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Abstract 

Intrusion detection on the internet is a heated research 
j e l d  in romputer science, where much work has been done 
during the past two decades. In this paper; we build D 

network-based intrusion detection system using Adaboost, 
a prevailing machine learning algorithm. The experiments 
demonstrate that our sysrem can achieve an especially low 
false positive rate while keeping a preferable detection 
rate. and its computational complexity is extremely low, 
which ih 11 i y y  artructive property in practice. 
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1 Introduction 

With the development of the internet, the information se- 
curity threat i s  becoming one of the most crucial problems. 
Reliable connections, information integrity and privacy are 
demanded more intensively nowadays than ever before. 

Intrusion detection on the internet is all the while a 
heated field in computer science since its initiation by Den- 
ning [21 in 1987, in which a grand amount of research has 
becn done Generally speaking, intrusion detection systems 
(IDS) can be divided into two categories: host-based IDS 
and network-based IDS [ 11. Host-based IDS utilizes var- 
ious audit data of the target host machine. It has an ad- 
vantage that the information provided by the audit data can 
be extremely comprehensive and elaborate. Network-based 
IDS makes use of the IP package information collected by 
network hardware such as switches and rooters. Although 
this kind of information is not so abundant as that of host- 
based IDS. network-based IDS has preponderance in detect- 
ing so-called “distributed” intrusions among the whole net- 
work and lighten the burden on every individual host ma- 
chine. 

There are generally two distinct approaches in the field 
of intrusion detection: misuse detection and anomaly de- 
tection [ 1,101. Misuse detection utilizes attack signatures, 

usually taking the form of rules, to detect intrusion. It gains 
a high detection rate for those well-known intrusions, but 
often fails to detect novel intrusions. Anomaly detection, 
however, tries to build up normal profiles, the patterns of 
normal behaviors. Any deviant from the normal profiles is 
considered as anomalies [Zl]. Because it is difficult to pre- 
cisely establish the normal profiles, anomaly detection usu- 
ally suffers from a higher false positive rate, the possibility 
that a normal behavior i s  mistakenly classified as an attack 
instance. 

There have been plenty of methods in intrusion detec- 
tion. A statistical method is proposed in [2], where sev- 
eral “metrics” are paid attention to and their statistical nor- 
mal profiles are constructed. Enlightened by that, many re- 
searchers try to build statistical models of a host system 
from various aspects 113, 141. Data mining is also widely 
studied and used in intrusion detection [8, 111. It focuses 
on extracting so-called “association rules” and “frequent 
episodes” from voluminous data, which are a specific kind 
of rules to describe the network activities. 

Recently, it IS particularly popular to utilize the methods 
in machine learning and pattern recognition to detect intru- 
sions. For unsupervised learning, SOM has engaged broad 
attention [3,9] due to its excellent clustering performance 
and easy implementation. In [Zl], a hierarchy framework 
of using SOM is proposed, which achieves an eminent de- 
tecting result. As to supervised learning, ANN is a cammon 
tool [17,24], but SVM gets more favors in virtue of its great 
generalization ability [7,25]. 

While these existing methods can obtain a high detection 
rate (DR), they often suffer from a relatively high false pos- 
itive rate (FPR), which wastes a great deal of manpower. 
Meanwhile, their computational complexities are also op- 
pressively high, which limits their applications in practice, 
because an IDS would affect the regular tasks of the target 
systems if it emploits too much resource. 

Adaboost is one of the most prevailing machine learning 
algorithms in recent years. Its computational complexity 
is generally lower than SOM, ANN and SVM in the case 
that the size of the data set is voluminous while the dimen- 
sionality is not too high. For this and other advantages, we 
employ Adaboost algorithm for our network-based IDS. 
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This rest of paper is organized as follows. The frame- 
work of our IDS is proposed in section 2. In section 3, we 
describe how the fatal parts of our IDS work in details. The 
classical Adaboost algorithm is introduced and an improve- 
ment on it is proposed. The analysis about the computa- 
tional complexity of our IDS can be found in section 4. In 
section 5, experiment results are provided. At last, we draw 
some conclusions in section 6. 

Feature extfitction 

2 Framework of our IDS 

Data labeling 

We have constructed a network-based IDS, and its frame- 
work (as shown in Figure 1) is made up four modules: 

t 
[ iletecting result I 

Figure 1: Framework of our network-based IDS 

Feature extraction. For every network connection, 
we extract three major groups of features for detect- 
ing intrusions: “Basic features of individual TCP con- 
nections”, “Content features within a connection sug- 
gested by domain knowledge” and “Traffic features 
computed using a two-second time window” [23].  The 
framework for constructing these features can be found 
in [lo]. 

Data labeling. Because Adaboost is a supervised 
learning algorithm, we have to label a set of data for 
training. This labeled data set should contain both 
normal samples, labeled as “+1”, and attack samples, 
labeled as “-1”. So our algorithm is neither “misuse 
detection” nor “anomaly detection” mentioned above, 
but a kind of “hybrid detection”. 

Weak classifiers design. Adaboost requires a group 
of weak classifiers designed before hand. “Weak (or 
basic)” means that the classifying accuracy of an indi- 
vidual classifier is relatively low. In section 3.1, weak 
classifiers used in our IDS is described. 

2 

o Strong classifiers construction. A strong classifier 
is constructed using our “improved” Adaboost algo- 
rithm. We will show the details of this procedure in 
section 3.2 and 3.3. 

After training, a strong classifier is obtained. Then a new 
network connection represented by the same three groups of 
features can be send to the strong classifier and classified as 
either “normal” or “attack”, shown in Figure 1 as detecting 
result. 

3 Methodology 

3.1 Weak classifiers design 

A group of weak classifiers has to be prepared as inputs of 
Adaboost algorithm. They can be linear classifiers, A ” s  
or other common classifiers. In our algorithm, we select 
“decision stumps” as weak classifiers due to its simpleness. 

For every feature f,  its value range could be divided into 
two nonoverlapping value subsets C,f and CL, and the deci- 
sion stump on f takes the form as follow: 

+1 x(f) €C,f { -1 x(f) € C L  hf (4 = 

where x(f) indicates the value of x on feature f. The min- 
imal total error rate criterion is used to determine the two 
value subsets: 

where E? and E- respectively denotes the classifying error 
rates of normal samples and attack samples by the decision 
stump h f .  

hf h f  - 

3.2 Classical Adaboost algorithm 

Adaboost is a stereotype algorithm of boosting, whose 
basic idea is to select and combine a group of weak classi- 
fiers to form a strong classifier [6]. The classical Adaboost 
algorithm is shown in Table 1, where n is the size of the 
training set, and F t  = {hf) is a set of weak classifiers. It 
has been proved that the objective function: 

(1) 

has an upper bound ITt Zt, and in every loop, 2, achieves 
its minimum 2d- by choosing at = 3 l o g ( h ) .  Et 

This ensure that the training error of the strong classifier 
converges to zero exponentially to the number of rounds [6]. 

1 
n E t r  = - I{i : H(xd # YJl 
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Table 1 :  Classical Adaboost algorithm 

Given: (XI, yl), . . . , (x,,, gn) where y, E {+l, -1) 

Initialize weights: Dl( i )  = I/. ( i  1- 1,. , . , n) 
F o r t = l ,  ..., T :  

weighted error: 
1. Choose a weak classifier ht which minimizes the 

2.  If st = min, E~ > 1/2, set T = t -  1 and stop loop. 
3. Chmse an at. 
4. Update the weights: 

Dt (i) exp(-at Yz ht (xt 1) 
zt 

Dt+1(4 = 

where Zt is a normalization factor assuring Dt+l is 
a distribution. 

The strong classifier is: 

T 

~ ( x j  = s i g n ( x a t h t ( x ) )  
t = l  

3.3 Improved objective function and initialized 

The objective function (1) of the classical Adaboost algo- 
rithm is not very suitable for the problem we are facing. In 
intrusion detection, we have to pay more attention to FPRs, 
because a high FPR wastes a great deal of manpower. In our 
IDS, we employ an “improved objective function” to adjust 
the tradeoff between FPR and DR: 

weights 

Ewr = Ll{i : ya = +l,H(Xi) = -l}/ 

where n+ and n- are respectively the number of normal 
samples and attack samples in the training set. 7‘ is a scale 
factor to punish DRs. 

In the theory of Adaboost, the initialized weights 
Dl(z) = l/n has a strong relationship with the objective 
function (1). So corresponding to our improved objective 
function, a kind of “improved initialized weights” is used: 

where T is the same as the r in (2 ) .  Here we can find that 
T also indicates the importance of the normal samples. The 
larger T is, the more weightily normal samples are treated at 
the beginning of the algorithm. 

4 Computational complexity 

Under simple analysis, we can easily calculate that in the 
training phase of the Adaboost algorithm, the computational 
complexity is only O(nThf ) ,  where M is the number of 
decision stumps. As to SOM or ANN, the computational 
complexity of the training phase depends on the distribu- 
tion of the data set. and in the worst case it is O(n2M2)  . 
which is higher than Adaboost especially when n is large as 
in the data set we used. As to SVM, although there is a pop- 
ular accelerating algorithm named SMO, the complexity of 
training is also exponential to n in general cases. 

For the testing phase, the computational complexity of 
Adaboost is O(n’T) , where n’ is the number of the in- 
put records. It is also lower than that of hierarchical SOM, 
which is O(n‘M2) mentioned in [21], because T is com- 
monly in the same quantitative level as 114. 

In a word, Adaboost generally possesses lower com- 
putational complexity than SOM, ANN and SVM, espe- 
cially in the training phase. This property is very attractive 
and promising in intrusion detection, because the classifiers 
should be retrained in short periods in practice and fast de- 
tection helps to activate the following defending measures 
in due course. 

5 Experiments 

5.1 Intrusion Data Set 

We utilize the KDD CUP 1999 data set [23] for our ex- 
periments. It was originated from MIT’s Lincoln Lab and 
developed for IDS evaluations by DARPA [19]. Despite o f  
several drawbacks mentioned in [18], it has served as a re- 
liable benchmark data set for many researches on network- 
based intrusion detection algorithms. In this data set, each 
TCP/IP connection has been labeled, and 41 features had 
been extracted, some of which are continuous and others 
are categorical. So we don’t have to do the task of “Feature 
extraction” and “Data labeling” shown in Figure 1, then we 
can focus on the effectiveness and efficiency of the core al- 
gorithm of our IDS framework. 

There are four general types of attacks appeared in the 
data set: DOS (denial of service), U2R (user to root), R2L 
(remote to local) and PROBE. In each of the four, there are 
many low level types of attacks. Detailed descriptions about 
the four general types can be found in [15,19]. The number 
of samples of various types in the training set and the test set 
are listed respectively in Table 2 and Table 3. “NOVEL“ in 
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Attack 

250436 

Table 3 represents those low level attack types not appeared 
in the training set. 

5.2 Classical Adaboost algorithm and improved ini- 
tialized weights 

First, we run the classical Adaboost algonthm, whose re- 
sult is shown in Table 4. Then we run i t  again with the im- 
proved initialized weights in the form of (3), where ar varies 
from 0 to 1. The results are provided in Table 5. We can 
see that when T is not too small nor too large, that is, from 
0.3 to 0.7, the results is generally better than that of the 
classical Adaboost algorithm. We set T = 40 in all of our 
expenments. 

Tahle 4: Result of classical Adaboost algorithm 
Training Set Test Set 

Table 5: Results with improved initialized weights (all 
dec 

_. . - _ _  
I 0.5 I 0.851 I 98.519 I 2.200 I 90.140 I 

5.3 Avoid Overfitting 

In our experiments, we notice that the total error rates of 
the 23rd and the 3rd decision stumps on the training set are 
respectively 1.61% and 4.92%. These too excellent perfor- 
mance probably means overfitting. So we exclude these two 
decision stumps from H and the results get much improved 
as expected, shown in Table 6. 

5.4 About the selection of T 

From Table 6, we finally make the selection that r = 0.5, 
for under this value, we get the best balanced between the 
FPR and the DR, respectively 0.665% and 90.477% on the 
test set. Intuitively, T = 0.5 means that we pay equal at- 
tention to the FPR and the DR, and the normal sample set 
and the attack sample set are equally emphasized at the be- 
ginning of the algorithm. If we hope to get lower FPRs, we 
could moderately increase r. For example, when T = 0.7, 
the FPR decreases to 0.307% on the test set, but the DR si- 
multaneously decreases to 90.04%. This trend is consistent 
with the theoretical analysis very well. 

Table 6: Results with improved initlalked weights (with- 
out the 23rd, 3rd stumps) 

Test Set 
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5.5 Comparison with some other published results 

Several recently published experiment results and our re- 
sults run on the same data set are listed in Table 7. We can 
find that ours are greatly competitive with others in terms 
of an especially low FPR while keeping an agreeable DR. 
Bagged C5 [4,20] is the winning algorithm of the KDD99, 
which a bit outperforms our algorithm in terms of FRP and 
DR, but it is much more time-comsuming, as mentioned bc- 
low. 

- L  1 

Bagged C5 [4,20] 0.55 

Improved Adaboost 0.31-1.79 
RSS-DSS [22] 0.27-3.5 

Tablc 7: Results comDarison 

91.81 

90.04-90.88 
89.2-94.4 

Methods 
Genetic Clustering [16] 

SVM rsi 6-10 9 1-98 

5.6 Computational Time 

We did our experiments on a computer of Pentium IV, 
2.6GHZ CPU, 256M RAM, and the whole algorithm is im- 
plemented in MATLAB 7. The mean training time IS only 
73s, using all of the 494,021 training samples. This is an 
empirical substantiation that the computational complex- 
ity of our IDS is especially low, While in [12], the least 
training time of SOM and improved competitive learning 
neural network arc respectively 1057s and 454s only using 
101,000 samples for training. Bagged C5 [4,20] outper- 
forms our algorithm in terms of FRP and DR, but it took 
a bit more than a day on a machine with a two-processor 
ultra-sparc2 (2~300Mhz) and 512M main memory. The lat- 
est published algorithm RSS-DSS [22] needs 15 minutes to 
finish the whole process on a 1 GHz Pentium 111 laptop with 
256M RAM, 

From the comparison above, we can find that our IDS 
has obvious predominance in term of speed, which is a 
much preferable property in practice. 

6 Conclusion 

We have constructed an IDS with Adaboost, a prevailing 
machine learning algorithm, and described how each part 
of the whole system works in this paper. An improvement 
concerning about getting low WRs and balancing the im- 
portance of normal samples and attack samples have been 
proposed. The experiment results have shown that our IDS 
obtains an extremely low false positive rate with a fairish 
detection rate. We also have demonstrated that our IDS has 

a noticeable advantage in computational complexity com- 
pared with some other algorithms. 
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