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ABSTRACT 

 
Active Shape Models (ASM) is a powerful statistical tool 
for extracting objects, e.g. face, from images. It is 
composed of two parts: ASM model and ASM search. In 
ASM, these two parts are treated separately. First, ASM 
model is trained. Then, ASM search is performed using 
this model. However, we find that these two parts are 
closely interrelated. The performance of ASM depends on 
both of them. Improvement on one of them does not 
consequentially improve the overall performance, for it 
may worsen the other. In this paper, we find the key 
parameter that relates these two parts: subspace 
explanation proportion. By optimizing subspace 
explanation proportion, the overall performance of ASM 
can improve by a percentage of about 20 in our 
experiments. Furthermore, this paper proposes to 
decompose the ASM overall error into ASM model 
subspace reconstruction error and ASM search error, 
proving that the square of the subspace reconstruction 
error is linearly related with the subspace explanation 
proportion and finding that the square of the search error 
is a piecewise function of the explanation proportion. This 
decomposition is a new method for further analysis and 
possible improvement. Based on this decomposition, we 
propose a method to estimate the optimal explanation 
proportion. Experiments show that the estimation is 
satisfactory. 
 

1. INTRODUCTION 
 

Accurate alignment of faces is  very important for 
extraction of good facial features for success of 
applications such as face recognition, expression analysis 
and face animation. Extensive research has been 
conducted in the past 20 years. Kass et al [1] introduced 
Active Contour Models , an energy minimization approach 
for shape alignment.  Kirby and Sirovich [2] described 

statistical modeling of grey-level appearance but did not 
address face variability. Wiskott et al [3] used Gabor 
Wavelet to generate a data structure named Elastic Bunch 
Graph to locate facial features. Active Shape Models 
(ASM) and Active Appearance Models (AAM), proposed 
by Cootes et al [4][5], are two popular shape and 
appearance models for object localization. They have been 
developed and improved for years. In ASM [4], the local 
appearance model, which represents the local statistics 
around each landmark, efficiently finds the best candidate 
point for each landmark in searching the image. The 
solution space is constrained by the properly trained 
global shape model. Based on the accurate modeling of 
the local features, ASM obtains nice results in shape 
localization. AAM [5] combines constraints on both 
shape and texture in its  characterization of face 
appearance. The shape is extracted by minimizing the 
texture reconstruction error. According to the different 
optimization criteria, ASM performs more accurately in 
shape localization while AAM gives a better match to 
image texture. In this paper, we will concentrate on ASM. 

ASM is composed of two parts: ASM model and ASM 
search, which are treated separately. First, ASM model is 
trained. Then, ASM search is performed using this model. 
However, we find that these two parts are closely 
interrelated. The performance of ASM depends on both of 
them. Improvement on one of them does not 
consequentially improve the overall performance, for it 
may worsen the other. Unfortunately, this relationship is 
often neglected by previous work. Some work attempted 
to improve the ASM model [6]; others attempted to 
improve the ASM search procedure [7][8][9][10]. In this 
paper, ASM model and search are considered together. 
We first find the key parameter that relates these two parts: 
subspace explanation proportion, a proportion which the 
subspace can explain of the variance exhibited in the 
training data. The performance of both ASM model and 
ASM search is affected by the subspace explanation 
proportion. Then, we decompose the ASM overall error 



into ASM model subspace reconstruction error and ASM 
search error, proving that the reconstruction error is 
linearly related with the subspace explanation proportion 
and finding that the search error is a piecewise function of 
the explanation proportion. With this decomposition, the 
ASM overall error becomes a function of the explanation 
proportion. So, to minimize the ASM overall error is to 
optimize a parameter, the explanation proportion. Finally, 
we propose a parameter optimization method to find the 
optimal explanation proportion. 

The rest of the paper is arranged as follows. The 
analysis of ASM algorithm is described in Section 2. In 
Section 3, we present the decomposition of ASM overall 
error. And in section 4, estimation for optimal explanation 
proportion is discussed. Experimental results are 
presented in Section 5 before conclusions are drawn in 
Section 6.  

 
2. ANALYSIS OF ASM ALGORITHM 

 
ASM is composed of two parts: ASM model and ASM 
search. ASM model is a statistical shape model. It is also 
called point distribution model (PDM). ASM model is to 
build a PCA subspace to approximate the object’s shape 
space. ASM search is to use ASM model to locate the 
target object.  
 
2.1. ASM Model - Statistical Shape Model 

 
ASM technique relies upon each object or image structure 
being represented by a set of points. The points can 
represent the boundary, internal features, or even external 
ones, such as the center of a concave section of 
boundary. Points are placed in the same way on each 
example of the training set of examples of the object. This 
is done manually. One example for face is shown in figure 
1. By examining the statistics of the positions of the 
labeled points, a “Point Distribution Model” is derived [4]. 
The model gives the average positions of the points, and 
has a number of parameters that control the main models 
of variation found in the training set. 

 

 
Figure 1. Labeled image with 87 landmarks for face. 

 

The points from each image are represented as a vector 

ix  and aligned to a common co-ordinate frame. Principle 

Component Analysis [2] is applied to the aligned shape 
vectors to generate the ASM model. Three steps are 
needed for this task. 

1) Compute the mean of the aligned shapes 
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2) Compute the covariance of the data 
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3) Compute the eigenvectors, iφ  and corresponding 

eigenvalues iλ of S (sorted so that 1+≥ ii λλ  ). 

Finally, the ASM model can be written as: 

bxx Φ+=   (1) 
where x is the mean shape vector, 

|}|||{ 21 tφφφ ⋅⋅⋅=Φ contains the t eigenvectors 

corresponding to the largest eigenvalues, and b is a 
vector of shape parameters. For a given shape x , its 
shape parameter b is given by  

)( xxb T −Φ=    (2) 

         The vector b  defines a set of parameters of a 
deformable model. By varying the elements of b  we can 
vary the shape x , using the equation (1). By applying 
limits of the parameter b  we ensure that the shape 
generated is similar to those in the original training data. 
The statistical shape model is a PCA subspace of the 
object’s shape space. In this paper, we find that the size of 
this PCA subspace model is critical. It can be represented 
by the number of eigenvectors or the subspace 
explanation proportion. 

The number of modes (eigenvectors), t , to retain can 
be chosen in several ways:  
l The usual way is to choose t so as to explain a given 

proportion (e.g. 98%) of the variance exhibited in the 
training data. We call this proportion as (subspace) 
explanation proportion. Let iλ  be the eigenvalues of 

the covariance matrix of the training data. Each 
eigenvalue gives the variance of the data about the 
mean in the direction of the corresponding 
eigenvector. The total variance in the training data is 

the sum of all the eigenvalues ∑= iTV λ . We can 

then choose the t  largest eigenvalues such 

that T
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αλ , where α defines the explanation 



proportion of the total variation (for instance, 0.98 for 
98%).  

l Another way is to choose t so that the residual 
terms can be considered as noise. And an alternative 
approach is to choose enough modes that the model 
can approximate any training example to within a 
given accuracy.  

No matter which approach is used, we can use the 

explanation proportion T

t
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characteristic of the ASM PCA subspace model. The 
higher is the explanation proportion, the smaller is the 
subspace reconstruction error.  So, in the usual way, α is 
chosen as high as 95%~98%. Thus the ASM model can 
approximate the object’s shape accurately. The underlying 
assumption is that if the reconstruction error is smaller, the 
ASM overall error will be smaller too. But ASM results are 
not solely decided by ASM model. They are decided by 
ASM search too. What’s more, ASM search is also 
affected by the explanation proportion. In section 2.2, we 
will see that ASM search embeds ASM shape model in its 
searching procedure. So the explanation 
proportion α influences both ASM model and ASM 
search.   

Now it is clear that ASM model and ASM search 
interact with each other by the explanation proportion. 
Things become more complex. The underlying assumption 
for choosing α is not right. The ASM overall error 
depends on ASM model and ASM search. In section 3, we 
will decompose ASM error into ASM reconstruction error 
and ASM search error. Unfortunately, this is often 
neglected by previous work. Some work attempted to 
improve the ASM model; others attempted to improve the 
ASM search. In this paper, ASM model and ASM search 
are considered together. We find that for the best 
performance of ASM, the explanation proportionα  can 
not be as high as 95%~98%. It is much lower. In our 
experiments, the optimal explanation proportion is 
72%~75%.  

 
2.2. ASM Search 
 

The ASM search procedure is an iteration procedure of 
two steps: local appearance matching and estimating of 
shape parameters. Each time it uses local appearance 
model to find a new shape. Then it updates the shape 
parameter to best fit the new search shape [4]. 

The local appearance models, which describe local 
image features around each landmark, are modeled as the 
first derivative of the sample’s profiles perpendicular to 
the landmark contour to reduce the effects of global 
intensity changes. It is assumed that the local models are 

distributed as a multivariate Gaussian distribution. When 
searching new shape, every shape point uses its local 
appearance model to find a best matching point in its 
neighborhood. All the best matching points form a new 
shape. 

When the new shape is found, it is probably not a 
plausible object shape.  So the ASM model is used to 
transform the new shape to a plausible object shape. To 
do this, equation (2) is used to project the new shape to 
the ASM subspace model to get the shape parameter. 

Though ASM search is a very complex procedure, we 
can hardly find the mathematic description for it. In this 
paper, we use the search error function to describe its 
performance. 
 

3. DECOMPOSITION OF ASM ERROR 
 

 
As stated in section 2.1, ASM overall error is affected by 
ASM model and ASM search. In this section, we attempt 
to decomposition ASM overall error into reconstruction 
error and search error. The reconstruction error is 
introduced by the ASM model, and the search error is 
introduced by ASM search. We use ASME for ASM 

overall error, )(αrecE for reconstruction error, 

and ),( γαsE for search error, where α is the explanation 

proportion, and γ represents the ASM search procedure.  

As shown in figure 2, the relationship between them is: 

),()( 222 γαα srecASM EEE +=  

So, to minimize ASME , we only need to 

minimize ),()( 22 γαα srec EE + . If we know the 

formulation of )(αrecE and ),( γαsE , the work is done. 

     In this paper, we prove that the square of 
reconstruction error is linearly related with the explanation 

proportion, i.e. TVE )1()(2
rec αα −= . As shown in figure 
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Reconstruction  
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Figure 2. The relationship between ASM error, 
reconstruction error and search error 
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where ib is the x ’s projection coordinate on the 

itheigenvector in ASM model subspace, t is the number 
of eigenvectors retained, and n is the total eigenvectors 
of the object’s shape space. Then we can get square of 
the reconstruction error for point x  
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where M is the number of samples.  

 
Figure 3. the relationship between the squares of ASM 
error, reconstruction error, search error and the 
explanation proportion. 
 

Unfortunately, we can not find the mathematic 
formulation between the search error and explanation 
proportion, for the ASM search is a dynamic procedure 
and can hardly be mathematically described. So we can 
find their relationship by experiments. We train the ASM 
model on 200 images and test it on other 200 images. 
Then we can get the square of ASM overall error and 
reconstruction error. The square of search error is the 
difference between them. Figure 3 shows the relationship 

between the three errors and the explanation proportion. 
We can find that the square of the search error is a 
piecewise function of the explanation proportion with 
two pieces.  The first piece is a linear function and the 
second piece is a quadratic function. 

 
4. ESTIMATION FOR OPTIMAL EXPLANATION 

PROPORTION 
 
As found in section 3, the square of the search error is a 
piecewise function of the explanation proportion with two 
pieces.  The first piece is a linear function and the second 
piece is a quadratic function. To estimate the optimal 
explanation, we need to estimate this piecewise function. 
But estimation of the quadratic function is neither robust 
nor efficient.  So we try to decrease the order of this  
function.  We first consider the three errors, not the 
square of them. But we can not find linear relationship 
either. So we need to find other relationship.  

We define a new search error 
)(),( βγβ recASMs EEE −=′  
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eigenvectors retained, and n is the total eigenvectors of 
the object’s shape space.  The relationship between these 
three errors and β is shown in figure 4. We can see that 

although none of them is an exact linear function, they are 
nearly linear or piecewise linear. This property is very 
useful for the estimation of the optimal explanation 
proportion.   
Now the estimation method is fairly simple. First, we 
calculate two or three values for the three errors near both 

0=β and 1=β . Second, we linearly fit the 

reconstruction error and piecewise linearly fit the search 
error to get the reconstruction error function and search 
error function. Finally, we minimize the sum of these two 
functions to get the optimal β . With this optimal β , the 

number of eigenvectors in the ASM model can be 
calculated and thus the explanation proportion is there.  

5. EXPERIMENTS 
 
Our database contains 400 face images in the FERET 
database, the AR database and other collections. 87 
landmarks are labeled on each face. We randomly select 
200 images as the training and the other 200 images as the 
testing images. Multi-resolution search is used, using 4 
levels with resolution of 1/8, 1/4, 1/2, 1 of the original 
image in each dimension. At most 5 iterations are run at 
each level. The ASM uses profile models of 9 pixels long 
(4 points on either side) and searches 2 pixels either side.     
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Figure 4. the relationship between ASM error, 
reconstruction error, new search error and beta. 
5.1. Point Location Accuracy Comparison 
 
On each test image, we initialize the starting mean shape 
with displacements from the true position by 10± pixels in 
both x and y ,  9 initializations in total.  Within these 

displacements, most of the search will converge to the 
target shape. The searching results are compared with the 
labeled shapes. We use point-to-point error and point-to-
boundary error (the distance from the found points to the 
associated boundary on the labeled shape) as the 
comparison measure. The comparison results are shown in 
Figure 5. We can see that the optimal explanation 
proportion is 0.72~0.75 for both measure.  

The point-to-point error is 4.56 for explanation 
proportion 98%, 4.27 for explanation proportion 95%, 3.462 
for explanation proportion 72.6%, 3.468 for explanation 
proportion 75.8%. The point-to-point accuracy 
improvement is 0.8~1.1 pixel, with improvement rate 
18~24%.  

The point-to-boundary error is 2.62 for explanation 
proportion 98%, 2.47 for explanation proportion 95%, 2.138 
for explanation proportion 72.6%, 2.135 for explanation 
proportion 75.8%. The point-to-boundary accuracy 
improvement is 0.3~0.5 pixel, with improvement rate 
14~19%. 

Figure 6 shows the percentage of the located shapes 
whose point-to-point errors are less than a given 
threshold with different eigenvectors (explanation 
proportion). Five kinds of eigenvectors/explanation 
proportion are plotted.  

 
5.2. Capture Range Comparison 
 
On each test image, we initialize the starting mean shape 
with displacements from the true position by up to 

30± pixels in x . Then a search is performed to attempt to 

locate the target shapes. Figure 7 shows the point-to-
point errors with different initial displacements and 
different eigenvectors (explanation proportion).  We can 
see that eigenvector 6 (explanation proportion 72%) is the 
best within displacements of 20± pixels in x .  
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Figure 5. ASM error with different explanation proportion 
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Figure 6. the percentage of located shapes whose point-
to-point errors are less than a threshold with different 
eigenvectors (explanation proportion). 
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Figure 7. the point-to-point errors with different initial 
displacements and different eigenvectors. 
 
5.3. Estimation for Optimal Explanation Proportion 
 



We use the proposed method in section 4 to estimate the 
optimal explanation proportion. Three values are 
calculated for the three errors near both 

0=β and 1=β . The values are listed in Table 1 and 

also refer to figure 4. 
If we only use 1,98.0,082.0,0=β , the piecewise 

linearity function of the new search error is: 


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ββ
ββ

y  

The estimated optimal β value is 0.387 corresponding to 

the number of eigenvector 10, the explanation proportion 
0.81.  

If we use all these values, the piecewise function 
linearity of the new search error is: 



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≤−
≥+

=
)1(71.090.4
)0(59.025.1

ββ
ββ

y  

The estimated optimal β value is 0.28 corresponding to 

the number of eigenvector 5, the explanation proportion 
0.69. The true optimal number of eigenvector is 6, 
corresponding to the explanation 0.72~0.75. So the 
estimated results are satisfactory. 
Beta Eigenvectors Reconstructio

n Error 
New Search 
Error 

0.000 0 4.212 0.590 
0.082 1 3.593 0.681 
0.140 2 3.276 0.763 
0.902 85 0.954 3.740 
0.953 120 0.828 3.954 
1.000 170 0.650 4.196 
Table 1. the reconstruction error and new search error with 
different eigenvectors. 
 

6. CONCLUSIONS 
 
ASM is composed of two parts: ASM model and ASM 
search, which are treated separately. Some of the 
improvements on ASM are for ASM model, others are for 
ASM search. However, the relationship between them is 
neglected. This paper finds the key parameter that relates 
these two parts: subspace explanation proportion. By 
optimizing subspace explanation proportion, the overall 
performance of ASM can improve by a percentage of 
about 20 in our experiments. Furthermore, this paper 
proposes to decompose the ASM overall error into 
subspace reconstruction error and search error, proving 
that the square of the subspace reconstruction error is 
linearly related with the subspace explanation proportion 
and finding that the square of the search error is a 

piecewise function of the explanation proportion. This 
decomposition is a new method for further analysis and 
possible improvement. Based on this decomposition, we 
propose a method to estimate the optimal explanation 
proportion. Experiments show that the estimation is 
satisfactory. 
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