editors, Empirical Evaluation Techniques in Computer
Vision, pages 57–71. Calif.:IEEE CS Press, Los Alamitos, 1998.

[89] Y. Moses, Y. Adini, and S. Ullman. “Face recognition: The problem of com-
pensating for changes in illumination direction”. In Proceedings of the European
Conference on Computer Vision, volume A, pages 286–296, 1994.

[90] J. Ng and S. Gong. “performing multi-view face detection and pose estima-
tion using a composite support vector machine across the view sphere”. In Proc.
IEEE International Workshop on Recognition, Analysis, and Tracking of Faces and
Gestures in Real-Time Systems, pages 14–21, Corfu, Greece, September 1999.

[91] E. Osuna, R. Freund, and F. Girosi. “Training support vector machines: An
application to face detection”. In CVPR, pages 130–136, 1997.

62 Bibliography

[92] C. P. Papageorgiou, M. Oren, and T. Poggio. “A general framework for object
detection”. In Proceedings of IEEE International Conference on Computer Vision,
pages 555–562, Bombay, India, 1998.

[93] A. P. Pentland, B. Moghaddam, and T. Starner. “View-based and modular
eigenspaces for face recognition”. In Proceedings of IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pages 84–91, 1994.

[94] P. Phillips. “Support vector machines applied to face recognition”. In M. Kearns,
S. Solla, and D. Cohn, editors, NIPS’98. 1998.

[95] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss. The FERET evalua-
tion methodology for face-recognition algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(10):1090–1104, 2000.

[96] P. J. Phillips, H. Wechsler, J. Huang, and P. Rauss. “The FERET database and
evaluation procedure for face recognition algorithms”. Image and Vision Computing
J, 16(5):295–306, 1998.

[97] P. Pudil, J. Novovicova, and J. Kittler. “Floating search methods in feature
selection”. Pattern Recognition Letters, 15(11):1119–1125, 1994.

[98] S. Romdhani, A. Psarrou, and S. Gong. “Learning a single active face shape
model across views”. In Proc. IEEE International Workshop on Recognition, Anal-
ysis, and Tracking of Faces and Gestures in Real-Time Systems, Corfu, Greece,
26-27 September 1999.

[99] D. Roth, M. Yang, and N. Ahuja. “A snow-based face detector”. In Proceedings
of Neural Information Processing Systems, 2000.

[100] H. A. Rowley, S. Baluja, and T. Kanade. “Neural network-based face detec-
tion”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):23–
28, 1998.

[101] A. Samal and P. A.Iyengar. “Automatic recognition and analysis of human
faces and facial expressions: A survey”. Pattern Recognition, 25:65–77, 1992.

[102] R. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. “Boosting the margin: A
new explanation for the effectiveness of voting methods”. The Annals of Statistics,
26(5):1651–1686, October 1998.

[103] B. Schiele and J. L. Crowley. “Recognition without correspondence using multi-
dimensional receptive field histograms”. International Journal of Computer Vision,
36(1):31–52, 2000.

[104] H. Schneiderman. “A Statistical Approach to 3D Object Detection Applied to
Faces and Cars” (CMU-RI-TR-00-06). PhD thesis, RI, 2000.

Bibliography 63

[105] H. Schneiderman and T. Kanade. “A statistical method for 3d object detection
applied to faces and cars”. In Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2000.

[106] B. Schölkopf, C. Burges, and A. J. Smola. “Advances in Kernel Methods -
Support Vector Learning”. MIT Press, Cambridge, MA, 1999.

[107] B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1999.

[108] S. Sclaroff and J. Isidoro. “Active blobs”. In Proceedings of IEEE International
Conference on Computer Vision, Bombay, India, 1998.

[109] P. Y. Simard, L. Bottou, P. Haffner, and Y. L. Cun. “Boxlets: a fast convolution
algorithm for signal processing and neural networks”. In M. Kearns, S. Solla, and
D. Cohn, editors, Advances in Neural Information Processing Systems, volume 11,
pages 571–577. MIT Press, 1998.

[110] P. Y. Simard, Y. A. L. Cun, J. S. Denker, and B. Victorri. “Transformation
invariance in pattern recognition - tangent distance and tangent propagation”. In
G. B. Orr and K.-R. Muller, editors, Neural Networks: Tricks of the Trade. Springer,
1998.

[111] L. Sirovich and M. Kirby. “Low-dimensional procedure for the characterization
of human faces”. Journal of the Optical Society of America A, 4(3):519–524, March
1987.

[112] P. Somol, P. Pudil, J. Novoviova, and P. Paclik. “Adaptive floating search
methods in feature selection”. Pattern Recognition Letters, 20:1157–1163, 1999.

[113] S. D. Stearns. “On selecting features for pattern classifiers”. In Proceedings of
International Conference Pattern Recognition, pages 71–75, 1976.

[114] K.-K. Sung and T. Poggio. “Example-based learning for view-based human
face detection”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(1):39–51, 1998.

[115] D. L. Swets and J. Weng. “Using discriminant eigenfeatures for image re-
trieval”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:831–
836, 1996.

[116] Q. Tian, M. Barbero, Z. Gu, and S. Lee. “Image classification by the foley-
sammon transform”. Opt. Eng., 25(7):834–840, 1986.

[117] K. Tieu and P. Viola. “Boosting image retrieval”. In Proceedings of IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, volume 1,
pages 228–235, 2000.

64 Bibliography

[118] M. Tipping and C. Bishop. “Probabilistic principal component analysis”. Jour-
nal of the Royal Statistical Society, Series B., 61:611–622, 1999.

[119] K. A. Toh. “Global optimization by monotonic transformation”. Computa-
tional Optimization and Applications, 23:77–99, October 2002.

[120] K.-A. Toh, J. Lu, and W.-Y. Yau. “Global feedforward neural network learning
for classification and regression”. In M. Figueiredo, J. Zerubia, and A. K. Jain,
editors, Proceedings of the Energy Minimization Methods in Computer Vision and
Pattern Recognition, Sophia Antipolis, France, September 3-5 2001.

[121] M. Turk. “A random walk through eigenspace”. IEICE Trans. Inf. & Syst.,
E84-D(12):1586–1695, December 2001.

[122] M. A. Turk and A. P. Pentland. “Eigenfaces for recognition”. Journal of
Cognitive Neuroscience, 3(1):71–86, March 1991.

[123] D. Valentin, H. Abdi, A. J. O’Toole, and G. W. Cottrell. “Connectionist models
of face processing: A survey”. Pattern Recognition, 27(9):1209–1230, 1994.

[124] B. van Ginneken, A. F. Frangi, J. J. Staal, B. M. ter Haar Romeny, and
M. A. Viergever. ”a non-linear gray-level appearance model improves active shape
model segmentation”. In Proceedings of Mathematical Methods in Biomedical Image
Analysis, 2001.

[125] V. N. Vapnik. “The Nature of Statistical Learning Theory”. Springer-Verlag,
New York, 1995.

[126] V. N. Vapnik. “An overview of statistical learning theory”. IEEE Transactions
on Neural Networks, 10(5):439–443, September 1999.

[127] P. Viola and M. Jones. “Rapid object detection using a boosted cascade of sim-
ple features”. In Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Kauai, Hawaii, December 12-14 2001.

[128] P. Viola and M. Jones. “Robust real time object detection”. In IEEE ICCV
Workshop on Statistical and Computational Theories of Vision, Vancouver, Canada,
July 13 2001.

[129] J. Wilder. “Face recognition using transform coding of grayscale projection
projections and the neural tree network”. In R. J. Mammone, editor, Artificial
Neural Networks with Appli-cations in Speech and Vision, pages 520–536. Chapman
Hall, 1994.

[130] L. Wiskott, J. Fellous, N. Kruger, and C. V. malsburg. ”face recognition
by elastic bunch graph matching”. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(7):775–779, 1997.

Bibliography 65

[131] S. C. Yan, C. Liu, S. Z. Li, L. Zhu, H. J. Zhang, H. Shum, and Q. Cheng.
“Texture-constrained active shape models”. In Proceedings of the First Interna-
tional Workshop on Generative-Model-Based Vision (with ECCV), Copenhagen,
Denmark, May 2002.

[132] J. Yang, W. Lu, and A. Waibel. “Skin-color modeling and adaptation”. In
Proceedings of the First Asian Conference on Computer Vision, pages 687–694,
1998.

[133] M.-H. Yang. Resources for face detection.
http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html.

[134] M.-H. Yang. “Kernel eigenfaces vs. kernel fisherfaces: Face recognition using
kernel methods”. In Proceedings of the Fifth IEEE International Conference on
Automatic Face and Gesture Recognition, Washinton D.C., USA, May 2002.

[135] M.-H. Yang and N. Ahuja. “Gaussian mixture model for human skin color
and its application in image and video databases”. In Proc. of the SPIE Conf. on
Storage and Retrieval for Image and Video Databases, volume 3656, pages 458–466,
San Jose, Jan. 1999.

[136] M.-H. Yang, D. Kriegman, and N. Ahuja. “Detecting faces in images: a sur-
vey”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1):34–
58, 2002.

[137] H. Yu and J. Yang. “A direct lda algorithm for high-dimensional data with
application to face recognition”. Pattern Recognition, 34:2067–2070, 2001.

[138] B. D. Zarit, B. J. Super, and F. K. H. Quek. “Comparison of five color models
in skin pixel classification”. In IEEE ICCV Workshop on Recognition, Analysis and
Tracking of Faces and Gestures in Real-time Systems, pages 58–63, Corfu, Greece,
September 1999.

[139] W. Zhao, R. Chellappa, and J. Phillips. “Subspace linear discriminant analysis
for face recognition”. Technical Report, CS-TR4009, Univ. of Maryland, 1999.

[140] W. Zhao, R. Chellappa, A. Rosenfeld, and P. Phillips. Face recognition: A
literature survey. Technical Report, CFAR-TR00-948, University of Maryland, 2000.

[141] W. Zhao, A. Krishnaswamy, R. Chellappa, D. Swets, and J. Weng. “Dis-
criminant analysis of principal components for face recognition”. In H. Wechsler,
P. Phillips, V. Bruce, F. Soulie, and T. Huang, editors, Face Recognition: From
Theory to Applications, pages 73–85. Springer-Verlag, 1998.

