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Abstract

An affine-invariant (AI) deformable contour model for object matching, called Al-EigenSnake (AI-ES), is proposed in the Bayesian
framework. In AI-ES, the prior distribution of object shapes is estimated from the sample data. This distribution is then used to constrain the
prototype contour, which is dynamically adjustable in the matching process. In this way, large shape deformations due to the variations of
samples can be tolerated. Moreover, an Al internal energy term is introduced to describe the shape deformations between the prototype
contour in the shape domain and the deformable contour in the image domain. Experiments based on real object matching demonstrate that
the proposed model is more robust and insensitive to the positions, viewpoints, and large deformations of object shapes, as compared to the
Active Shape Model and the Al-Snake Model. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Deformable models have been studied intensively during
the last 10 years [1,3—6]. They have been demonstrated to
be more effective in object matching and able to adapt
themselves to fit objects more closely than the traditional
rigid models. Generally, deformable models can be classi-
fied into two classes [6,17,24]: the free-form models and the
parametric models. The free-form models, e.g. active
contours or snakes, can be used to match an arbitrary
shape that provided some general regularization constraints,
such as continuity and smoothness, are satisfied [25,27].
Although the free-form models also act as interactive
tools for object extraction and image segmentation, the
parametric models are more constrained because some
prior information of the geometrical shape is incorporated,
and hence are more robust to irrelevant structures and occlu-
sions when used to detect specific shapes of interest.

The parametric models, such as deformable templates
[6-8,18,19,21,26], G-Snake [9] and Active Shape Model
(ASM) [5,15,20], encode specific characteristics of a
shape and its variations using a global shape model, which
is formed by a set of feature parameters or well defined
landmark/boundary points of that shape. A quite successful
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and versatile scheme in this class is that of Bayesian statis-
tics-based shape models [6,9,16,23]. In these models, both
prior knowledge and observation statistics are used to define
the optimal Bayesian estimate. However, most existing
parametric models in the Bayesian framework (e.g. G-
Snake) encode the shape information in a ‘hard’ manner
in that the prototype contour is fixed during the matching
process. As a result, only a small amount of local deforma-
tion can be tolerated. To remedy this short-coming, a
deformable model with the name of °‘EigenSnake’ is
proposed in the Beyasian framework [10], where the proto-
type contour can be adaptively adjusted in the process of
object matching. Comparative studies based on face extrac-
tion experiments verified that the EigenSnake performs
better than its fixed counterpart.

In 3D object matching using 2D images, the object shapes
are subject to projections such as affine transformations,
therefore the algorithms developed should be able to deal
with shearing of object shapes, as well as rotation, transla-
tion, and scaling. Unfortunately, most deformable models
(including the G-Snake and EigenSnake models) are not
affine invariant, and the performance deteriorates when
the algorithms are applied to matching affine transformed
object shapes. Therefore, different affine-invariant (AI)
snake models are developed [2,11]. Recently Ip and Shen
developed an Al snake model (Al-Snake) [11], in which an
Al internal energy term of the deformable contour is
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proposed to match the objects. Although AlI-Snake has a
virtue of being affine invariant, it is sensitive to global
shape deformations, because its prototype contour remains
unchanged in the matching process as that of the G-Snake
model.

In this paper, an Al deformable contour model, called Al-
EigenSnake (AI-ES), is proposed in the Bayesian frame-
work. The AI-ES has the advantages of both the EigenSnake
model and AI-Snake model: The deformable contour used
to match an object is modeled as the affine-transformed and
deformed version of the prototype contour, and this proto-
type contour is dynamically deformable to adapt the shape
variations using the information gathered from the matching
process. The prior distribution of the prototype contour
obtained via PCA [5,12,22] which reflects the major shape
deformations, is used to constrain the admissible shapes. In
this way, large shape deformation due to the shape varia-
tions of samples can be tolerated. Moreover, to make the Al-
ES model more robust to rotation, translation, scaling and
shearing of object shapes, an Al internal energy term is
defined and incorporated into the model to describe the
shape deformations between the prototype contour in the
shape domain and the deformable contour in the image
domain.

Experiments comparing the AI-ES model with the well
known ASM model and the AI-Snake model are presented
in the context of matching hand objects. The aim is to eval-
uate how prior constraints of the prototype contour, object
shape deformations and different viewpoints have affected
the matching results. The results demonstrate that in terms
of accuracy the AI-ES outperforms the other two models in
matching object when there exists large shape deformations,
and is less sensitive to the variations in viewpoints and
positions of the object. The second set of experiment
deals with face detection under in-plane rotation; the effec-
tiveness of the AI-ES is illustrated by matching the frontal
faces with different in-plane rotation angle.

The rest of the paper is organized as follows. Section 2
describes the AI-ES model in detail. In Section 3, a
comparative study among the ASM, the Al-Snake and the
proposed AI-ES is presented by matching a series of hand
objects. The AI-ES model is also applied to extract the
rotated frontal face in this section. Section 4 derives the
conclusion from this study.

2. Affine-invariant deformable contour model: AI-ES
2.1. Bayesian framework and energy terms

The matching of a deformable contour to the object in a
given image can be formulated as a maximizing a posteriori
(MAP) estimation problem. Denote the mean of the sample
contours in the shape domain as £, (the mean contour), the
deformed version of f; and f (the prototype contour), and the
deformable contour in the image domain as f, where

fo € R*", f€ R*™ and f € R™" are the matrices represent-
ing the corresponding contours formed by the coordinates of
N landmark/boundary points. According to the Bayesian
estimation, the joint posterior distribution of f and f,

p(ffld), is

pdlNpf.f)
p(d)

p(f.fld) = ey

where p(d|f) = p(d|f.f) is the likelihood distribution of

input image data d.

p(f.f) = p(flHp(H) @

is the joint prior distribution of f and f. For a given image d,
the MAP estimates, fiyap and fyap, can be defined as:

{fmap-fmap} = arg H}?X {p(f.fld)}

3
rr p(d) ©)

_ {p(dlf)p(flf)p(f) }
=arg max3 ————————=
When the densities can be modeled as Gibb’s distribution,

ie.

() =Z 'exp{ = Econ()}
p(f1F) = Z3 'exp{ — Ew(f|P)} 4)
pd|f) = Z3 'expl — Eex(d|f))

where Z,, Z, and Z; are the partition functions, maximizing
the posterior distribution is equivalent to minimizing the
corresponding energy function of the contour:

{fMAP’f_MAP} = arg I?}n {Econtour} (5)

where Econtour = Econ T Eint T Eext- Econ = con(f) is the
constraint energy term of the adjustable prototype contour
£, which limits the variations of f and ensures that fis similar
with f in shape. E,,, = E;,(f|f) is the internal energy term
that describes the global and local shape deformation
between f and f. The external energy term E = E.(d|f)
defines the degree of matching between f and the salient
image features.

2.2. Constraint energy of the prototype contour

The constraint energy term E.,, of the prototype contour
is caused by the prior distribution of the samples in the
shape domain. The density of f, p(f), can be estimated by
applying PCA to the sample contours. In cases where all the
samples are aligned views of similar objects seen from a
standard view, this distribution usually be approximated
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Aligned Contour

Fig. 1. A part of the prototype contour f and the aligned deformable
contour f.

reasonably well by a single Gaussian distribution [12].

1Y w,-2

p(H= - (6)
em"?[a”
k=1
where
w= ®y(f — fo) 7

is the vector of the shape parameters, and f — f; is the defor-
mation from f, to f. @, is the matrix composed of the
eigenvectors corresponding to the largest M eigenvalues
e, (1 =i=M), which is computed from the covariance
matrix of all the sample contours. Therefore, using the
PCA, a prototype contour can be reconstructed from f,
and a given w,

f=Ffo+ Pyw (8)

Note in Eq. (8), f and f, have been expanded to 2N X 1
vectors. The PCA representation preserves the major linear
correlations of the sample shapes and discards the minor
ones, hence provides an optimized approximation of f in
the sense of least squares error. This representation
describes the most significant modes of the shape variations
or the global shape deformations subject to the prior distri-
bution of the prototype contour. From Eq. (6), the corre-
sponding constraint energy is denoted as

S

1 wiz
52, €))

1 €

ECOI] =

The variations of the prototypes contour is limited by the
plausible area of the corresponding shape parameters w,
which is defined as:

2

Wi~

M

X

(10)

€

i=1

The threshold, M,, may be chosen using the y? distribution
[5]. The constraint energy term ensures that the dynamically
adjustable prototype contour remains similar with the mean
shape during the matching process, and at the same time,

large shape variations and deformations subject to the prior
distribution of the samples can be tolerated.

2.3. Affine-invariant internal energy

An Al internal energy term, Ei,(f|f), is defined and
incorporated the AI-ES to deal with the affine transforma-
tions between the shape domain and the image domain,
which describes the global and local shape deformations
between f and f. Mathematically,  and f are related by f; =
T(f)+e=Af, +t+¢€ (1=i=<N), where A is a 2X2
nonsingular matrix, t is a translation vector, and € represents
the deformation. Define the least squares objective function
as

N

EA = [(fi —A' (i — ) (i —A'(i— )] (1)

i=1

the affine transformational parameters can be estimated by:
A=(f = fIF =F)HF = Fu)(F =F)T" (12)

f: [i'[l’l’-“sl]]ZXN :fav_Af_av (13)

where fo, = [(IINS f)-[1,1,..11lsy and f, = 1/NX
> fi-[1,1,...1],xy are the matrices formed by the average
points of f and f, respectively. Matrix [(f — fo)-(f — fa)']
is always nonsingular provided there exist at least three
points in f, which are not located in the same line.

Let (A, ;) be the estimated transformational parameters
between f and f, if f is affine-transformed to f', i.e. f} =
A'f.+t/, 1 =i=N, according to Egs. (12) and (13), the
estimated transformational parameters between f and f'
will be (A’A;,A’t, + t'). Therefore, the values of the objec-
tive function remain unchanged under affine transforma-
tions, and hence the global internal energy term of the
deformable contour is designed as,

_ | LA R S Al
EgufIN = 5 D1 = A7 =0 (i = A7(f; = )
i=1

(14)

where the transformational parameters (A,f) are calculated
by Egs. (12) and (13). This internal energy indicates the
global matching degree between the deformable contour f
and the prototype contour f.

In addition, a local internal energy term is also defined by
affine invariants: the proportion of area [11],

(S) + S)AREA o
AREA

Ein(filf) = (15)

aligned

S1 = S(fi-1ofi".f) and Sy = S(fi.fi".fix1). where S() is the
area of the triangle formed by the three points inside the
brackets. AREA, and AREA,jgneq represent the interior
areas formed by the hull of the prototype contour and the
aligned deformable contour (ff = AT f; — D) in the shape
domain, respectively. Fig. 1 shows the geometrical relation-
ship between S; and S,. It can be seen from the figure that,
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when the areas of the triangles S| and S, are close to zero, the
shape and position of £ and f will also be close. When the
contour represents an open shape, the local internal energy
at the endpoint of the contour will not be calculated.

In summary, the Al internal energy is composed of both
the global and local terms,

_ _ 1 Y _
Ei(f11) = Egn (/1D + 5 2 Bin(fil ) (16)
i=1

which reflects the degree of fitting between £ and f.

2.4. External image constraints

The external energy term E., = E(d|f) indicates the
degree of matching between the deformable contour f and
the salient image features. Minimizing E.,, adjusts f and
moves it towards the object boundary in the image d. The
external energy usually combines all the information of
edge, texture, color and region, etc, so that it can provide
an effective description of the matching. For example, the
color information can be combined into the edge detection
process, so that the edge maps will accurately stand for the
boundaries of the interested objects. Among various match-
ing rules and external energy terms used in the literature, the
energy term including both the gradient and directional
edge information is utilized because of its simplicity and
efficiency [8].

First, the image d = {d(x,y)} is smoothed using Gaussian
function, G (x,y), with the deviation o.

dy(x,y) = G(x,y)d(x,y) (17

Second, the normalized gradient of the smoothed image
d, at each pixel location (x, y), denoted d&(x,y) =
(d(6.y). 5. y). (ldECx )| € [0,1]), is computed.

At last, constraints on the deformable contour f ensure
that f moves towards the object boundaries: when the
image pixels along the contour have high gradient magni-
tude, and the direction of the image gradient along the
contour is perpendicular to the orientation of the contour,
the external energy is small. Therefore, the external energy
function is defined as:

N
Ee(dlf) = > (1 = 5 yDInGe, y) hee vl (18)
i—1

where - is the dot product. h(x,y) is the direction of the
gradient d§(x,y), h(x,y) = d3(x, y)/[d3(x, y)|| and [[h(x, y)|| =
1. n(x;, y;) indicates the normal vector of the contour f at point
fi = (), with [In(x;, y,)[| = 1 and

0 -1
n(x;,y;) = vi/HVi”’
1 0

where  v; = (firr —ffiv1 = FID + (fi = fic)Afi —

fi—1l) is the tangent vector of contour f at point .

2.5. Computation of AI-ES solution

The computation of AI-ES is actually a solution finding
procedure that minimizes the energy term of the deformable
contour, E., - The strategies used in Refs. [6,5] are
adopted: Gaussian pyramid for coarse-to-fine search and
the rapid iterative approach to find the nearest plausible
prototype shape f (estimate A, t, and w) from f according
to the edge profile information.

A two-stage procedure is used: coarse and fine. In the
coarse matching, the coarse-to-fine search and the iterative
schemes are utilized, and the deformation between f and fis
not taken into account, so that a large initial range of the
contour can be tolerated. Generally, in this stage, K is
selected as three, and the convergence is declared when
applying an iteration produces no significant change in the
pose or shape parameters. In the fine matching stage, both of
the deformations between f and f, f and f;, are considered,
which can fit the object closely. The main steps to compute
the AI-ES solution are summarized as follows.

Stage 1 (coarse matching):

k = K, initialize contour f.

(a) Examine the image region around f, find out a new
contour candidate f ! which matches
image edge best (at resolution level k).
(b) Update the parameters of affine transform, 7(A, t), the
shape parameters w, and the
prototype contour f’, according to f' [5], where w is
constrained in the plausible area.
(c) Update the current contour fto T(f'), and the prototype
contour fto f'.
(d) Go to step (a) unless the newly updated fis close to the
old one, or the maximum iterations have been supplied.
(e) if k > 1, then k = k — 1, goto (a), else exit.

Stage 2 (fine matching):
k=1

(a) Calculate the internal and external energy terms, and
update the contour f.

(b) Update the parameters of affine transform T'(A, t), the
shape parameters w, and the prototype contour f, accord-
ing to f [5]. The constraints of w is applied to ensure the
prototype contour is in a plausible area.

(c) Repeat (a)(b) until convergence.

3. Experimental results

Two sets of experiments are presented to illustrate the
effectiveness of the AI-ES. The first compares the AI-ES
with the ASM and Al-Snake models for matching hand
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Fig. 2. Three training samples.

objects with different viewpoints and positions. The Eigen-
Snake model has not been compared because it is by virtual
unable to deal with affine transformation. The second is
carried out to demonstrate the good performance of the
AI-ES in matching the frontal faces with different rotation
angles (rotation in the image plane).

3.1. Comparative study

The AI-ES is compared with the ASM and Al-Snake
models in matching objects of hands in different viewpoints
and positions. The results of ASM are obtained by using the
ASM Toolkit (Version 1.0) of the Visual Automation Ltd
(http://www.wiau.man.ac.uk/VAL). The experiment data is
a series of hand images of size 240 X 179. 57 landmark/
boundary points are used to describe the boundary of a
hand in the image, and they are manually placed on the
hand’s outline of each training image. Fig. 2 plots three
examples of the sample contours. To characterize the
main shape of hand and its variations, the training set is
acquired using the images of hand with fingers in different
stretching angles. All the seven sample contours are aligned
so that they are normalized into a standard view (see Fig. 3).
These sample contours are then utilized to estimate the prior
distribution or energy constraints of the prototype contours
by applying PCA. The training set is the same for both ASM
and AI-ES; whereas in Al-Snake, the prototype contour is
fixed as the mean of the sample contours.

Fig. 3. All the seven aligned and normalized sample contours and the mean
contour of hand.

Fig. 4 shows several examples of the results obtained by
using the three models, in which the viewpoints of the hands
are quite different from those of the samples, or/and the
fingers are in different stretching angles. The initial contour
for each test image is the same for all the models. It can be
seen from the figures that with the fixed prototype contour
used in the AI-Snake model, the matching results are poor
when the stretching angle of the fingers changes greatly (it is
unable to deform globally). For the ASM, good matching
performance can be obtained when the position and view-
point is similar to the sample data (refer to row 3, column 1).
However, because the ASM model relies greatly on the
training data (including the object and the background of
the sample images), when the viewpoints and/or the shape
change, it may not match the hand object closely (row 3,
column 2-4). In comparison to that, the AI-ES is able to
match objects more closely with different viewpoints and
stretching angle of fingers (last row). The experiment indi-
cates that by using the specific prior distribution of shapes
and the Al internal energy constraint, the AI-ES is more
robust and insensitive to large deformation and viewpoint
of objects, resulting a much better performance that the
other models.

3.2. Matching rotated frontal faces using AI-ES

Face detection, extraction, and recognition play an impor-
tant role in automatic face recognition systems. In practice,
the users may be expected to detect, match, or recognize
faces at any angles. For example, in Ref. [13], a template
matching is used, and the rotations are dealt with by
enumerations of various rotated versions of the template.
In the following experiments, the AI-ES is used to match
the frontal faces with different rotation angles.

A contour with 89 landmark/boundary points, which is
composed of six facial features: the face outline, brows,
eyes, and a mouth, is recruited to describe a full face. The
face images used for training are selected from the AR
frontal face database [14] (http://rvll.ecn.purdue.edu/
~aleix/aleix_face_DB.html), which consists of various
expression, male and female frontal face images. Fig. 5
shows two examples of the marked faces. All the sample
contours are aligned and normalized using least squares
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Fig. 4. Comparison of the three methods. Top: initial. Second row: Tracking results of AI-Snake. Third row: Results of ASM. Last row: Results of the proposed

AI-ES.

error method to constitute the shape space. The set of all
sample contours used in this experiment and the mean
contour are also plotted in Fig. 6. The face images used
for testing are chosen from the database of the Vision and
Autonomous System Center (VASC) of CMU (http://
www.cs.cmu.edu/afs/cs.cmu.edu/user/har/Web/faces.html),
including images with expressions, different rotation angles,
and complex image background.

Fig. 5. Samples of the marked frontal faces.

In facial feature matching procedure, first the whole face
contour model, as well as the separate shape models of its
various components (i.e. outline, eyebrow, eye, and mouth),
are built from the training samples. Then the whole face
contour model is utilized for matching in the coarse search-
ing stage. Because at this time the deforming face contour is
relatively faraway from the target contour, the outline points
are recruited to update the whole face contour, while the

S © = =B

<=

Fig. 6. All the sample contours and the mean contour.
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Fig. 7. Examples of AI-ES results for matching frontal faces(I).

other points are passively updated according to this
matching results. Therefore the initial component
contours can be quite far away from the target contours.
In the fine matching stage, all the 89 points are used to
match the full face accurately. In this procedure, two
steps are carried out iteratively: first each component
contour is used to match its corresponding facial feature
separately under the framework of AI-ES, then a shape
constraint is calculated based on the whole face model
to guarantee the correctness of the matching result, and
the corresponding affine transformational parameters are
updated. In this way, both global and local facial
features can be matched accurately.

Figs. 7 and 8 shows some examples, including the initial
contours and the final matching results, where the initial

Table 1
Accuracy of matching of AI-ES (Unit in pixel)

Figure Average error of
initial contours

Average error of
matching results

Fig. 7(a) 329 24
Fig. 7(b) 353 2.9
Fig. 7(c) 39.4 35
Fig. 7(d) 413 4.1
Fig. 8 384 47

| £
S74F5001 WOATEM WMODND

Fig. 8. Examples of AI-ES results for matching frontal faces(II).

contours are properly placed manually as a common prac-
tice for snakes. It can be seen from the figures that AI-ES
matches the faces closely even when they are in different
positions and in-plane rotation angles. Table 1 gives some
quantitative results of the matching. The accuracy of match-
ing is defined as the average square error among the aligned
points of the matching result and those of the target object
marked manually. From the table it can be seen that the
average errors of the matching results are very small,
which indicates the target objects are matched accurately.
In addition, the computational time for extracting the facial
features (89 landmark points) is recorded, which is around
0.12 s per iteration under the environment of Matlab 5.2
using SUN Ultra 10 workstation, and it generally takes
less than 20 iterations for the AI-ES to converge. The
experimental results for facial feature extraction again
verify the effectiveness of the proposed AI-ES model: flex-
ible to large shape deformations subject to the sample data,
and at the same time, robust to the positions and viewpoints
of objects.
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4. Conclusions

An effective Al deformable contour model, AI-ES, is
developed in the Bayesian framework. The AI-ES allows
large deformations for object matching under affine
transformations. The global shape variation is modeled
using the prior shape knowledge by PCA, and an Al internal
energy is utilized to describe the shape deformations
between the prototype contour in the shape domain. As
such the contour is deformed to fit the object in a way
which not only reflects shape variations in the training set,
but also matches object closely under different translations,
rotations, scaling and shearing of object shapes. Compara-
tive studies show that the AI-ES produces more accurate
results than the ASM and Al-Snake models. The effective-
ness is further demonstrated through face extraction experi-
ments. Although the AI-ES is used in this paper for face/
hand extraction, the model may be applied to other applica-
tions such as object segmentation and tracking, as long as
set of training samples of object shapes is available.
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