
Nearest Manifold Approach for Face Recognition

Junping Zhang
Intelligent Information Processing Laboratory

Fudan University, Shanghai, China
jpzhang@fudan.edu.cn

Stan Z. Li
Microsoft Research Asia

Beijing, China
szli@microsoft.com

Jue Wang
Institute of Automation, Chinese Academy of Sciences

Beijing, China
jue.wang@mail.ia.ac.cn

Abstract

Faces under varying illumination, pose and non-rigid de-
formation are empirically thought of as a highly nonlinear
manifold in the observation space. How to discover intrin-
sic low-dimensional manifold is important to characterize
meaningful face distributions and classify them using a sim-
pler, such as linear or Gaussian based, classifier. In this
paper, we present a manifold learning algorithm (MLA) for
learning a mapping from highly-dimensional manifold into
the intrinsic low-dimensional linear manifold. We also pro-
pose the nearest manifold (NM) criterion for the classifica-
tion and present an algorithm for computing the distance
from the sample to be classified to the nearest face mani-
folds in light of local linearity of manifold. Based on these
works, face recognition is achieved with the combination
of MLA and NM. Experiments on several face databases
show that the advantages of our proposed combinational
approach.

1 Introduction

Face recognition system from images is of particular in-
terest to researchers owing to its wide scope of potential
applications such as identity authentication, access control
and surveillance. It is a quite challenging task to develop a
computational model for face recognition because faces are
complex, multidimensional, and meaningful visual stimuli
[15].

Much research on face recognition, both by computer
vision scientists and psychologists [10], has been done over
the last decade. From the aspect of computer vision, face
recognition can be roughly distinguished into two cate-
gories: geometric feature-based approaches and template
matching approaches.

In the first category, facial feature values depend on the

detection of geometric facial features like eye corners and
nostril[17][4]. However, the first one is time-consuming
and complex about modeling face. The second one as-
sumes that an image as single or multiple arrays of pixel
values[19]. The virtue of template methods is that it is not
necessary to create representations or models for objects.

Most recognition systems using linear method are bound
to ignore subtleties of manifolds such as concavities and
protrusions, and this is a bottleneck for achieving highly ac-
curate recognition. This problem has to be solved before we
can make a high performance recognition system. Gener-
ally speaking, faces are empirically thought to be constitute
a highly nonlinear manifold in the observation space[7][12].

We therefore assume that an effective face recognition
system should be based on ”face manifold”, and the full
variations in lighting condition, expression, orientation, etc.
may be viewed as intrinsic variables which generate nonlin-
ear face manifold in observation space.

Currently, rich literature on how to learn nonlinear man-
ifold has grown up and can be roughly divided into four
major classes: projection methods, generative methods, em-
bedding methods, and mutual information methods.

1. The first one is to find principal surfaces passing
through the middle of data, such as the principal curves
[5]. Though geometrically intuitive, the first one
has difficulty on how to generalize itself into higher-
dimensional manifold.

2. The second one such as generative topology model [2],
hypothesizes that observed data are generated from the
evenly spaced low-dimensional latent nodes. Never-
theless, the generative models fall into local minimum
easily and have slow convergence rates.

3. The third one is generally divided into global and lo-
cal embedding algorithms. Global ones like Isometric



Mapping (henceforth ISOMAP) [14] presume that in
affine sense, isometric properties should be preserved
in both the observation space and the intrinsic embed-
ding space, while local ones like Locally Linear Em-
bedding (LLE) algorithm [9] and Laplacian Eigenamp
approach [1] focus on the preservation of local neigh-
bor structure.

4. In the fourth category, it is assumed that the mutual in-
formation is a measurement of the differences of prob-
ability distribution between the observed space and the
embedded space, as in stochastic nearest neighborhood
(henceforth SNE) [6] and manifold charting [3].

While there are many impressive results about how to
mine the intrinsic invariants of face manifold, manifold
learning on face recognition has fewer reports. A possi-
ble explanation is that the practical face data include a large
number of intrinsic invariant and have high curvature both
in the observation space and in the embedded space, and
meanwhile the effectiveness of currently manifold learning
methods strongly depend on the selection of neighbor pa-
rameters.

To address the problem, we present MLA for recovering
the intrinsic low-dimensional space embedded face mani-
fold in the observation space in section 2. And then we
propose NM approach to distinguish face manifold with the
computation of the nearest manifold distance from sample
to be classified to face manifold in section 3. With the com-
bination of MLA and NM, experiments carried out on sev-
eral face databases show that advantages of our proposed
method in section 4.

2 Manifold Learning Algorithm

There are generally high curvature regions on the manifold
of an face in the image space, when the face is subject
to various changes. Such nonlinearity is one of the main
reasons that impairs recognition performance. A trade-off
method is to unravel the low-dimensional linear space of
image manifold with some dimensionality reduction meth-
ods. Recently, manifold learning provides an interesting
way to discover the intrinsic dimensionality of image man-
ifold. However, most of manifold learning methods lack
an effective way to model relationship from face manifold
into low-dimensional space without dimensionality limita-
tion and also have fewer applications on face recognition.
We therefore propose different MLA to model mapping re-
lationship between low-dimensional embedded space and
face manifolds in the observation space to address the prob-
lem.

First, LLE algorithm, which presumes that each sample
both in the observation space and in the embedded space

is a linearly weighted average of its neighbors, is thought
of as initialization of our proposed MLA to extract the un-
derlying feature of face data. Let the training set of face in
the observation space beC (whereC ∈ RN , N À d), the
corresponding intrinsic low-dimensional setZ (Z ∈ Rd) is
obtained with LLE algorithm. The details of LLE algorithm
can be referred as to [9]. And then the completed set(C, Z)
is used for the subsequently modeling of the mapping rela-
tionship of the manifold.

A disadvantage of LLE algorithm is that the mapping of
test samples is difficult for the computational cost of eigen-
matrix. Thus, we propose an alternative manifold learning
model based on the completed data set(C, Z), whereZ is
the corresponding low-dimensional mapping result of train-
ing dataC.

Mathematically, a smooth manifold can be alternatively
represented by a set of local coordinate systems or atlas
{(Uα, φα), α ∈ A}, whereA is the index set. Each chart of
atlas reflects a local linear mapping property of manifold.
To avoid the difficulty of choosing a special chart, kernel
method is used for obtaining the metric property of the chart
from the original space without an explicit understanding of
the mapped chart [16]. Suppose that the mapping function
{φ} of each chart is orthogonal basis of hilbert spaceH,
then the mapping function{φ} is defined as follows:

φ(Ci) = e−C2
i (1,

√
2Ci, · · · ,

√
1
n!

(
√

2Ci)n, · · · ) (1)

Ci ∈ C

With the Taylor expansion, the metric from sample to some
chart is represented as follows:

k(Ci, xj) = φ(Ci)φ(xj)

= e−‖Ci−xj‖2 (2)

It is easy to find‖φ(x)‖ = 1. Consequently, we obtain
the metric property of each chart by the adoption of kernel
method. Consider the length of paper, we delay the proof in
the future paper. In reality, we select Gaussian RBF kernel
function which is a variant of Formula (2) as follows:

k(Ci, xj) = exp(− ‖ Ci − xj ‖2 /2σ2) (3)

where parameterσ2 can be predefined or computed with
respect of data distribution.

To analysis the global structure of manifold however, it
is necessary to unite these charts into a uniform coordi-
nate system. A simple strategy is that global coordinates
of intrinsic low-dimensional manifold be obtained by the
weighted factor multiplied the similarity metric of data in
each local coordinate system. If each training sample is
thought of as origin of a chart, the mapping relationship of
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dataset(X,Y ) is modeled in light of formula (4) as follows:

yj =
m∑

i=1

αik(Ci, xj), Ci ∈ C;xj ∈ X; yj ∈ Rd (4)

whereY = {y1, . . . , yn} ∈ Rd, X = {x1, . . . , xn} ∈ RN ,
m as the number of training samples,A = {ai} the d ×
m weighted mapping matrix. As a matter of fact, we also
model the inverse mapping relationship from the intrinsic
low-dimensional space into the observation space with the
same idea.

Consider the completed data set(C, Z), the mapping
weighted matrixA is formulated as follows:

A = Z · (k(Ci, Cj))−1, i, j = 1, . . . ,m (5)

Actually, introducing some regularization terms or
pseudo-inverse is necessary to prevent the degeneration
of the inverse kernel matrix in Formula (5). Given the
weighted mapping matrixA, training data setC and the
parameterσ2 of kernel matrix, the corresponding lower-
dimensional mapping result of test sample is then computed
as follows:

ξ =
m∑

i=1

αik(Ci, η), αi ∈ A; η ∈ RN ; ξ ∈ Rd (6)

whereη is a test sample in the observation space, andξ
the corresponding low-dimensional mapping point. Con-
sequently, the mapping relationship from the observation
space into the embedding space is modeled with our pro-
posed MLA.

It is apparent that we may also reconstruct the corre-
sponding data in the observation space for unknown low-
dimensional sample in similar way. By calculating For-
mula (6), the nonlinear mapping model between face man-
ifold in the observation space and the corresponding low-
dimensional space is established and therefore the intrin-
sic low-dimensional linear space of is approximately recov-
ered.

In this paper, the Frey face database (20*28 pixels, 1956
examples) [9] is used to explain our proposed MLA method.
Firstly, in the MLA learning stage, the 491 cluster centers
are extracted using vector quantization and mapped into 2-
D space using LLE. Then all the 1956 face examples are
mapped into the 2-D space based on the mapping learned
in the first stage whereσ2 = 100, as shown in Figure 1.
Thirdly, we randomly sample two points and use them as
the upper-left and lower-right corner points for a rectan-
gle, and then sample 11 evenly spaced points along each
of the boundary and diagonal lines of the rectangle, and
these points are reconstructed with MLA, as displayed in
Figure 2. We observe that a continuous expressional change
in the vertical axes and pose change from the right side to
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Figure 1: 1956 examples mapped to the 2-D MLA subspace
.

Figure 2: The corresponding reconstruct faces

the left side. Therefore, we have approximately recovered
2 intrinsic principal features, those of expression and pose,
for the FREY database using our proposed method.

3 Nearest Manifold Approach

While MLA is capable of extracting some intrinsic invari-
ants from face manifold, it is yet difficult to recognize face
from different face manifolds. A possible explanation is
that current techniques on manifold learning are ineffective
to recover the intrinsical low-dimensional linear space ac-
curately. However, we hypothesize that local linearity of
low-dimensional space obtained through MLA is better than
that of face data in the observation space. With this assump-
tion, NM approach, which is a generalization of the NFL
method [13], are adopted for face recognition under the low-
dimensional space obtained by MLA. It calculates the local
projection distances from sample to be classified to each lo-
cal Euclidean space and then recognizes face through learn-
ing globally nearest manifold distance with respect to local
projection distances.

The basic idea of NM approach in three-dimensional
space is illustrated as Figure 3. In the figure, the trian-
gle ∆T1T2T3 represents a local linear hyperplane of face
manifold. By extending the three edges of the triangle to
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Figure 3: The Basic Idea of NM approach

verticesE1 to E6, we obtain an extended local hyperplane
(see discussion below for the scope of the extension). For
the explanation of NM approach, furthermore, test samples
from y1 to y3, and the corresponding projection points of
test samples fromP1 to P3 are also shown in the figure.

Three cases are considered in the computation of the
nearest projection distance according to NM approach:

1. The sampley is orthogonally projected into the inner
of the triangle∆T1T2T3. For example,y1 is projected
as pointP1 in Figure 3.

2. The sampley is orthogonally projected outside the in-
ner of the triangle but within the polytope formed by
the six extended verticesE1 to E6. For example,y2 is
projected as pointP2 in Figure 3.

3. The sampley is orthogonally projected outside the
polytope formed by the six extended verticesE1 toE6.
For example,y3 is projected as point pointP4 in Fig-
ure 3.

For case 1, given thek-th locally linear manifoldMk,
the projection pointP of sampley is computed as follows:

P =
3∑

i=1

λiTi, Ti ∈Mk;Mk ∈ Rd; k = 1, · · · ,K (7)

where the weightsλi of each vertex of triangle are calcu-
lated as follows:

λi =
{

(AT A)−1AT (y − T3), i = 1, 2
1− λ1 − λ2, i = 3 (8)

where
A = [T1 − T3 T2 − T3], y ∈ Rd

In this case, the weights satisfy0 ≤ λi ≤ 1.
For cases 2 and 3, the weightsλ3 is re-calculated and

represents the projection index from sample to edgeT1T2

as in Formula

λ3 = (T1 − T2)T (y − T2)/‖T1 − T2‖ (9)

The other two projection indices remain the same com-
putation as in Formula (8). We define the six vertex poly-
topy by constraining the weightsλ to be in the range of
[−γ, 1 + γ]. In case 2, some of them are in the range
[−γ, 0] ∪ [1, 1 + γ] (In our experiments, the parameterγ is
set value 0.5 manually without loss of generality), the cor-
responding three projection points from sample to the three
edges of the triangle∆ are then computed as follows:

P i =





T1 + λi(T1 − T3), i = 1
T2 + λi(T2 − T3), i = 2
T1 + λi(T1 − T2), i = 3

(10)

WhereP 1, P 2 andP 3 denote the projection indices from
sample to edgeT1T3, T2T3 andT1T2, respectively. Thus,
the projection distance from sample to local hyperplane is
defined as follows:

d(y, P i) = min
i
‖y − P i‖, i = 1, 2, 3 (11)

In case 3, the sample is projected outside the extended
polytope, and all the weights are in the range(−∞,−γ) ∪
(1 + γ,∞). Consider locally linearity of low-dimensional
space with MLA, it is inaccurate to compute the projection
index with respect to Formula (7) or Formula (10), a sim-
ple way is to calculate the distance from sample to nearest
extended vertex. For example, the projection pointP3 of
sampley3 is equal to the extended vertexE4 as in Figure 3.

After defining the locally nearest manifold distance
dNT (yi, ∆j |Mk) given the sampleyi, the triangle∆j of
image manifoldMk, it is not difficult to calculate the lo-
cal projection distances from sample to all the triangles of
manifold iteratively. Once the overall computations of local
projection distances on the same manifold are completed,
the globally nearest manifold distance from sampleyi to
manifoldMk is calculated as follows:

dNM (yi|Mk) = min
j=1,...,

Pmk
l=3 C2

l−1

dNT (yi,∆j |Mk) (12)

i = 1, . . . , n; k = 1, . . . ,K

wheremk is the number of training samples of thek-th face
manifold, ∆j is thej-th constrained nearest triangle,Mk

means thek-th face manifold. It is not too difficult to know
that the total number of triangle of each face manifold data
is

∑mk

l=3 C2
l−2. When the parametermk is equal to 2, near-

est projection distances of NM approach are computed with
respect to Formula (10). When the parametermk is equal
to 1, the nearest neighbor algorithm is used for the compu-
tation of nearest manifold distance.

The nearest manifold classification is formulated as fol-
lows:

C(yi) = arg min
k

dNM (yi|Mk) (13)
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whereC(yi) represents which classes sampleyi belongs to,
K is the number of different face manifolds. Though our il-
lustration of nearest manifold approach is completed under
the 3-dimensional space, the proposed nearest manifold ap-
proach can be generalized to arbitrarily higher dimensional
space. The total computational complexity of NM approach
is O(K ×∑mk

l=3 C2
l−1).

4 Experiments

Experiments are carried out to evaluate the performance of
the proposed MLA and NM methods in face recognition
performance using three face databases, namely the Olivetti
(ORL) [11], UMIST [18] and JAFFE [8] databases. The
ORL database consists of 10 different images for 40 peo-
ple each (four female and 36 male subjects). The UMIST
database consists of 575 images of 20 people with var-
ied poses (-90 degree to 0 degree).And We crop images
into 112*92=10304 pixels. The JAFFE database, which
has been used in facial expression recognition, consists of
213 images of 10 Japanese females. The head is almost in
frontal pose. The number of each image represent one of
the 7 categories of expressions (neutral, happiness, sadness,
surprise, anger, disgust and fear). In our experiment, the
database is used for both oriental face recognition and ex-
pression recognition. All these images of JAFFE database
are cropped to the size of146× 111 pixels.

For ORL database, the 10 images of each of the 40 per-
sons are randomly partitioned into two sets, namely, 200
training images and 200 test images, without overlapping.
As for dimensionality reduction, the biggest reduction di-
mensions of the training set are first set to be 120. And then
the reduction dimensions is gradually decreased according
to the descending order of eigenvalues LLE algorithm used.

As for UMIST database,10 images of each person are
randomly selected as the training set, and the remaining 375
images as the test set.

The JAFFE database is partitioned into two sets: 6 im-
ages of each of the 10 persons are randomly extracted to
make 60 training set and the remaining 153 images are used
as the test images. Meanwhile, in expression recognition,
24 images of each expressional categories are randomly ex-
tracted to make 168 training set and the remaining 45 im-
ages are used as the test set.

In order to compare the performance of MLA and NM
approach, we introduce a classical linear dimensionality re-
duction algorithm – PCA [15], and then design four combi-
national algorithms: the combination of 1-nearest neighbor-
hood with PCA (PCA+NN), the combination of NM with
the PCA (PCA+NM), the combination of 1-nearest neigh-
borhood with MLA (MLA+NN), the combination of NM
with MLA (MLA+NM).

Table 1: Error rates

MLA+NM MLA+NN PCA+NM PCA+NN
UMIST(150) 3.73% 5.71% 4.83% 8.11%

ORL(120) 3.83% 7.75% 8.13% 9.86%
JAFFE (50) 2.99% 8.86% 8.76% 11.12%

EXPRESS(150) 12.39% 13.73% 16.63% 32.94%

In our experiments, two parameters (neighbor factorK ′

of LLE algorithm andσ2 of kernel function) need to be
predefined for MLA. Without loss of generality, we setK ′

be 40 for ORL, UMIST and Jaffe expression database, 20
for JAFFE Face database, and setσ2 be 10000 for ORL
and UMIST databases, 8000 for JAFFE expression and face
database.
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(a) ORL Face Recognition
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(b) UMIST Face Recognition
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(c) JAFFE Face Recognition
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Figure 4: Recognition Comparison

All the experimental data have been normalized. And
the experimental results are the average of 100 repetitions.
The results are illustrated as in Figure 4(a), Figure 4(b), Fig-
ure 4(c), and Figure 4(d), respectively. The Error rates (ER)
of face recognition in the biggest reduced dimensions as in
Figure 4 are tabulated in Table 1.

It can be seen from the figures and table that the
MLA+NM algorithm than the other three combinational al-
gorithms has better recognition result. For example, in Ta-
ble 1, the error rates of MLA+NM algorithm is about 46%
of the PCA+NN, 77.2% of the PCA+NM, and 65.3% of the
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MLA+NN on the UMIST face database.
In Figure 4(a) and Figure 4(b), error rate based on

MLA+NM than on PCA+NM need higher reduced dimen-
sions to reach stability when the reduction dimensionality
is 90 dimensions or so. We presume that manifold learn-
ing methods than PCA methods can extract more intrinsic
features of face manifolds.

With MLA+NM, both the recognition ability and the sta-
bility of error rates have remarkable improvements. We as-
sume that the ability of the MLA recovering the intrinsic
linear embedded space is approximate and even locally lin-
ear, and then NM approach improves the recognition perfor-
mance through the computation of global nearest manifold
distance with local projection technique.

It is worthy noting that several parameters affect final ex-
perimental results. For example, the influences of variance
σ2 and training samples on UMIST face recognition are il-
lustrated as in Figure 5(a) and Figure 5(b), respectively.
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Figure 5: Parameter Influences

We observe that on the error rate curve for the parame-
ter σ2, there is a ’valley’ corresponding to the lowest error
rates. Therefore, we assume that parameterσ2 may be se-
lected automatically. In addition, from the Figure 5(b) it
can be noted that the error rates of the two recognition tasks
decrease remarkably as the number of training samples in-
creases. It is obviously that whether the manifold structure
has been represented accurately is relative to the final recog-
nition results.

5 Conclusions

In this paper, we present the MLA learning method for
discovering intrinsic dimensions of face manifolds and we
propose the NM as a criterion for face recognition in the
learned low-dimensional space of face manifolds. Geo-
metrical intuitive and simple to implement, the proposed
method is a close-form without iteration and avoid the prob-
lem of convergence. We also re-explain the role of Gaussian
RBF kernel from the aspect of manifold. The experiments

show the advantages of our proposed methods. With the
combination of MLA and NM, a relatively effective recog-
nition system is constructed. MLA is first used for recover-
ing the intrinsic low-dimensional space of face manifolds.
And then NM is used for identifying face through search-
ing the nearest manifold distance. Results with the JAFFE
database show that we achieve effective recognition of the
two different cognitive concepts (face and expression recog-
nition) only by applying the same manifold learning mech-
anism. The interesting results may lead to broader appli-
cations which will be studied in future work. Also we will
compare the proposed manifold learning methods with the
state-of-the-art algorithms on large-scale face database such
as FERET.
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