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Abstract

In this paper, we present a unified framework for model-
ing intrinsic properties of face images for recognition. It
is based on the quotient image (QI) concept, in particular
on the existing works of QI [1, 2], Spherical Harmonic[13,
14, 15], [16, 17], Image Ratio [3, 5, 6, 7]and Retinex
[4, 9]. Under this framework, we generalize these previ-
ous works into two new algorithms: (1) Non-Point Light
Quotient Image (NPL-QI) extends QI to deal with non-point
light sources by modeling non-point light directions using
spherical harmonic bases; (2) Self-Quotient Image (S-QI)
extends QI to perform illumination subtraction without the
need for alignment and no shadow assumption. Experimen-
tal results show that our algorithms can significantly im-
prove the performance of face recognition under varying
illumination conditions.

1 Introduction

Quotient image designed for dealing with illumination
changes in face recognition by Shashua and Riklin-Raviv
[1, 2] , is a simple yet practical algorithm for extracting il-
lumination invariant representation.

It has been shown that the quotient image, i.e. image
ratio between a test image and linear combination of three
images illuminated by non-coplanar lights, depends only on
the albedo information, and therefore is illumination free.
This method is practical for recognizing face under varying
illumination conditions in the sense that it requires only one
template image for each person, and that it does not need a
training set for each person because it assumes the same 3D
geometry for all persons. Several assumptions are made re-
garding the facial shape, absence of shadow, and knowledge
about alignment between images for QI calculation.

Besides the QI method, many others techniques have
been proposed for face representation under various illumi-
nation conditions in recent years.

Belhumeur etc. [10, 11, 12] prove that face images

with the same pose under different illumination conditions
form a convex cone, called illumination cone. Ramamoor-
thi [13, 14, 15] and Basri etc. [16, 17] independently apply
the spherical harmonic representation to explain the low di-
mensionality of differently illuminated face images. The
synthesis and recognition results of illumination cone and
spherical harmonics cast light on robust face recognition un-
der various illuminations. However their application range
is limited by needing 3D face model.

Similar to the image ratio technique in QI, Nayar and
Rolle [5], and Jacobs et al [3] also introduce similar algo-
rithms for face image intrinsic property extraction. How-
ever both of the two groups only analyze this approach
by Lambertian model without shadow. Based on Land’s
Retinex [9], Jobson et al [6, 7] and Gross and Brajovie [8]
develop reflectance estimation method by the ratio of origi-
nal image and its smooth version. The difference of the two
Retinex-based algorithms is that Jobson’s filter is isotropic
and Gross and Brajovie’s filter is anisotropic.

The motivation of our work is extracting intrinsic, illu-
mination invariant features from a face image based on the
QI technique. Firstly a generalized QI framework is pro-
posed, in which no assumption on the type of light source
and the absence of shadows is made. Then from this frame-
work we derive two methods, Non-Point Light Quotient Im-
age (NPL-QI) and Self-Quotient Image (S-QI). The NPL-
QI extends QI to non-point light sources with spherical har-
monic bases. And S-QI extends QI to perform illumina-
tion subtraction (de-lighting) without the need for align-
ment and no-shadow assumption as QI does. Experimental
results show that our algorithms can significantly improve
the performance of face recognition under varying illumi-
nation conditions.

The paper is organized as follows. In section 2, we
review the most related works about QI and Illumination
modeling. In section 3, we describe the intrinsic factor of
face image and propose our generalized QI framework. Two
new methods, NPL-QI and S-QI, are advanced in this sec-
tion. The experiment results are presented in section 4. Fi-
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nally a conclusion is made in section 5.

2 Existing Works

Quotient image is based on the Lambertian Model.

I = ρnT • s (1)

whereρ is the albedo (surface texture) of face,nT is the
surface normal (3D shape) of face (assume the same for all
faces in quotient image algorithm),• is the dot product, and
s is the point light source, which can vary arbitrarily. Let
I1 , I2 , I3 are three non-collinearly illuminated images of
facea and their corresponding lighting sources ares1 , s2 ,
ands3 respectively. Therefore any point light sourcesy can
be taken as the linear combination ofsi with coefficientxi,
sy =

∑3
j=1 xjsj , wherei = 1, 2, 3. The quotient image

Qy of facey illuminated by light sourcesy against facea is
defined by

Qy(u, v) =
ρy(u, v)
ρa(u, v)

=
ρy(u, v)nT (u, v) • sy

ρa(u, v)nT (u, v) • sy

=
Iy(u, v)

ρa(u, v)nT (u, v) •∑3
j=1 xjsj

=
Iy(u, v)∑3

j=1 xjIj(u, v)

(2)

whereu andv range over the image.
From the above equation 2, we can conclude that the

quotient image defined as the ratio between a test image
Iy and a linear combination of three non-collinearly illumi-
nated imagesIj with the coefficientsxj , which simulates
the lighting direction ofIy, is illumination free and it de-
pends only on albedo information of the two facesy and
a.

The following assumptions are made in the quotient im-
age framework: (a) the imaging process follows the Lam-
bertian model without shadow and face is illuminated by
point light source; (b) all the faces under consideration have
the same shape, i.e. the same surface normal; (c) accurate
alignment between faces is known; and (d) a training set
of faces under at least three non-collinear illuminations is
available as basis for estimation of illumination directions.

However, in face recognition system the above assump-
tions are often not satisfied at the same time. The light
sources are generally not of point; 3D face shapes of dif-
ferent people are not the same in general; the shadow can
exist; and accurate alignment is still an unsolved problem
by now.

Nayar and Rolle [5] also advance one kind of QI. This
kind of QI is the ratio of an image point with its neighboring

points. According to their analysis under the assumption of
Lambertian model, they deduce that this QI is the ratio of
reflectance coefficients, which is illumination free.

Let I is the image and̂I is its smooth version, Nayar and
Rolle deduce their QI by

Q =
I − Î

I + Î
=

ρ− ρ̂

ρ + ρ̂
(3)

whereρ1 andρ2 are the albedo ofI andÎ respectively.
Our Self Quotient Image (S-QI) algorithm has similar

form as that of Nayar and Rolle’s, but we analyze the in-
variant properties of the image ratio between an image and
its smooth version under all cases, including shading region,
shadow region and edge region. Furthermore we introduce
a simple edge preserving filter for getting smooth version of
the original image.

Jacobs etc [3] also introduce a similar kind of QI, which
is the ratio of two images. They show that for point sources
and objects with Lambertian reflectance, the ratio of two
images from the same object is simpler than the ratio of im-
ages from different objects. Letz = f(x, y) is object sur-
face and(sx, sy, sz),(lx, ly, lz), are two point light sources.
The QI, i.e. the ratio of the same object with the two light
sources is

I = ρ
−(sx, sy, sz) • (fx, fy, 1)√

f2
x + f2

y + 1

J = ρ
−(lx, ly, lz) • (fx, fy, 1)√

f2
x + f2

y + 1

Q =
sxfx + syfy + sz

lxfx + lyfy + lz
(4)

If the two light sources illuminate two objects with surface
z = f(x, y) andz = g(x, y), and albedoρ1,ρ2 respectively,
then the corresponding QI becomes

I = ρ1
−(sx, sy, sz) • (fx, fy, 1)√

f2
x + f2

y + 1

J = ρ2
−(lx, ly, lz) • (gx, gy, 1)√

g2
x + g2

y + 1

Q =
sxfx + syfy + sz

lxgx + lygy + lz
(
ρ1

√
f2

x + f2
y + 1

ρ2

√
g2

x + g2
y + 1

) (5)

From the equation 4 and 5, QI of images from the same ob-
ject is far simpler than the QI of images from two different
objects. They transfer this simplicity into simpler proper-
ties, the summation of gradient over the entire QI region as
shown in equation 6.

∫∫
min (I, J)‖∇(

I

J
)‖dxdy (6)
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As in Nayar’s approach, Jacobs’s method only considers the
Lambertian model without shadow and the object surface is
smooth, i.e. the partial differential exists.

The Retinex theory motivated by Land [4, 9] deals with
illumination effects on images. According to his experi-
ments, human vision can discriminate color under different
lighting conditions. Jobson, et al [6, 7] present a multi-scale
version of Retinex method for high quality visual display of
high dynamic range image on low dynamic range devices,
such as printer and computer screen. This is closely related
to the illumination issue. More recently Gross and Brajovie
[8] present an anisotropic version of Retinex for illumina-
tion normalization. Both of the research groups propose
an algorithm which estimates low frequency component of
the input image as the light field and compensated illumina-
tion variations by subtracting it from the input image. This
approach is based on that image can be represented by the
product of reflectanceR and illuminationL, shown in equa-
tion 7.

I(x, y) = R(x, y)L(x, y) (7)

Estimating theL andR only from the input imageI is the
well-known ill-posed problem. Therefore there are two as-
sumptions: (1) the illuminationL is smooth and (2) the re-
flectanceR can be varied randomly. Based on these as-
sumption, Jobson et al employ an isotropic filter and Gross
and Brajovie apply an anisotropic filter to get the smooth
version of imageI for the estimation of theL.

3. Generalized Quotient Image
Each image contains some intrinsic information of the 3D
scene it represents, although it is not sufficient to represent
the original object(s) with a single image. In this section, we
develop a new representation from an input image aiming to
separate the intrinsic property from the extrinsic one.

3.1 Intrinsic and Extrinsic Factorization

The following is a typical Lambertian model, which can be
factorized into two parts:

I(u, v) = ρ(u, v)n(u, v)T • s = F • s (8)

In the above,F = ρnT depends on the albedo and surface
normal and hence is the intrinsic representation of an object.
It is F that represents the identity of a face.s is the illumi-
nation and is the extrinsic factor. Current appearance-based
methods including PCA etc [21]learn a representation from
imagesI and hence mix the intrinsic factor for the identity
with the extrinsic factor. This is one of the main problems
in highly accurate face recognition. We conclude that sepa-
rating the two factors and removing the extrinsic factor is a
key to achieving robust face recognition.

Figure 1: Generic Quotient Image Framework

3.2 Illumination Normalization

We generalize the existing QI methods described in Section
2 into a generalized framework, as shown in Figure 1. There
are two main steps: (1) illumination estimation and (2) the
illumination effect subtraction. First, the extrinsic factor is
estimated and a synthesized image is generated. The syn-
thesized face image has the same illumination and 3D shape
as the input but different albedo. Then the illumination is
normalized by taking the difference between the logarithms
of the input and the synthesized images. Because the syn-
thesized image has the same 3D shape and illumination with
the original one, the normalized image is (logρ0 − logρ1),
whereρ0 andρ1 are the albedo maps of the input and syn-
thesized images, respectively; and is therefore illumination-
free.

The logarithm is necessary because if the subtraction
were between the two images directly, the resultQ would
be

Q = I − Î = (ρ0 − ρ1)n(u, v)T • s (9)

which would still be illumination dependent. In the follow-
ing, we derive two generalized QI algorithms, Non-Point
Light Quotient Image (NPL-QI) and Self-Quotient Image
(S-QI), from this framework.

3.3 Non-Point Light QI (NPL-QI)

Here, as in the original QI, we also assume that all the mod-
eled object have the same 3D. NPL-QI takes the advantage
of the linear relationship between spherical harmonic bases
and PCA bases and extends the illumination estimation of
QI from single point light source to any type of illumina-
tion conditions. Instead of explicitly estimating the 3D face
shape, we replace the spherical harmonic bases with their
linear transformed version, PCA bases. The quotient image
of this method has the same invariant form, albedo ratio of
two faces, as the original QI.

3.3.1 Analysis

As we introduce in Section 1, the original QI method only
works under the assumption of face image illuminated with
single point light source without shadow. However the or-
dinary face images are always illuminated with non-point
light sources and shadow will present unless the face is il-
luminated by frontal lighting.
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According to Ramamoorthi [13, 14, 15] and Basri [16,
17]’s spherical harmonic representation, face imageI can
be represented by

I = ρH • o (10)

whereH = [h1, h2, ..., hn] is the spherical harmonic bases
ando is the harmonic light. According to their finding, the
first 9 harmonic bases, shown in equation 11, can well de-
scribe the image of diffuse object, such as human face.

h1 =

√
1
4π

h2 =

√
3
4π

nz

h3 =

√
3
4π

nx h4 =

√
3
4π

ny

h5 =
1
2

√
5
4π

(n2
z − n2

y − n2
x) h6 =3

√
5

12π
nznx (11)

h7 =3

√
5

12π
nznx h8 =

3
2

√
5

12π
(n2

x − n2
y)

h9 =3

√
5

12π
nynx

(a)

(b)

Figure 2: (a) face images (b) energy accumulative distribu-
tion for 64 dimensions

Because these bases must be calculated with known 3D
geometry, the application range of this representation is lim-
ited. According to Ramamoorthi’s analysis [14], there is

linear relationship between PCA eigenvectors and spherical
harmonic bases.

U = BT (12)

whereU = [u1, u2, ..., un] is the eigenvector matrix of a
face under all lighting conditions andT is n × n transfor-
mation matrix. The equation 10 can be written as

I = B • o = U • l (13)

wherel = T−1o.
If we get a densely sampled images, such as in Yale

B (Figure 2(a)), we can getU , which is a well approxi-
mated linear-transferred spherical harmonic bases. Replac-
ing these bases from PCA with three images in QI, we get
NPL-QI

Qy =
ρy

ρa

=
ρy

∑
i hioi

ρa

∑
i hioi

=
Iy

U • l

(14)

Because in some extremely illuminated face images there
are obvious cast shadow, the first 9 eigenvectors can not
carried over 95 % image energy, shown in Figure 2. There-
fore more eigenvectors are needed in the implementation of
this algorithm.

3.3.2 Algorithm

Let D be an N×M matrix, where N is the number of pix-
els of face image and M the number of face images. D is
made of one person’s face images under different lighting
conditions. We choose one person’s face images in Yale B
Face database with the frontal pose but systemically sam-
pled lighting conditions for building global lighting space.
Then we compress these images by Singular Value Decom-
position (SVD). LetV = [v1, v2, ..., vk] be first K eigenvec-
tors of D. Using the texture mapping technique in quotient
image, we have the QI for each face imageIi in the database
by the ratio ofIi andV • li,

Qi =
Ii

V • li
(15)

f(li) = min‖It − V • li‖ (16)

whereli is the estimated lighting by minimizing equation
16.

For any test imageIt with esstimated illuminationlt by
Equation 16, we can transfer all face images in the database
into the same illumination condition as the inputIt by

Isyni = QiV • lt (17)
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Our recognition is carried out among the input imageIt and
the Isyni, and It belongs to class i if it has shortest dis-
tance toIsyni. Though our algorithm has a similar form as
that of quotient image algorithm, our subspace is more com-
plex and lightinglt is not real light. Moreover the estimated
lighting lt contains shading and shadow information instead
of only shading information in quotient image method.

3.4 Self-Quotient Image (S-QI)

In S-QI, a smoothed version of the input image is computed
and S-QI is defined as the ratio between the input and its
smooth version. Situations with shadows are also consid-
ered in our analysis.

3.4.1 Analysis

We define the self-quotient image as an intrinsic property of
face images of a person.
Definition 1: (Self-Quotient Image) Self-Quotient imageQ
of imageI is defined by

Q =
I

Î
=

I

F ∗ I
(18)

where∗ is convolution operation,̂I is the smoothedI and
F is the smoothing kernel.

We callQ Self-Quotient Image because it derives from
one image and has the same quotient form as that of quo-
tient image method. We will demonstrate in the following
part of this subsection that self-quotient image has similar
illumination invariant form as that of quotient image.

The self-quotient image has illumination invariant prop-
erties, as demonstrated below using the Lambertian model
but with shadow. When shadows present, the Lambertian
model of Equation 1 with shadows can be represented as

I = max(ρnT • s, 0) (19)

In the following, we demonstrate using this Lambertian
model that the S-QI is almost illumination invariant, which
is an important property for us to develop effective robust
face recognition.

Roughly speaking, a scene may consist of the following
three types of regions:

• Region 1: no shadow, small shape variation, i.e. sur-
face normal can be regarded constant within the re-
gion.

• Region 2: no shadow, big shape variation, i.e. surface
normal varies significantly within the region.

• Region 3: shadow regions.

Figure 3: De-shadow effects of S-QI

Now let’s discuss these three regions separately.
Region 1:

In this case,nT (u, v) ≈ C1 , whereC1 is a constant. Then
we have:

Q(u, v) =
I(u, v)

Î(u, v)
≈ ρC1

ρ(u, v) ∗ FC1
=

ρ(u, v)

ρ(u, v) ∗ F
(20)

In this case,Q is approximately illumination free and
depends only on the albedo of the face.

Region 2:
In this case,nT (u, v)is not a constant. The S-QI is given
by:

Q(u, v) =
I(u, v)

Î(u, v)
=

ρ(u, v)nT (u, v) • s

F ∗ [ρ(u, v)nT (u, v) • s]
(21)

In such regions,Q depends on the surface normal, albedo
and illumination.

Region 3:
In these regions, the grey value of image is relatively low

and does not vary to a great deal. Let us assume that light is
uniformly distributed from all directions in shadow regions,
i.e. for any normaln all the visible lights form a semi-
hemisphere. Therefore, the summation of the dot products
betweenn andsi is constant in such regions:

nT (u, v) •
∞∑

i=1

si(u, v) =

∞∑
i=1

nT (u, v) • si(u, v) = C2 (22)

whereC2 is a constant and
∑∞

i=1 ‖si‖ ¿ ‖s‖ . Thus,
I(u, v) in shadow regions can be written asI(u, v) ≈
C2ρ(u, v) . Then we have:

Q(u, v) ≈ I(u, v)

Î(u, v)
=

ρ(u, v)C2

ρ(u, v) ∗ FC2
=

ρ(u, v)

ρ(u, v) ∗ F
(23)

Similar to Region 1, the S-QI in this region is also
illumination-free, in other words, the S-QI removes the
shadow effect, as shown in Figure 3. Although the analysis
is based on the Lambertian model of point illumination, it
is also valid for other types of illumination sources. This is
because any illumination can be expressed as a linear com-
bination ofL point illumination sources:

I = ρnT • s = ρnT •
L∑

i=1

si (24)

If we replace the point lighting sources in Regions 1 - 3
with a series of point lights, the analytic results still hold.
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The above analysis shows the following two properties
of the self-quotient image: (1) The algorithm is robust to
illumination variation for case 1 and 3. (2)Q is not the
expected reflectance as in Retinex, but the albedo ratio in
case 1 and case 3 and illumination dependent image ratio in
case 2.

For face recognition, if we can ensure that the filter’s ker-
nel size is small enough compared with face surface normal
nT ’s variation, the self-quotient image will be illumination
free as previously analyzed. However, when the filter’s ker-
nel size is too small,Q will approach one and the albedo
information is lost.

The advantages of the self-quotient method as opposed
to the original quotient image is summarized as follows: (1)
The alignment between imageI and its smoothed version
Î is automatically perfect, and hence it does not need an
alignment procedure. (2) No training images are needed for
the estimation of the lighting direction because the lighting
fields of I and Î are similar. (3) the self-quotient image
is good at removing shadows; whereas in the previous ap-
proaches [1]-[4], the shadow problem was either ignored or
was solved by complex 3D rendering. (4) Lighting sources
can be any type.

Note that the property ofQ is dependant on the kernel
size. If the kernel size ofF is too small,Q will approx-
imate to one and albedo information will be severely re-
duced. If the kernel size ofF is too large, there will appear
halo effects near step-edge region. We use the multi-scale
technique to make the result more robust, and in practice,
we choose kernel sizes to take more care smoother regions.

3.4.2 Algorithm

Though Jobson’s [6][7] filter is very simple, it is an isotropic
one, which creates halo effects around edge region. Gross
and Brajovie’s [8] anisotropic filter, which can reduce the
halo effect, is an iterative one. For real time application,
this method is too computation expensive. The filterF used
in our algorithm is weighed Gaussian.

F = WG (25)

whereW is the weight andG is Gaussian kernel. Letω be
the convolution region. We divide the convolution region
into two sub-regionsM1 andM2 with respect to a threshold
τ . Assuming that there are more pixels inM1 than inM2

and τ is calculated byτ = mean(IΩ), for the two sub-
regions,W has corresponding value.

W (u, v) =
{

0 I(u, v) ∈ M2

1 I(u, v) ∈ M1

If the convolution image region is smooth , ie little gray
value variation (non-edge region ), there is also little dif-
ference between the smoothing the whole region and part

Figure 4: Weighed Gaussian Filter

Figure 5: CMU Face Database

of the region. If there is large gray value variation in con-
volution region, ie. edge region, the threshold can divide
the convolution region into two partsM1 andM2 along the
edge and the filter kernel will convolute only with the large
partM1, which contains more pixels. Therefore the halo ef-
fects can be significantly reduced by the weighted Gaussian
kernel. The formation of this filter is shown in Figure 4.

4 Experiments and Discussion

Experiments are performed to evaluate NPL-QI and S-QI
for face recognition, using Yale face B database [12] and
CMU PIE face database [21]. Frontal face images with
lighting variations are selected from the two face databases
to reduce the image changes only due to lighting variations.
There are 68 subjects in CMU PIE and we select the frontal
face images which are taken under 20 different illumina-
tions without background lighting for each subject, shown
in Figure 5. There are 640 images (10 subjects with 64 im-
ages each) from Yale B.

The eyes, nose and mouth are located manually for each
image, and the face is then aligned and cropped. The PCA
and original QI methods are also included as the baselines,
in which the PCA (60 dimensional) is learned by using all
the examples from either PIE or Yale B data sets.

Figure 7 show some results of S-QI based illumina-
tion normalization. We can see that the convolution based
anisotropic filtering is very effective in smoothing the noisy
image without blurring the step edge and shadows are re-
moved.

For the PIE data set, the leave-one-out scheme is used,
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(a) Set 1

(b) Set 2

(c) Set 3

(d) Set 4

Figure 6: Four Yale B Sets

(a) Yale B

(b) CMU PIE

Figure 7: Example results of S-QI illumination removal

Figure 8: Recognition Results on Yale B Face Database

Figure 9: Recognition Results on CMU PIE Face Database

ie each image as template in turn and the others as test im-
ages. The results are compared in Figure 9 for the 20 dif-
ferent leave-one-out partitions. For the Yale B data set, the
images are divided into 4 subsets of increasing illumination
angles, and only the frontal illuminated images are used as
the templates. Figure 6 display part of one person’s images
in the 4 sets. The results are shown in Figure 8 for the 4
different data sets.

Compared with PCA and original QI, both of our new
algorithms, S-QI and NPL-QI can significantly improve the
recognition rate both in CMU PIE and Yale B face database.
It seems that S-QI is more effective than NLP-QI in illumi-
nation normalization for face recognitor under our experi-
mental scenario. Also from the recognition results, we can
see that the extreme illumination conditions in Yale B set 2
and 3, and CMU image 1 and 15, do have obvious effects
on both of our two new methods.

5 Conclusion

A generalized QI framework based on previous works is
presented. This unified framework explains the essence of
previous QI-based [1, 2], Retinex-based [4],[6]-[8]] and im-
age ratio-based [3, 5] algorithms without any assumption of
illumination type and absence of shadow. Under this frame-
work, we derive two new algorithms, NPL-QI and S-QI.
These algorithms extend the original QI from point light-
ing source to any type of lightings, without restrictions on
shadows. Compared with the baseline algorithms of origi-
nal QI and PCA, the two algorithms demonstrate significant
performance improvement.
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