
1618 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004

Learning Activity Patterns Using Fuzzy
Self-Organizing Neural Network

Weiming Hu, Dan Xie, Tieniu Tan, and Steve Maybank

Abstract—Activity understanding in visual surveillance has attracted
much attention in recent years. In this paper, we present a new method for
learning patterns of object activities in image sequences for anomaly de-
tection and activity prediction. The activity patterns are constructed using
unsupervised learning of motion trajectories and object features. Based on
the learned activity patterns, anomaly detection and activity prediction can
be achieved. Unlike existing neural network based methods, our method
uses a whole trajectory as an input to the network. This makes the network
structure much simpler. Furthermore, the fuzzy set theory based method
and the batch learning method are introduced into the network learning
process, and make the learning process much more efficient. Two sets of
data acquired, respectively, from a model scene and a campus scene are
both used to test the proposed algorithms. Experimental results show that
the fuzzy self-organizing neural network (fuzzy SOM) is much more effi-
cient than the Kohonen self-organizing feature map (SOFM) and vector
quantization in both speed and accuracy, and the anomaly detection and
activity prediction algorithms have encouraging performances.

Index Terms—Activity prediction, anomaly detection, fuzzy SOM,
learning activity patterns.

I. INTRODUCTION

Visual surveillance has attracted much attention in the computer vi-
sion community due to its potential applications. The main problem
in visual surveillance systems include motion detection, object clas-
sification, tracking, activity understanding, and semantic description.
Motion segmentation, moving object classification, and tracking have
been widely studied for many years [30], [31], while activity under-
standing and semantic description have attracted much attention in re-
cent years [1], [2], [37]. Activity understanding involves analyzing and
recognizing motion patterns of objects, and producing high-level de-
scriptions of object activities, and multiobject interactions. This paper
focuses on activity understanding, and in particular, the learning of ac-
tivity patterns, anomaly detection, and activity prediction. Other impor-
tant issues, such as object tracking, are discussed elsewhere [4]–[6].

Most current visual surveillance and activity recognition systems
depend on known scenes [19], where the objects move in predefined
ways. These methods are not adaptable to changing environments be-
cause for each scene, one set of object activities has to be defined, and
the definition of object activities must be updated as object activities
are changed. Furthermore, it is hard to pre-define all object activities
in some situations. Therefore, it is highly desirable to construct a
general approach for activity recognition based on the activity patterns
automatically generated by the self-organizing method or other
effective methods [3]. Some previous efforts have been made to handle

Manuscript received November 23, 2003; revised January 19, 2004. This
work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grants 60105002, 60373046, and 40335010, the
Natural Science Foundation of Beijing under Grant 4031004, the National
863 High-Tech Research and Development Program of China under Grant
2002AA117010-11 and 2002AA142100, the International Cooperation Project
of Beijing, and the LIAMA Project. This paper was recommended by Associate
Editor H. Ishibuchi.

W. Hu, D. Xie, and T. Tan are with the National Laboratory of Pattern Recog-
nition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080,
China (e-mail: wmhu@nlpr.ia.ac.cn; dxie@nlpr.ia.ac.cn; tnt@nlpr.ia.ac.cn).

S. Maybank is with the School of Computer Science and Information
Systems, Birkbeck College, London WC1E 7HX, U.K. (e-mail: sjmaybank@
dcs.bbk.ac.uk).

Digital Object Identifier 10.1109/TSMCB.2004.826829

this problem. Fernyhough et al. [22] establish spatio-temporal regions
by learning the results of tracking the objects in a video sequence, and
constructing a qualitative activity model by qualitative reasoning and
statistical analysis. Johnson et al. [23] describe a statistical model for
object trajectories generated from image sequences. The movement of
objects is described using the positions and velocities of the objects
in the image plane. The statistical model of object trajectories is
formed with two competitive learning networks which are connected
with leaky neurons. Johnson et al. [24] generalize this method to the
learning of interactions among humans, for example shaking hands.
Stauffer et al. [25] present a method very similar to [23] where the
learning activity patterns are used in real-time tracking. In this method
joint co-occurrence statistics are accumulated over a codebook by
treating the set of representations in each sequence as an equivalency
multiset. Sumpter et al. [26] present a novel approach for learning
long-term spatio-temporal patterns of objects in image sequences,
using a neural network paradigm to predict future activities. Owens
et al. [27] determine whether a point on a trajectory is normal using
the distributions of flow vectors.

Given the desirability of automatically constructing activity patterns
by self-organizing learning without prior knowledge of the pattern
classes (namely without predefining motion patterns of objects), we
propose a new self-organizing method for learning activity patterns
for anomaly detection and activity prediction. The learning process is
to classify the activity patterns represented by trajectories. By learning
the trajectories and features of moving objects, the activity patterns
are built up. Based on the learned activity patterns, our algorithm can
detect anomalies and predict object activities. The main contributions
of this paper are as follows.

1) A novel network mapping method is proposed to use a whole tra-
jectory as an input to the network. This makes the network struc-
ture much simpler and the learning process much more efficient.

2) A fuzzy self-organizing neural network (fuzzy SOM) is based
upon a learning algorithm that uses the batch manner [21] to
introduce improved learning speeds and accuracy.

3) Mathematical methods are presented to detect anomalies and
predict activities using the learned activity patterns.

This paper is organized as follows. Section II briefly reviews the
related work. Section III introduces the method for acquiring training
data. Section IV presents the fuzzy SOM method for learning activity
patterns. Section V covers anomaly detection and activity prediction.
Section VI describes experimental results. The last section summarizes
the paper and discusses future work.

II. RELATED WORK

In Section I, we have reviewed the references which concern
construction of activity patterns by unsupervised learning in order to
strengthen the motivation of this paper. These references are closely
related to this paper. For completeness, we review in this section
activity understanding methods by supervised learning. The major
existing methods are outlined as follows.

1) Dynamic time warping (DTW): DTW is a template-based dy-
namic programming matching technique. It has been widely used for
speech recognition in the early days and has been used recently in the
matching of human movement patterns [7], [8]. For instance, Bobick
et al. [8] use DTW to match an input signal to a deterministic sequence
of states. Even if the time scale between a test pattern and a reference
pattern is inconsistent, DTW can still successfully establish matching
as long as the time ordering constraints hold.

2) Finite state machine (FSM): The most important feature of a FSM
is its state-transition function. The states are used to decide which refer-
ence sequence matches with the test sequence. Wilson et al. [9] analyze

1083-4419/04$20.00 © 2004 IEEE

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004 1619

the explicit structure of natural gestures where the structure is imple-
mented by an equivalent of a finite state machine but with no learning
involved. Bremond et al. [10] use hand crafted deterministic automata
to recognize airborne surveillance scenarios.

3) Hidden Markov models (HMMs): An HMM is a kind of stochastic
state machine. HMMs generally outperform DTW in the processing of
undivided successive data, and are therefore extensively applied to ac-
tivity understanding. For instance, Starner et al. [11] propose an HMM-
based approach for the recognition of sign language. Oliver et al. [12]
propose and compare two different state-based learning architectures,
namely, HMMs and CHMMs (coupled hidden Markov models) for
modeling people activities and interactions. The CHMMs are shown to
work much more efficiently and accurately than HMMs. Brand et al.
[13] show that by minimizing the entropy of the joint distribution, a
HMMs internal state machine can be made to organize observed activ-
ities into meaningful states.

4) Time delay neural network (TDNN): TDNN is also an interesting
approach for analyzing time-varying data. As larger data sets become
available, more emphasis is being placed on neural networks for repre-
senting temporal information. TDNN has been successfully applied to
hand gesture recognition [14] and lip-reading [15]

5) Syntactic techniques [16]: The syntactic approach in machine vi-
sion has been studied mostly in the context of pattern recognition in
static images. Recently the grammatical approach has been used for
visual activity recognition. Brand [17] uses a simple nonprobabilistic
grammar to recognize sequences of discrete activities. Ivanov et al. [16]
describe a probabilistic syntactic approach to the detection and recog-
nition of temporally extended activities and interactions between mul-
tiple objects.

6) Nondeterministic finite automaton (NFA): Wada et al. [18] em-
ploy NFA as a sequence analyzer. They present an approach for multi-
object activity recognition based on activity driven selective attention.

III. ACQUISITION OF TRAINING DATA

To learn object activity patterns, the training data representing object
activities should be acquired. Our training data are composed of the
features of trajectories and the features of moving objects.

Trajectories are acquired by tracking moving objects [4]–[6].
The centroids of an object at different times are connected to
form a trajectory. Trajectories are sampled at fixed time intervals
(once every �t frames). Given an object o, the two–dimensional
(2-D) image coordinates of its centroid at the ith sampling are
(xi; yi). After sampling n times, we obtain a point sequence
To which is composed of n pairs of 2-D image coordinates:
To = f(x1; y1); (x2; y2); . . . ; (xi; yi); . . . ; (xn�1; yn�1); (xn; yn)g.
We use (�xi; �yi) (�xi = xi+1 � xi, �yi = yi+1 � yi) to represent
the apparent velocity of the object at time i. The velocity is very
important for measuring the similarity between trajectories. At the
ith sampling, the position of the object and its instantaneous velocity
are represented by a flow vector fi = (xi; yi; �xi; �yi). Thus, the
movement of object o is represented by set Qo composed of n flow
vectors: Qo = ff1; f2; . . . ; fi; . . . ; fn�1; fng, where �xn = �xn�1,
�yn = �yn�1. Similar trajectory coding schemes are used in [23] and
[27].

The features of an object o, such as size and shape, are rep-
resented with Fo, so the input data become Xo = fFo; Qog. In
this paper, we only consider the object size. The apparent area of
an object is considered to be its size. The area is estimated using
the pixels corresponding to the moving object. The method can be
of course easily extended to include more features such as shape,
color, texture, etc. Thus, the training data sampled for object o are
Xo = fsize; f1; f2; . . . ; fi; . . . ; fn�1; fng. The size is used to
distinguish different kinds of objects. For example, the sizes of a
pedestrian and a vehicle are different, and even if they move along the
same trajectory, their corresponding activities are treated as different.

In [25], the size of the object is added into the flow vector: fi =
(xi; yi; �xi; �yi; size). When the size of an object can be treated as
constant (if the camera is high enough above the scene or the object
sizes are based on three–dimensional (3-D) models, the size of the ob-
ject can be treated as constant), our approach is more appropriate. When
the object size varies dramatically, we use the approach used in [25] to
represent the object’s features.

IV. LEARNING ACTIVITY PATTERNS

After sample trajectories are obtained, one is ready to learn activity
patterns from the sample data. In this section, we describe the fuzzy
SOM based learning algorithm. The algorithm includes a neural net-
work, a mapping method and a learning algorithm.

A. Neural Network Model

1) Kohonen self-organizing feature map: The Kohonen self-orga-
nizing feature map (SOFM) [28], [29], [32] usually consists of a 2-D
flat grid of simple nodes. Each node j (called an output neuron) has
a weight vector Wj where the ith component of Wj is represented
with Wij which is the weight between the ith component of the input
vector and the jth output neuron. The input feature vectors are pre-
sented sequentially to all of the neurons. For each input vector X , the
best matching neuron c, compared with other neurons, holds the min-
imal Euclidean distance to X . the “neighborhood” is used to reflect
the short range and side-feedback actions between neurons in the grid.
The neurons in neighborhood NEc of the best matching neuron c are
all excited, while neurons outside neighborhood NEc are inhibited.

There are two prominent problems in the SOFM.
a) Once a sample vector is fed into the network, it is brought to the

neuron that is nearest to it in distance. This “winner takes all”
rule goes against the network to grip all samples’ features and
thus affects learning speed and accuracy.

b) It is very difficult to select the proper network parameters (such
as the learning rate function �(t), the neighborhood function
�(j; c) [28], [29], the neighborhood NEc) in order to guarantee
the success of training. �(j; c) represents the distance relation
between c and the neuron j within the neighborhood of c. It is a
decreasing function of this distance.

In order to solve the first problem, batch manners which apply all
available sample vectors as a batch in the regression is introduced. The
typical one is the batch self-organizing feature map [21], [28] (Batch
SOM). It is noted that an online SOM needs much less memory than
a Batch SOM, and is also more realistic since the input vectors enter
serially into the network. However, the learning process in our paper is
offline. For offline learning, the batch manner is superior to the serial
manner both in terms of computational speed and estimation accuracy.
For the second problem, the time adaptive self-organizing map [35],
[36] (TASOM) is introduced. The learning parameters of the TASOM
are adaptive to the environment and the input vectors.

2) Fuzzy SOM: The fuzzy SOM [33], [34] introduces the concept
of membership function in the theory of fuzzy sets to the learning
process in the batch manner. The membership Rlj of each sample l to
each neuron j is calculated, and then the weight vector of each neuron is
adjusted according to all the memberships of all samples to the neuron.
The learning algorithm will be detailed in Section IV-D. In the fuzzy
SOM, some network parameters, such as �(j; c), NEc, related to the
neighborhood in the SOFM are replaced with the membership function.
Furthermore, the parameter �(t) is omitted. So the burden of choosing
network parameters is eased. The fuzzy SOM considers all input data at
each iteration step, and is thus more effective at decreasing oscillations
and avoiding “dead units.” The above fuzzy SOM is a combination
of the SOFM and the fuzzy C clustering algorithm. Integration of the
SOFM and other fuzzy set based algorithms can produce other variants
of fuzzy SOM. For example, Osowski et al. [38] use the fuzzy SOM
trained with the Gustafson–Kessel (GK) algorithm as a classifier.

1620 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004

B. New Neural Network Structure for Learning Activity Patterns

1) Review of existing neural network structures: Most neural net-
works currently used in trajectory analysis are competitive learning
neural networks [23], and [26], [27]. The inputs to the neural networks
are features of the point (corresponding to a flow vector) where a mo-
tion object is detected in the scene. Fig. 1(a) shows the neural network
structure used in [23]. In [23], the statistical model of object trajectories
is formed using two competitive learning networks that are connected
with leaky neurons [20]. The first network is used to model the distri-
butions of flow vectors. The number of its output neurons equals the
number (G) of flow vectors. (G is chosen manually in [23], [26], [27]).
The output of the first neural network is also the input to the second
network. The leaky neurons act as memories of activations of the first
neural network. The second network builds the distribution of trajec-
tories. The number of its input vector components equals the number
of output neurons in the first neural network (G). Its output neurons
correspond to trajectories. Let the number of the output neurons in the
second network be denoted by H . It is obvious that G � H . The
learning speed of the second network is much slower than that of the
first one. Fig. 1(b) shows the neural network structure used in [26].
Sumpter et al. [26] keep the first network and the input vector compo-
nents in the second network the same as Fig. 1(a), and introduce feed-
back to the second network shown in Fig. 1(a) giving a more efficient
prediction of object activities. This idea is very original, but the number
of input vector components and the number (G) of output neurons in
the second network remains equal to the number (G) of flow vectors,
so the learning efficiency decreases inevitably as the size of the net-
work increases. Furthermore, this neural network structure cannot be
used to detect abnormal activities.

2) New neural network structure: We propose a new mapping
method that uses the whole trajectory curve as an input to the network,
as shown in Fig. 1(c). Each input vector represents a complete
trajectory whereas the weight vectors of the neurons correspond to the
classes of trajectories. If there are n sampling points on a trajectory, the
input vector corresponding to this trajectory includes the components
(size; x1; y1; �x1; �y1; x2; y2; �x2; �y2; . . . xn; yn; �xn; �yn). It can
be seen that each input vector contains full information on a trajectory,
including size, position, and velocity at each position, and in particular
the linking relationships between successive positions. In our network
model, the input vector components are composed of g sampling
points corresponding to the trajectory that has maximal sampling
points, and thus the number (N) of input components equals 4g + 1.
Flow vectors, the number of which is G, can form many trajectories
containing the particular trajectory that has maximal sampling points.
So, it is clear that the number (N) of input vector components in our
network is much smaller than that (G) in the second network shown
in Fig. 1(a) (N � G). The number of output neurons in our network
structure is the same as that in the second network shown in Fig. 1(a).
It is thus clear that our network is much simpler than those shown in
Fig. 1(a) and (b). However, our network can realize the same functions
of learning activity patterns, anomaly detection and activity prediction
as the others.

C. Normalization

In order to use a whole trajectory as an input, input samples should
be normalized to the same length. Suppose that one input sample has n
sampling points, where (xn; yn) and (xn�1; yn�1) represent, respec-
tively, the coordinates of the last and the second to last points in the
trajectory. As mentioned above, the components of the input vector are

Fig. 1. Comparison between neural network structures. (a) Neural network
structure used in [23]. (b) Neural network structure used in [26]. (c) Neural
network structure used in this paper.

composed of g sampling points corresponding to the trajectory that has
maximal sampling points, so g � n flow vectors are required to be
padded to the input sample to obtain a vector with g sampling points.
The g�n flow vectors are represented by the formula, as shown in (1)
at the bottom of the page.The physical meaning of the normalization
is that the object is allowed to move c points with the same velocity as
that when the object was detected at the last sampled point, and then it
stops. “c” is a small figure (In our experiments, c is chosen to be 3). It is
assumed that the object will go somewhat beyond the scene. After the
learning introduced in Section IV-D is completed, the trajectory length
processing introduced in Section IV-E will truncate the padded points
and thus model different trajectory lengths. Because of the trajectory
length processing, the affection of this padding can be ignored.

D. Network Learning Algorithm

In our neural network structure, each output neuron directly
corresponds to a class of trajectories. The number of output neurons
used to describe the activity patterns is essentially arbitrary. The more
neurons used the greater the accuracy of the model. The number of
output neurons needed for good accuracy depends on the complexity
of a scene. The more complex the scene is, the more output neurons
are required. The number of output neurons is manually selected. The
weights (W) connect the input vector components and the output
neurons. The weight vectors are of the same dimensions as the sample
vectors. The weight components are initialized randomly and adjusted
gradually using a self-organizing learning algorithm, and ultimately a

(xn + (xn � xn�1) � i; yn + (yn � yn�1) � i; xn � xn�1; yn � yn�1); i = 1; . . . ; c

(xn + (xn � xn�1) � c; yn + (yn � yn�1) � c; 0; 0); i = c+ 1; . . . ; g � n,
(1)

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004 1621

Fig. 2. Tracking of toy vehicles in a model scene.

Fig. 3. Tracking of pedestrians in a campus scene.

mapping, from input to output, that keeps the distribution features of
trajectories is formed.

Let M denote the number of input samples, N the number of input
vector components, andK the number of output neurons. The learning
algorithm consists of the following steps.

Step 1) Randomize the initial values of the components of the
weight vectors.

Step 2) Input all samples Xl = [Xl;1;Xl;2; . . . ; Xl;N],
l = 1; 2; . . . ;M .

Step 3) Calculate the Euclidean distances from each sample Xl to
all output neurons

dlj(t) =

N

i=1

(Xli �Wij(t))2

l =1; 2; . . . ;M;

j =1; 2; . . . ; K: (2)

Step 4) Compute the memberships of each sample to all neurons

Rlj(t) =

1
d (t)

K

m=1

1
d (t)

l =1; 2; . . . ;M;

j =1; 2; . . . ; K: (3)

Step 5) Adjust the weights of each neuron according to the com-
puted memberships

Wij(t+ 1) =Wij(t) +

M

l=1

Rlj(t) � (Xli �Wij(t))

M

l=1

Rlj(t)

: (4)

Step 6) Determine the stability condition of the network

max fjWij(t+ 1)�Wij(t)jg < ": (5)

If the stability condition is satisfied or the predefined number of itera-
tions is achieved, then the learning process terminates; otherwise go to
Step 2 for another loop of learning.

From the above offline learning procedure, we can see that the fuzzy
SOM eases the difficulty of selecting network parameters. In the above
learning procedure, the weights are adjusted only once in each learning
loop and the features of all input samples are taken into consideration
once the weights are adjusted, so the learning speed and estimation
accuracy are both greatly improved. In fact, different kinds of fuzzy
membership functions can be used in the above learning algorithm. In

Fig. 4. Samples from model scene.

Fig. 5. Samples from campus scene.

above fuzzy membership functions, all features of samples have been
considered. This favors validity of the learning algorithm.

E. Trajectory Length Processing

After the learning is completed, trajectory length processing is used
to adjust the weight vector of each output node to the original length.
The adjustment method is: we input the trajectory samples into the
learned network and then truncate the points, in the tail of each weight
vector, which correspond to padded points. For each output neuron j,
we find all trajectory samples which best match it. These trajectory
samples are represented with setS = fS1; S2; . . . ; SAg (suppose there
areA such samples). The trajectory samples in setS may be not padded
with the same number of points in the length normalization process. It
is easy to find what number of points is mostly padded. If, in sample
set S, most samples were padded with m points, then we truncate m
points at the latter part of the weight vector of output node j. Thus,
trajectories of different lengths are modeled.

V. ANOMALY DETECTION AND ACTIVITY PREDICTION

The representative activity patterns are obtained after learning
normal trajectories. Based on the learned activity patterns, we can
judge whether or not an observed activity is abnormal, and predict the

1622 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004

Fig. 6. Learning results of indoor scene with SOFM. (a) Random initial weights. (b) After 100 iterations (5.17 s). (c) After 598 iterations (30.44 s, over). P3(Mean)
= 91.45, and P4(Variance) = 3677.26.

Fig. 7. Learning results of indoor scene with fuzzy SOM. (a) Random initial weights. (b) After 50 iterations (2.76 s). (c) After 132 iterations (7.51 s, over).
P3 = 71:58 and P4 = 1342:35.

Fig. 8. Learning results of outdoor scene with SOFM. (a) Random initial weights. (b) After 50 iterations (5.48 s). (c) After 675 iterations (52.08 s, over). P3 =
90:42 and P4 = 4175:57.

Fig. 9. Learning results of outdoor scene with fuzzy SOM. (a) Random initial weights. (b) After 50 iterations (5.06 s). (c) After 143 iterations (14.76 s, over).
P3 = 63:41, P4 = 1409:46.

future trajectory along which the object will move according to the
current partial trajectory.

A. Anomaly Detection

1) Detection of Abnormal Trajectories: Given a trajectory
To = f(x1; y1); (x2; y2); . . . ; (xi; yi); . . . ; (xn; yn)g, by using
the input vector Xo = (size; x1; y1; �x1; �y1;x2; y2; �x2; �y2; . . .
xn; yn; �xn; �yn), we look for the neuron that best matches the input
vector. Then, the Euclidean distance (represented with Do) between
the input vector and the best matching neuron (j) is calculated. If
Do=n is greater than a threshold qj , the trajectory is considered as
abnormal and the activity represented by the trajectory is treated as
abnormal. We use the Euclidean distances between samples which
best match the neuron j and weight vector of neuron j to calculate
the threshold value qj . This means if the difference between the input
vector and its best matching neuron is greater than that between the

Fig. 10. Example of oscillation. (a) SOFM (oscillation occurs). (b) Fuzzy
SOM (no oscillation).

sample vectors and the neuron, the input vector is treated as abnormal.
The threshold value qj depends on the maximal Euclidean distance
between a sample vector that best matches the neuron j and the weight

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004 1623

Fig. 11. Activity pattern learning with vector quantization (traffic model scene). (a) Random initial weights. (b) After 100 iterations (5.19 s). (c) After 797
iterations (40.88 s). P3 = 122:47 and P4 = 4025:65.

TABLE I
COMPARISON OF THE PERFORMANCES

vector of neuron j. We find all samples which best match neuron j.
For each of these samples Xl on which, we suppose, there are m
sample points, we calculate the Euclidean distance (Dl) between Xl

and the weight vector of neuron j. ql = Dl=m (Dl is divided by m).
Then we take one half of the maximum of all ql as the threshold qj

qj =
1

2
max

l
ql: (6)

The following points should be noted.

a) As trajectories of different lengths are modeled, longer trajecto-
ries gain more Euclidean distance. In order to balance different
lengths of trajectories and treat each point equally in a trajectory,
the Euclidean distance should be divided by the number of points
on a trajectory, when we calculate the threshold qj and judge if
the input vector is abnormal.

b) Here we take 1/2 maximum of all qj as qj . In this way, some
normal trajectories may be treated as abnormal. If we take the
maximum of all qi as the threshold qj , no sample trajectory,
which best matches neuron j, hasDo=n greater than qj , but some
abnormal trajectories may not be detected. Avoidance of missing
detection of some anomalies is more important than avoidance of
mistaking a normal activity as an anomaly. In real applications,
detected anomalies will be checked by humans. So we select the
threshold q in this way.

2) Detection of wrong sections of an abnormal trajectory: For a
detected abnormal trajectory, we find its closest matching neuron and
calculate the distance from the ith point on the trajectory to the corre-
sponding point in the neuron. If the distance is greater than a threshold
q�i , the point and the section where it is located are treated as abnormal.
To do this, the threshold q�i must be computed. We find all the trajec-
tory samples which best match with the neuron, compute the distance
dj from the ith point on each of the sample trajectories (j) to the cor-
responding point in the output neuron, and take half of the maximum
of dj as q�i

q�i =
1

2
max
j

dj ; i = 1; 2; . . . ; n (7)

where n is the number of standard sampling points on the trajectory.

B. Activity Prediction

Given part of a motion trajectory To, we can sample it to get
a subsample. Suppose there are k sample points in To. The sub-
sample vector is represented as follows: (size; x1; y1; �x1; �y1; x2;
y2; �x2; �y2; . . . xk; yk; �xk; �yk). Each point in To doesn’t contribute
equally to the matching between To and the learned activity patterns.
For activity prediction, the older the information the less useful it is.
So, the contribution of current point (xk; yk) is the most, that of point
(xk�1; yk�1) is the second, . . ., and that of point (x1; y1) is the least.
We introduce a weight T (i) for each point (xi; yi)

T (i) = e�[(i�k)=k] i = 1; 2; . . . ; k: (8)

T (i) decreases when i decreases from k to 1.
The matching score between the sub-sample and each output neuron

j is the weighted Euclidean distance between the subsample vector and
the vector made up of the first 4k+1 components of the output neuron

rj =(size� w1j)
2 +

k

i=1

((xi � w4i�2;j(t))
2

+ (yi � w4i�1;j)
2 + (�xi � w4i;j)

2

+ (�yi � w4i+1;j)
2)T (i) (9)

where j = 1; 2; . . . ; K (K is the number of the output neurons). Once
the matching score rj of the subsample to output neuron j is obtained,
we can calculate the corresponding probability between To and each
output neuron, which is the probability of the future motion trajectory
of the object. The trajectory represented by the neuron with the highest
probability is chosen as the most probable one along which the object
will move in the future. This probability is computed according to

Pj =

1
r

K

i=1

1
r

; j = 1; 2; . . . ; K: (10)

This conversion from a weighted Euclidean distance to a probability is
approximate rather than strict, favoring the neurons with small distance

1624 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004

Fig. 12. Anomaly detection in model scene.

to partial trajectory X . If the probability in which the sub-sample cor-
responds to an output neuron is lower than a threshold (e.g., 20%), the
object will not be thought to move along the trajectory represented by
the output node.

VI. EXPERIMENTAL RESULTS

All the above algorithms are implemented using Visual C++6.0 on
the Windows2000 platform. In the following, training samples are first
introduced. The different methods for learning activity patterns are then
compared using experimental results. Finally, the results of anomaly
detection and activity prediction are demonstrated.

A. Training Samples

In this paper the tracking of moving objects is done automatically,
using the method derived from our previous papers [4]–[6]. Only tra-
jectories, in which perfectly tracking results, are manually selected for
samples. The following two sets of training data are used.

1) The first set of training data is acquired by tracking the moving
toy vehicles controlled by radios in a traffic model scene, as
shown in Fig. 2. The tracked vehicle is labeled with a white cross,
whose center is at the centroid of the object.

2) The second set of training data is acquired by tracking moving
objects, such as pedestrians, bikes and vehicles in an outdoor
campus. An example of pedestrian tracking is shown in Fig. 3.

With continuous tracking, we acquired two sets of trajectories, as
shown in Figs. 4 and 5 which, respectively, correspond to 201 and 268
trajectories. The sample trajectories are smoothed

B. Learning Activity Patterns

In the following, the fuzzy SOM method is first compared with the
SOFM method and then with the vector quantization method used in
[23], [26]. We use the following four numbers to assess the performance
of an algorithm for learning activity patterns.

1) The number of iterations (P1) and computational cost (P2)
needed to reach the predefined stability condition. These two
numbers are used to evaluate the speed of the algorithm. In
order to make a fair comparison between the batch manner
and the serial manner the number of iterations for the latter
two algorithms, which use the serial manner, is divided by the
number of training samples. All the following running times are
calculated on a Pentium3-933 computer with 256 MB RAM.

2) The mean (P3) and variance (P4) of all Euclidean distances be-
tween each sample and its best matching neuron. These two num-
bers are used to evaluate the learning results of the algorithm.

1) Comparison With SOFM: By using the same network mapping
method as the presented fuzzy SOM method, it is easy to construct the
SOFM method for learning activity patterns. The values for parameters
of the SOFM are chosen as follows:

�(t) = Ae
�t=� (11)

Fig. 13. Anomaly detection in campus scene.

where � is a positive constant and 0 < A � 1. Neighborhood NEc

shrinks linearly with the increase in t until it contains only one neuron.

�(j; c) =
1p
d+ 1

(12)

where d is the distance between j and c in the grid. The following
diagrams (Figs. 6–9) illustrate the convergence properties of the two
algorithms at different iteration steps. In the diagrams, the black lines
represent the trajectory samples used for training, and the white ones
denote the output neurons that represent the learned activity patterns.

Figs. 6 and 7 show the comparison between the convergence re-
sults of the SOFM and the fuzzy SOM in the indoor model scene. The
number of the output nodes is 40, and the network stability condition
is � = 0:001.

Figs. 8 and 9 show the comparison between the convergence results
of the SOFM and the fuzzy SOM in the outdoor campus scene. The
number of output neurons is 50 and the network stability condition is
� = 0:001.

From the above experimental results, we can see that when the
number of the input samples and the number of the neurons are
selected to be the same, both the required number of iterations and
the running time of the fuzzy SOM are much less than those of the
SOFM to meet the same network stability condition. This means that
the learning speed of the fuzzy SOM is faster than that of the SOFM.
The learning processes show that oscillations for some neurons often
occur in the SOFM. Fig. 10(a) shows an example of local oscillation.
It illustrates that one and the same neuron undergoes severe oscillation
among several classes of input samples in four different iteration
phrases (after 50, 100, 150, and 200 iterations). Fig. 10(b) shows that
in four different iteration phrases (after 10, 20, 30, and 40 iterations)
the same neuron almost corresponds to the same type of input samples.
It is also shown that the learned results with the SOFM have some
dead units [as circled in Fig. 8(c)] and the distributions of the activity
patterns are affected, whereas the results with the fuzzy SOM have no
dead unit. The P3 and P4 of the fuzzy SOM are both less than those
of the SOFM. This means the learned activity patterns with the fuzzy
SOM are more consistent with the samples. The consistency also can
be evaluated by one’s visual judgement.

2) Comparison with vector quantization: In [23] and [26], vector
quantization is used to train the network in order to learn the distri-
butions of trajectories. In the following we compare our fuzzy SOM
method with the vector quantization method in order to illustrate that
our method outperforms the existing ones. Vector quantization does
not take the neighborhood into consideration. When a neuron c best
matches the input vector, only neuron c is excited, and all others are
inhibited. The weight sensitivity is used to ensure that each neuron
can be excited at some stage. In experiments we find that when vector
quantization is used to learn activity patterns, most neurons are not ex-
cited at the early stage of training and shift toward the center of sam-
ples just according to the weight sensitivity determined in the learning
process. This slows down the speed of the network convergence and

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004 1625

Fig. 14. Prediction in indoor model scene.

Fig. 15. Prediction in outdoor campus scene.

greatly affects the learning accuracy. In addition, local oscillation may
occur easily. Fig. 11 shows the learning results of vector quantization
when the number of output nodes and the network stability condition
are the same as Figs. 6 and 7. Both the learning speed and the learning
effectiveness of vector quantization are worse than those of the SOFM
which are in turn worse than those of the fuzzy SOM.

Table I demonstrates the performance measures P1, P2, P3, and P4
of the three training algorithms for the model scene with different ini-
tial weights and different stability conditions. The number of output
neurons is fixed at 40. We see, from Table I, that the fuzzy SOM needs
much fewer iterations and less running time to reach the same stability
condition than the SOFM, and the SOFM needs a little fewer iterations
and a little less running time than vector quantization. The P3 and P4 of
the fuzzy SOM are less than those of SOFM, which are less than those
of vector quantization. Extensive experiments show that the fuzzy SOM
is clearly the best learning scheme. It has much faster learning speed
and much more effective learning results than the SOFM and vector
quantization.

Now we compare our method for learning activity patterns with that
used in [23]. From Fig. 1, we can see that the learning time (T) of
[23] includes learning time of neural network 1(T1), running time of
leaky neurons (t) and learning time of neural network 2(T2), i.e., T =
T1 + t + T2. As mentioned in Section IV-B, even the scale of the
network 2 used in [23] is much bigger than ours. For the same scale
of network, our learning method is faster and more effective than that
used in [23]. So we can conclude that our method for learning activity
patterns is much more efficient than that used in [23].

C. Anomaly Detection

With the learned activity patterns, we can use the method introduced
in Section V-A1 to detect abnormal trajectories and further use the
method introduced in Section V-A.II to find the wrong sections of an
abnormal trajectory. The correctness of the following anomaly detec-
tion results is evaluated by operator’s visual judgement. Fig. 12 is an
example of anomaly detection in the indoor model scene. The trajectory
of the car is shown as a series of arrows, with the size of the arrowhead
representing the speed of the object. The abnormal points are marked
with white crosses at the center of the arrowheads. The car entered the
scene from the left and then turned right. At the beginning the points
are marked as abnormal as they are too close to the left side of the lane.
Later the car turned right and moved within the proper region. How-
ever, when the car began to move down, it began to enter the wrong

lane and this is correctly marked as abnormal. Fig. 13 illustrates an-
other example of anomaly detection in the outdoor campus scene.

We used 40 known abnormal trajectories and 40 known normal tra-
jectories to test the performance of the anomaly detection method. The
results are as follows: 37 abnormal trajectories are correctly recog-
nized; the recognition rate is 92.5%(37/40); the misdetection rate is
7.5%(3/40). 34 normal trajectories are correctly recognized; the recog-
nition rate is 85%(34/40); the false alarm rate is 15%. The integrated
recognition rate is 88.75%(71/80); the integrated midsection rate is
11.25%(9/80).

D. Activity Prediction

Fig. 14 shows an example of prediction in the indoor model scene.
The percentage beside a trajectory represents the probability (calcu-
lated using Formula (10) in Section V-B with which the car will move
along the trajectory. The car entered the scene from the bottom and then
turned left. Fig. 14(a) shows the three most probable trajectories which
the car might follow; in (b), the probability with which the car will
move along these three trajectories is changed; in (c), the right-turn tra-
jectory is eliminated because the probability of the car making a right
turn is very small. In (d) the forward trajectory is also removed for
the same reason. Another similar example of activity prediction in the
campus scene is demonstrated in Fig. 15. Both examples in Figs. 14
and 15 show that the prediction is consistent with one’s visual judge-
ment, demonstrating the good accuracy of the algorithm in predicting
object activities.

VII. CONCLUSION

In recent years, activity understanding has attracted much attention.
Most current visual activity understanding methods depend on known
scenes, where objects move in predefined ways. It is highly desirable
to automatically construct activity patterns by self-organizing learning
rather than predefine them manually. In this paper, we have presented a
new self-organizing method for learning activity patterns for anomaly
detection and activity prediction. Unlike existing methods that use in-
dividual flow vectors as inputs, our method takes a whole trajectory as
an input. This makes the neural network structure much simpler. Fur-
thermore, we have introduced the fuzzy SOM to improve the learning
speed and accuracy. Based on the learned activity patterns, anomaly de-
tection and activity prediction are realized. Experimental results using
two different sets of data have demonstrated the effectiveness of the
proposed algorithms.

1626 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 3, JUNE 2004

Our future work will focus on the following three aspects.

1) We will use the detection probability theory to identify abnormal
movements to increase the flexibility of the abnormal detection
method.

2) We will apply the methods, for automatically extracting the rules
explaining the phenomena hidden into the input data, for activity
analysis.

3) We will try to introduce the interactions between objects to the
activity patterns.

ACKNOWLEDGMENT

The authors wish to thank the reviewers for their constructive
comments.

REFERENCES

[1] T. Collins, A. J. Lipton, and T. Kanade, “Introduction to the special sec-
tion on video surveillance,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 22, pp. 745–746, Aug. 2000.

[2] R. J. Howarth and H. Buxton, “Conceptual descriptions from monitoring
and watching image sequences,” Image Vis. Comput., vol. 18, no. 9, pp.
105–135, 2000.

[3] W. M. Hu, D. Xie, and T. N. Tan, “A hierarchical self-organizing ap-
proach for learning the patterns of motion trajectories,” IEEE Trans.
Neural Networks, vol. 15, pp. 135–144, Jan. 2004.

[4] J. G. Lou, H. Yang, W. M. Hu, and T. N. Tan, “Change detection for
visual surveillance,” in Proc. Asian Conf. Computer Vision, 2002, pp.
13–18.

[5] H. Yang, J. G. Lou, H. Z. Sun, W. M. Hu, and T. N. Tan, “Efficient and
robust vehicle localization,” in Proc. IEEE Int. Conf. Image Processing,
2001, pp. 355–358.

[6] J. G. Lou, H. Yang, W. M. Hu, and T. N. Tan, “Visual vehicle tracking
using an improved EKF,” in Proc. Asian Conf. Computer Vision, 2002,
pp. 296–301.

[7] K. Takahashi, S. Seki, H. Kojima, and R. Oka, “Recognition of dexterous
manipulations from time varying images,” in Proc. IEEE Workshop Mo-
tion Non-Rigid Articulated Objects, Austin, TX, 1994, pp. 23–28.

[8] A. F. Bobick and A. D. Wilson, “A state-based technique to the represen-
tation and recognition of gesture,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 19, pp. 1325–1337, Dec. 1997.

[9] A. D. Wilson, A. F. Bobick, and J. Cassell, “Temporal classification of
natural gesture and application to video coding,” in Proc. IEEE Conf.
Computer Vision Pattern Recognition, 1997, pp. 948–954.

[10] F. Bremond and G. Medioni, “Scenario recogntion in airborne video
imagery,” in Proc. Workshop Interpretation Visual Motion, 1988, pp.
57–64.

[11] T. Starner, J. Weaver, and A. Pentland, “Real-time american sign
language recognition using desk and wearable computer-based video,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 20, pp. 1371–1375,
Dec. 1998.

[12] N. M. Oliver, B. Rosario, and A. P. Pentland, “A bayesian computer
vision system for modeling human interactions,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 22, pp. 831–843, Aug. 2000.

[13] M. Brand and V. Kettnaker, “Discovery and segmentation of activities in
video,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 844–851,
Aug. 2000.

[14] M. Yang and N. Ahuja, “Extraction and classification of visual mo-
tion pattern recognition,” in Proc. IEEE Conf. Computer Vision Pattern
Recognition, 1998, pp. 892–897.

[15] U. Meier, R. Stiefelhagen, J. Yang, and A. Waibel, “Toward unrestricted
lip-reading,” in Proc. Int. Conf. Multi-Modal Interfaces, 1999.

[16] Y. A. Ivanov and A. F. Boblic, “Recognition of visual activities and in-
teractions by stochastic parsing,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 22, pp. 852–872, Aug. 2000.

[17] M. Brand, “Understanding manipulation in video,” in Proc. Int. Conf.
Automatic Face Gesture Recognition, 1996, pp. 94–99.

[18] T. Wada and T. Matsuyama, “Multi-object behavior recognition by event
driven selective attention method,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 22, pp. 873–887, Aug. 2000.

[19] R. J. Howarth and B. Hilary, “A analogical representation of space and
time,” Image Vis. Comput., vol. 10, no. 7, pp. 467–478, 1992.

[20] M. Reiss and J. G. Taylor, “Storing temporal sequences,” Neural Net-
works, vol. 4, no. 6, pp. 773–787, 1991.

[21] F. Mulier and V. Cherkassky, “Statistical analysis of self-organization,”
Neural Networks, vol. 8, no. 5, pp. 717–727, 1995.

[22] J. Fernyhough, A. G. Cohn, and D. C. Hogg, “Constructing qualitative
event models automatically from video input,” Image Vis. Comput., vol.
18, no. 9, pp. 81–103, 2000.

[23] N. Johnson and D. Hogg, “Learning the distribution of object trajectories
for event recognition,” Image Vis. Comput., vol. 14, no. 8, pp. 609–615,
1996.

[24] N. Johnson, A. Galata, and D. Hogg, “The acquisition and use of inter-
action behavior models,” in Proc. IEEE Conf. Computer Vision Pattern
Recognition, Silver Spring, MD, 1998, pp. 866–871.

[25] C. Stauffer, W. Eric, and L. Grimson, “Learning patterns of activity using
real-time tracking,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22,
pp. 747–757, Aug. 2000.

[26] N. Sumpter and A. Bulpitt, “Learning spatio-temporal patterns for
predicting object behavior,” Image Vis. Comput., vol. 18, no. 9, pp.
697–704, 2000.

[27] J. Owens and A. Hunter, “Application of the self-organizing map to tra-
jectory classification,” in Proc. IEEE Int. Workshop Visual Surveillance,
2000, pp. 77–83.

[28] T. Kohonen, Self-Organizing Maps, 2nd ed. New York:
Springer-Verlag, 1997, vol. 30.

[29] , Self-Organization and Associative Memory, 2nd ed. Berlin, Ger-
many: Springer-Verlag, 1988.

[30] I. Haritaoglu, D. Harwood, and L. S. Davis, “W : Real-time surveil-
lance of people and their activities,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 22, pp. 809–830, Aug. 2000.

[31] C. Regazzoni and V. Ramesh, “Special issue on video communica-
tions, processing, and understanding for third generation surveillance
systems,” Proc. IEEE, vol. 89, pp. 1355–1367, Oct. 2001.

[32] M. C. Su and H. T. Chang, “Fast self-organizing feature map algorithm,”
IEEE Trans. Neural Networks, vol. 11, pp. 721–733, 2000.

[33] T. Tao, J. R. Gan, and L. S. Yao, “Application of fuzzy neural computing
in circuit partitioning,” Chin. J. Comput., vol. 15, no. 9, pp. 640–647,
1992.

[34] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algo-
rithms. New York: Plenum, 1981.

[35] H. Shah-Hosseini and R. Safabakhsh, “TASOM: A new time adaptive
self-organizing map,” IEEE Trans. Syst., Man, Cybern. B, vol. 33, pp.
271–282, Apr. 2003.

[36] , “Automatic multilevel thresholding for image segmentation by the
growing time adaptive self-organizing map,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 24, pp. 1388–1393, Oct. 2002.

[37] Z. Q. Liu, L. T. Bruton, J. C. Bezdek, J. M. Keller, S. Dance, N. R.
Bartley, and C. Zhang, “Dynamic image sequence analysis using fuzzy
measures,” IEEE Trans. Syst., Man, Cybern. B, vol. 31, pp. 557–571,
Aug. 2001.

[38] S. Osowski and T. H. Linh, “Fuzzy clustering neural network for classifi-
cation of ECG beats,” in Proc. IEEE-INNS-ENNS Int. Joint Conf. Neural
Networks, vol. 5, Como, Italy, July 24–27, 2000, pp. 5026–5030.

