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ABSTRACT 
 
Active Shape Models (ASM) is a powerful statistical tool 
for face alignment. However, no evaluation is performed 
on the final results. Nevertheless, the shape evaluation 
information is very useful for the search and the final 
results. In this paper, a shape evaluation method and a 
new search algorithm, called weighted ASM, are proposed. 
The shape evaluation is based on the local appearance 
model of ASM to determine how well the searching shape 
match models derived from the training set. It is used to 
guide the search procedure to get more accurate results. 
The weighted-ASM also uses this  evaluation information 
to project the searching shape into the solution shape 
space in a weighted way. Compared with ASM’s 
orthogonal projection, the weighted projection can drag 
the search out of local minima to be more accurate and 
more robust. Experiments have been done to show the 
ability of this method to align shapes. 

 

1. INTRODUCTION 
 
Accurate alignment of faces is  very important for 
extraction of good facial features for success of 
applications such as face recognition, expression analysis 
and face animation. Extensive research has been 
conducted in the past 20 years. Kass et al [1] introduced 
Active Contour Models , an energy minimization approach 
for shape alignment.  Kirby and Sirovich [2] described 
statistical modeling of grey-level appearance but did not 
address face variability. Wiskott et al [3] used Gabor 
Wavelet to generate a data structure named Elastic Bunch 
Graph to locate facial features. It is demonstrated very 
useful. However it is time-consuming and need large 
computation. 

Active Shape Models (ASM) and Active Appearance 
Models (AAM), proposed by Cootes et al [4][5], are two 

popular shape and appearance models for object 
localization. They have been developed and improved for 
years. In ASM [4], the local appearance model, which 
represents the local statistics around each landmark, 
efficiently finds the best candidate point for each landmark 
in searching the image. The solution space is constrained 
by the properly trained global shape model. Based on the 
accurate modeling of the local features, ASM obtains nice 
results in shape localization. AAM [5] combines 
constraints on both shape and texture in its  
characterization of face appearance. There are two linear 
mappings assumed for optimization: from appearance 
variation to texture variation, and from texture variation to 
position variation. The shape is extracted by minimizing 
the texture reconstruction error. According to the different 
optimization criteria, ASM performs more accurately in 
shape localization while AAM gives a better match to 
image texture. On the other hand, ASM tends to be stuck 
in local minima, dependent on the initialization. AAM is 
sensitive to the illumination, in particular if the lighting in 
the test is significantly different from the training. 
Meanwhile, training an AAM model is time consuming.  

In this paper, we present a shape evaluation method 
and a weighted active shape model (weighted ASM) using 
such evaluation information. The shape evaluation is 
based on the local appearance model of ASM to determine 
how well the searching shape match models derived from 
the training set. It is used to guide the search procedure to 
get more accurate results. The weighted-ASM also uses 
this evaluation information to project the searching shape 
into the solution shape space in a weighted way. 
Compared with the original method used in ASM, the 
weighted ASM can achieve more accurate results.  
Experimental results demonstrate that weighted ASM 
achieves better results than ASM does. The rest of the 
paper is arranged as follows. The origin ASM algorithm is 
briefly described in Section 2. In Section 3, we present our 
method of shape evaluation and weighted ASM. 



Experimental results are presented in Section 4 before 
conclusions are drawn in Section 5. 

 
2. OVERVIEW OF ASM ALGORITHM 

 
2.1. Statistical Shape Models 

 
Here we describe briefly the statistical shape models  used 
to represent deformable objects.  

The ASM technique relies upon each object or image 
structure being represented by a set of points. The points 
can represent the boundary, internal features, or even 
external ones, such as the center of a concave section of 
boundary. Points are placed in the same way on each 
example of the training set of examples of the object. This 
is done manually. One example is shown in figure 1. By 
examining the statistics of the positions of the labeled 
points a “Point Distribution Model” is derived. The model 
gives the average positions of the points, and has a 
number of parameters that control the main models of 
variation found in the training set. 

 

Figure 1. Labeled image with 87 landmarks 
 

The points from each image are represented as a vector 

ix  and aligned to a common co-ordinate frame. Principle 

Component Analysis [2] is applied to the aligned shape 
vectors to generate the ASM model. Three steps are 
needed for this task. 

1) Compute the mean of the aligned shapes  
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where s  is the number of shapes. 

2) Compute the covariance of the data 
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3) Compute the eigenvectors, iφ  and corresponding 

eigenvalues iλ of S (sorted so that 1+≥ ii λλ  ). 

Finally, the ASM model can be written as: 

)1(bxx Φ+=   

where x is the mean shape vector, 

|}|||{ 21 tφφφ ⋅⋅⋅=Φ contains the t eigenvectors 

corresponding to the largest eigenvalues, and b is a 
vector of shape parameters. For a given shape x , its shape 
parameter b is given by  

)( xxb T −Φ=  

       The vector b  defines a set of parameter of a 
deformable model. By varying the elements of b  we can 
vary the shape x , using the equation (1). By applying 
limits of the parameter b  we ensure that the shape 
generated is similar to those in the original training set. 
The ASM search procedure is an iteration procedure of 
two steps: local appearance matching and estimating of 
shape parameters. Each time it uses local appearance 
model to find a new shape. Then it updates the model 
parameter to best fit the new search shape [4].  
 
2.2. Local Appearance Models 
 
The local appearance models, which describe local image 
features around each landmark, are modeled as the first 
derivative of the sample’s profiles perpendicular to the 
landmark contour to reduce the effects of global intensity 
changes [4]. They are normalized by dividing through by 
the sum of absolute element values. It is assumed that the 
local models are distributed as a multivariate gaussian. For 

the jth landmark, we can derive the mean profile 
x
jg and 

the covariance matrix
jgS from the jth profile examples. The 

quality of fitting a new sample 
x
jg  to the model is given 

by ( ) ( )j
x
jg

T
j

x
j

x
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j
−−= −1)( , calculating the 

Mahalanobis distance of the sample from the model mean. 

It is linearly related to the log of the probability that 
x
jg  is 

drawn from the distribution. At the current position, when 
searching points, the local appearance models find the 
best candidate in the neighborhood of the search point, 

by minimizing the )( x
jj gf , which is equivalent to 

maximizing the probability that 
x
jg comes from the 

distribution. 



Using the local appearance models lead to fast 
convergence to the local image evidence. However, due to 
the variation of the illumination and image quality, 
sometimes the feature point is not accurately located. So 
some points could be stuck in local minima, despite that 
they are not the destination points . Fortunately, most of 
these local minima have bigger distance from the 
distribution, because it is less probably that they come 
from this distribution. In this paper, this information is 
used to drag these points out of the local minima so as to 
give more accurate results. 

 
3. SHAPE EVALUATION FOR ASM 

 
3.1. Problems from ASM Shape Matching 
 
For the general problems of matching a model instance to 
an image, there are several approaches which can all be 
thought of as optimizing a cost function. For a set of 
model parameters p , we can generate an instance of the 

model projected into the image. We can compare this 
hypothesis with the target image, to get a function )( pF . 

The best set of parameters to match the object in the 
image is then the set which optimizes this measure. For 
instance, if )( pF  is an error measure, which tends to 

zero for a perfect match, we would like to choose 
parameters, p , which minimize the error measure. Thus, in 

theory all we have to do is to choose a suitable fit 
function, and use a general purpose optimizer to find the 
minimum. The minimum is defined only by the choice of 
function, the model and the image, and is independent of 
which optimization method is used to find it.  

As one of such matching approaches, active shape 
model (ASM) is to find the set of shape parameters which 
best match the shape model to the shape of the object in 
the image. However, in the case of ASM, the form of the 
fit measure for the shape models is harder to determine. If 
we can assume that the shape model represents 
boundaries and strong edges of the object, a useful 
measure is the distance between a given model point and 
the nearest strong edge in the image strongest nearby 
edges. This measure relies upon the target points. If some 
of the shapes are not the strongest edges, it will not be a 
true measure of the quality of fit. Given no initial 
knowledge of where the target object lies in an image, we 
can only use the information in the training images. So in 
this paper, rather than looking for the best nearby edges, 
we sample the image around the current model points, and 
determine how well the image samples match models 
derived from the training set, which will be described 
below. 
 

3.2. Shape Evaluation Using Local Appearance Models 
 
As the form of the fit measure for the shape models is hard 
to determine exactly, we use shape evaluation to 
approximate it instead. In this paper, shape evaluation is 
to determine how much the current shape resembles the 
destination shape. Because shape is represented by a set 
of points, each of which has a local appearance model, the 
shape evaluation proposed in this paper is based on this 
local appearance model. By this method, both the points 
in the shape and the whole shape can be evaluated. 

The local appearance models find the best searching 
candidates in their neighborhood by 

minimizing )( x
jj gf when ASM searching points , as 

discussed in section 2.2. For the jth point of shape x , the 

minimum value )]([min
x
jj

j gfMinf =  indicates the 

likelihood that the searching candidate point comes from 
the local appearance model.  

Now, we can evaluation each point in a shape 

by jfmin  . But how can we evaluation the whole shape? As 

it is composed of all the points, we 

define ∑
=

=
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min)( , where N is the number of 

points in the shape, as the shape’s evaluation. It is 
reasonable because )(xE  is linearly related to the log of 

the product of the probabilities that each
x
jg  come from the 

jth point’s distribution. This shape evaluation can 
measure the extent that the current shape gets close to the 
destination shape. The smaller the evaluation is , the closer 
the shape gets to the destination.  
 
3.3. Shape Evaluation for Choosing the Best Searching 
Result within a Multi-Resolution Level 
 
The searching procedure is implemented in a multi-
resolution way. To get the best searching shape of a level, 
we must have a measure to decide which one is the best. 
However, we haven’t such a measure. So, we can use the 
shape evaluation information for this purpose. Though 
the shape evaluation discussed in section 3.2 can measure 
the extent that the current shape gets close to the 
destination shape, it does not always work right. So we 
have to adjust its results when it is used. Fortunately, we 
have observed that the best searching shape nearly 
always lies in the three shapes which have the smallest 
shape evaluation value. So we can choose the best one 
from these three shapes. As shown in Figure 2, 

321 ,, SSS are the three shapes with the smallest shape 

evaluation value.  



Now we can calculate the distance between these 
three shapes. We can think that the better two shapes will 
have smaller distance, because they better shapes tend to 
converge. Without loss of generality, if we 
assume 321 ddd << , the best shape would be 1S or 2S . 

We can choose one from them. The problem is now which 
is the better of them. If the other shape 3S is a good 

shape, the best shape may have smaller distance from it. 
In this case, the best shape would be 2S . If 3S  is a bad 

shape, the best shape may have bigger distance from it. IN 
this condition, 1S would be the choice. But how can we 

decide when the other shape 3S is good or not? We do 

this by checking the value
1

2

d
d

. If r
d
d

<
1

2 , 3S is thought 

to be a good shape, otherwise it is a bad shape.  

 
Figure 2. Three shapes with the smallest evaluation 

value 
 
3.4. Shape Evaluation for Weighted Projection to the 
Solution Shape Space 
 
The ASM search procedure is an iteration procedure of 
two steps: local appearance matching and estimating of 
shape parameters. Local appearance matching is 
performed using local appearance models derived from the 
training set and can be evaluated by shape evaluation. 
Here we will address the problem of the shape parameter 
estimation. 

For the current searching shape x , ASM try to 

generate a corresponding shape px in the solution shape 

space in order that px is similar to those in the original 
training set. Here we use solution shape space to denote 
the shape space spanned by equation (1), which 
represents the global shape model obtained from the 

training set. To find the solution shape px for the 
searching shape x is a projection from the searching 

shape space to the solution shape space. So px can be 
denoted as  

bxx p Φ+=  

where |}|||{ 21 tφφφ ⋅⋅⋅=Φ  containing the t 

eigenvectors corresponding to the largest eigenvalues, 
and b is the t dimensional shape parameter of the solution 

shape space. The projection shape px  is determined by 
Φ and b . Usually Φ is chosen empirically so that the 
solution shape space represents some proportion (e.g. 
98%) of the total variance of the training shapes. So the 
projection can be finished by only calculating the shape 

parameter. This is performed by )( xxb T −Φ= . In the 

words of PCA, px is the principal component projection 
of x , which minimizes the squared reconstruction error 

)()(|||| 2 pTpp xxxxxxERR −−=−=  

ASM is an orthogonal projection scheme. We will see 
that by the means of shape evaluation, a more rational 
projection scheme can be derived, that is the weighted 
projection scheme. 

As discussed in section 3.2, for a given point j in a 

shape, the searching minimum value jfmin indicates the 

likelihood that the searching candidate point comes from 

the point j’s local appearance model. The smaller jfmin is, 

the closer the searching candidate point might be to the 
destination position. Based on this observation, the 
projection shape should be closer to the points with 

smaller jfmin . Now, in order that the projection shape is 

closer to the points with smaller jfmin , another shaper p
wx  

should be found in the solution shape space to minimize 
another reconstruction error  

)()( pTp
w xxWxxERR −−=  
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is a NN 22 × diagonal weight matrix with 
i

ii fww min212 /1==−  

So the next task is to find a shape p
wx to minimize wERR . 

As bxx p
w Φ+= , we can have 
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So 
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1
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Now the weighted projection is performed by calculating 
the shape parameter in the solution shape space with 
equation (2). 
 
3.5. Adjust the Weight Matrix 
 
In the previous section, we simply choose weight 

matrixW that i
ii fww min212 /1==−  . There is a problem 

with this method, i.e. if is wrong in the case that point j is a 
local minima or false alarm, the weight for this for this 
point will be wrong. So measures must be taken to reduce 
possibility that such things happen. In this paper, two 
methods are used. First, the stabilities of the searching 
points’ evaluation and position are used to adjust the 
weight matrix. Then noises in the weight matrix are filtered.  

The stability of the searching point’s evaluation 
jfmin indicates whether it is correct or not. For example, if 

point j is not close to the destination position, jfmin will 

vary a lot. Let 
j

tf )min( and 
j

tf )1min( + to be the successive 

evaluation of point j, and define || )1min()min(
j

t
j

t
j
ft ffd +−= . 

If point j is close to the destination position, 
j
ftd will be 

small, which means that jfmin has converged. So we can 

increase its weight when jfmin is small. 

The correctness of jfmin can also be checked through 

the point’s position. If point j has not located near the 
destination position, its position will vary a lot, and the 
distance between the same points in successive searching 
shapes will be large. If it has converged to the destination 

position, the distance will be small. Let j
tp and j

tp 1+ to be 

the successive positions of point j, and 

define || 1
j

t
j

t
j
pt ppd +−= . If 

j
ptd is small, it means that 

point j is probably close to the destination position. So we 

can increase its weight when 
j
ptd is small.  

As jfmin ,
j
ftd and 

j
ptd are all negatively related to point 

j’s weight, we can combine them linearly and finally define 

)/(1 min212
j
ft

j
ft

i
jj ddfww βα ++==− , where βα , are 

related to the local appearance model and the current 
searching level. 

If we look at the diagonal elements of the weight matrix 
as a sequence of signal, there could be noise in it. As we 
want to filter the local minima, so we must be careful about 

the large elements. If jw2 is large, then 

)1(2 −jw and )1(2 +jw will be large too. We define 

jjjjjj wwwwwwMaxl 2)1(222)1(22 /||,/|(| +− −−= I

f l is small than a threshold, point j is probably the local 
minima. So small weight must be given to it. We must note 
that as the shape points of different organs in the face (e.g. 
nose, eye, and mouth) are spatially continuous, their 
noises must be filtered respectively. 
 
3.6. Weighted-ASM Search Procedure 
 
Our full search procedure is similar to ASM method. It is 
implemented in a multi-Resolution way. The whole 
iterative procedure is as follows:   
1. Use face detection algorithm to detect face and 

initialize the shape x  

2. Set level L  to be the maximum level maxL , i.e. 

maxLL =  

3. Search each local point and get the new shape x′  
4. Use weighted projection(section 3.3) to project 

x′ into the solution shape space, and get the 
parameter b  

5. Apply constraints on b  
6. if the shape converged or the maximum iterations 

have been applied at this resolution 
a) choose the best result of this level using the 

method described in section 3.2 
b) If 0>L , let 1−= LL and go to step 3, 

otherwise go to step 8 
7. Go to step 3. 
8. Final result is given by the parameter b at level zero  
 



4. EXPERIMENTS 
 
We manually labeled 400 pictures with the size of 

.200200 ×  87 landmarks are labeled on each image. We 
select 200 images as the training and the other 200 images 
as the test images. We compare the distance between 
search shape and the manually labeled shape. 

First we calculate the displacement of each single point 
location result to the corresponding labeled point and get 
the result as shown in Figure 3. The x-coordinate is the 
pixel of displacement between search points and the 
labeled points. The y-coordinate is the percentage of the 
number of the points whose displacement to the labeled 
points is x-value. We can see that weighted-ASM gets 
more accurate results than ASM. 
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Figure 3. Point displacement of test result. 

 
m (%) The number of 

images 
<-5 7 
-5<m<0 15 
0<m <5 38 
5<m <10 50 
10<m <15 43 
15<m <20 24 
20<m  23 
Table 1. Overall displacement compare 

 
For each test image, we calculate the overall 

displacement of the search shape to the labeled shape. 
The distance of two shapes is defined as follows: 

( ) ( )∑
=

−+−=
P

j

yyxxDis
0

2
21

2
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where P is the total number of landmarks, which is 87 in 
our system For each test image, we calculate the DisA, 
which is the distance of ASM search shape to the labeled 
shape and also the DisW, which is distance of W-ASM 
search shape to the labeled shape. We calculate the value  

( ) %100/ ×−= DisADisWDisAm  

Which imply the percentage of improvement of DisW. 
When m<0, that is DisW>DisA, it means that the search 
result of Weighted ASM is worse than ASM. In the table 
1, we can see that Weighted ASM works worse in 22 
images, and works better than ASM in the remaining 178 
images.  

5. CONCLUSIONS 
 
In this paper, a shape evaluation method and a new search 
algorithm, called weighted ASM, are proposed. The shape 
evaluation is based on the local appearance model of 
ASM to determine how well the searching shape match 
models derived from the training set. It is used to guide 
the search procedure to get more accurate results. The 
weighted-ASM also uses this  evaluation information to 
project the searching shape into the solution shape space 
in a weighted way. Compared with ASM’s orthogonal 
projection, the weighted projection can drag the search 
out of local minima to be more accurate and more robust. 
Experiments have been done to show the ability of this 
method to align shapes. We compare our weighted ASM 
with the classic ASM algorithm and better results are 
achieved. 
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