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Alsau?--lntelligent visual surveillance for road vehicles is a 
key camponmt for developing autonomous intelligent 
transportation sys tem.  I n  this paper, a probabilistic model for 
prediction of traliic accidents using 3D model based vehicle 
tracking is proposed. Sample data including motion 
trajectories are first obtained by 3D model based vehicle 
tracking. A fuzzy self-organizing neural network algorithm is 
then applied to leam activity patterns from the sample 
trajectories. Vehicle activities a re  finally predicted by locating 
and matching each observed partial trajectory with the learned 
activity patterns. and the occurrence proimbility of a t raffc  
accident is determined. Experiments with a model scene show 
the effectiveness of the proposed algorithm. 

lndex Zem-3D model based whicle tracking, Activity 
patterns, Prediction of t raffc  accidents 

1. INTRODUCTION 

RAFFlC is of great importance in a modem society. The 
"effective management of traffic, especially of road vehicles, 

has become an urgent problem to be solved. Traffic 
surveillance using monitoring cameras has already been widely 
applied incurrent traffic management. However, current methods 
depend on human observation of  captured video sequences of 
images. This requires a great deal of  human work and does not 
allow a real time response to abnormal events. 

With computer vision and image processing methods, 
intelligent m f f c  surveillance systems perform localization, 
tracking andrecognition ofvehicles invideo sequences captured 
by road cameras with little or no human intervention, and further 
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analyze the activities of vehicles to give semantic descriptions 
based on the tracking results. This can facilitate daily traffic 
management and allow an immediate response when abnormal 
events occur. consequently providing a more advanced and 
feasible surveillance scheme. 

Traffic accidents are abnormal events in traffic scenes. F a  
real-time system can predict accidents accurately in advance and 
then generate a waming, many traffic accidents may be avoided. 
At the same time the system canpurposefully record the - . \em ' as 
it develops. If the accident does indeedoccur. the responsibibty 
forthe accident can be judged by the captured video sequences. 

Some researchers have studied vision-based traffic anomaly 
detection that is based on motion detection [ 6 ] .  Anomaly 
prediction is quite different from anomaly detection in that 
anomaly prediction aims at avoiding anomaly occurrence and 
anomaly detection is to detect an occurred anomaly. Anomaly 
prediction is more challenging. 

In this paper. we study the prediction of ~raffc.accidents using 
3D model based vehicle tracking. Our work demonstrates the' 
feasibility of a vision system to automatically predict traffic 
accidents. The main contributions ofthis paper are as follows: 
* A novel frameworkoftrafficaccidentpredictionispresented. - A probability model for predicting traffic accidents is 

constructed. 

II. RELATED WORK 

Visual surveillance for road vehicles generall) includes three 
steps: motion detection, vehicle tracking. and activity 
understanding and description. In the following, we discuss 
briefly the state-of-the-art of current algorithms for 3D model 
based vehicle tracking, understanding and descriptionof vehicle 
activities that are closely related to the work presented in this 
paper. 

A. 3 0  Model based VehirleTrarkina 
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nlpr.ia.ac.c"). of Karlsruhe [4, 51 have contributed greatly to 3D model-based 
vehicle ~oca~ization and tracking, 

The main advantages of  vehicle localization and tracking 
algorithms based on 3D models are: 

The introduction of prior knowledge of the 3D contour or 
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surfaces ofvehicles makes the algorithms robust even under 
occlusion or interference between nearby image motions. 
After setting up the geometric corespondence between 2D 
image coordinates and 3D world coordinates by camera 
calibration, the algorithms naturally acquire the 3D pose of 
vehicles under the Ground-Plane Constraint. 
The algorithms can be applied in cases where vehicles 
greatly change their orientations. 

Vehicle localization and tracking algorithms based on 3D 
models have some disadvantages such as the requirement for 3D 
models, high computational cost,etc. 

B. U nderstonding ond Interpretorion of Vehicle Activities 
Over the last decade, some efforts have been devoted to 

devising methods for vehicle activity understanding and 
interpretation [14, 151. Fraile et al. [7] approximate and classify 
vehicle trajectories in a known ground plane. Each trajectory 
segment is assigned to one of the four classes: ahead, left, right. 
and stop. The trajectories are simplified into stringsconsisting of 
4 symbols. and then classifiid by HMMs (Hidden Markov 
Models). Hagg and Nagel [SI employ fuzzy predicate logic 
calculus to interpret complex traffic scenarios. However, they 
believe that a probabilistic approach would provide a more 
suitable method to deal with the intrinsically uncertain and 
incomplete nature of the data provided by the image. Neumann 
er d. [9] establish a '3D scene description sequence', which 
includes the data detected in a traffic scene such as directions. 
positions and times ofvehicles. etc. Then. they build up a scene 
framework by error-driven learning and inverse tracking in a 
connected network. Based on this method, Bell and Pau [lo] 
develop an objectariented logic program system for image 
interpretation and apply it to vehicle recognition in real scenes. 
Huang et al. [Ill use a dynamic network structure in a visual 
surveillance system for highways. Remagnino et a l .  [I31 present 
an event-based visual surveillance system for monitoring 
vehicles and pedestrians that supplies word descriptions for 
dynamic activities in 3D scenes. Jung et ol. [IS] study 
content-based event retrieval using semantic scene interpretation 
for automated traffic surveillance. Femyhough et al. [23] 
establish the spatio-temporal region by leaning the results of 
tracking vehicles in video sequences and construct qualitative 
ewnt  models by qualitative reasoning and statistical analysis. 

* 

* 

111. OVERVIEW OF THE PROPOSED SCHEME 

Our traffic accident surveillance scheme is composed of  three 
main modules: 3D model based vehicle tracking, learning ot 
activity patterns and prediction oftraffic accidents (as shown in 
Fig. I) .  The module 6r 3D model based vehicle tracking is 
implemented by matching the 3D vehicle models constructed in 
advance with thecalibratedimagesequences. The outputs of this 
module are the 3D trajectories of  vehicles and the features of 
vehicles such as size. These outputs form the sample data for 
learning activity patterns. AAer obtaining enough sample data 
we can learn the distribution ofvehicle activity paitems from the 
data using B fuzzy selfdrgmiring neural network. The activity 
patterns can be thought as the classification of vehicles' 

activities. h the module for traffic accident prediction. panial 
trajectories are matched to the learned activity patterns, and the 
occurrence probability of an accident is inferred fmm a 
probabilistic model. Such a probabilistic model needs to meet the 
following requirements: 
* For two moving vehicles, we measure the matching degrees 

between the observed partial trajectories and all activity 
patterns by locating and matching the two current partial 
trajectories in the activity patterns. 
Using the informationabout current positions ofvehicles,we 
compute the probability of  vehicle collision if the two 
vehicles move along two trajectories corresponding to two 
certain activitypanems. 

By analyzing the probability sequence of vehicle collision, 
appropriate actions canbe taken tohand potential accidents (e. g. 
send a warning to the driver, record the scene, etc). 

Sampledata (Vehicle fearurs 
and trajectories) 

* 

3D model base 
vehicle 
trackin 

Fig. I .  Overview ofthe proporedtnffic accident s~rveillance scheme 

IV. 3D MODEL BASED VEHICLETRACKING 
Model Ertablishmcnt 

Camera Calibration 

f Motion Detection 1 

Initialization , - Pose Prediction --p-T+4&d Model Visualization 

OCCl"$iO" 

Fig. 2. Overview af3D modcl baed vehiclc tracking 

The procedure for3D model based vehicle tracking is shown in 
Fig. 2. The video captured by a calibrated camera is transformed 
into an image sequence. For each image. motion detection is 
conducted. Regions of  interest KOIs) that contain moving 
vehicles are detected. Each ROI is handled independently. If a 
new moving target is found, the tracking procedure is initialized 
byrecognizingitsvehicletypeandassigningan initial value to its 
pose. AAer the initialization. the trackingtakes place using pose 
prediction and pose refinement. Pose prediction is the estimation 
ofthe positionofthe vehicle in thecurrent frame. This position is 
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the initial value for pose refinement. Pose refinement involves a 
search for the optimal mapping between the projected 3D model 
and the 2D image data  Readers may refer to our previous paper 
[16. 171 forfurtherdetails. 

V. LEARNING ACTIVITY PATTERNS 
From the infonation derived from the 3D model based vehicle 

tracking, we can acquire the training data that are used to learn 
vehicle activity panerns. 

Our training data are composed of  trajectories and features of 
mving  vehicles. Trajectories are sampled at a fixed rate (once 
every A/ frames). Given a vehicle a. we represent the world 
coordinatesofthecentroidattheith sampling as (X,,Y,).After 

sampling n times, we obtain a point sequence T,, that is 
composed of n pairs of world coordinates: r, = { ( X I  : YI)"X2 :?;I, .A., 3 Y ,  )!...,(X,, I J J , A ( X "  I Y,, 1) 
We use ( Q j > 6 ~ : )  ( Q, =I , , ,  - x ,  . Q:=J:,-,: to 
represent the velocity of the moving vehicle at time i. The 
movement ofvehicle a is represented by set Q,, composed of  n 

flow vectors: Q, =u,f2 ,... f ,  ,... f , , , f , }  , u,here 

f, =(~,~y,;&r,,&y,). Similartra/ectotycodingschemesare 

used in[3.19-??].Thefeaturesof\'ehiclea suchassizeandshape 
are represented by c, , so the input data become 

x, = {<,, & }  , In this paper, we only consider the size ofthe 

vehicle. Naturally, the method can be easily extended to include 
more features such as shape, color, tesure, etc. Thus the training 
data sampled for vehicle a are represented as 

We use thc neural network structure shown in Fig. 3 to learn 
vehicle activity patterns. Whole trajectory curves are used as the 
input to the network In this way neurons in the input layer 
represent a complete trajectory whereas neurons in the output 
layer correspond to a class of trajectories. If there are n sampling 
points on a trajectory, the input vector corresponding to this 
trajectoty includes the components: 

x, = b i d l ,  f,, ..., f, ,... ? f,, I f,) . 

(siz4xl,y,:Q1 ,Q;, x,,y2,~,~2,...x",y"~&",~") . 

Fig. 3. Neural network swctllre 

We use the fuzzy selfdrganizing neural network to train the 
neural network. Readers may refer to p2] for details. After the 
l e m i n g  is completed, the activity patterns of vehicles can be 
represented with the output m r o n s .  If there are K output 
neurons, the number of activit).patterns is K.Thus we can get a 
set of activity patterns {T. } ,  i = I, 2, .., K .  

VI. PREDICTION OF TRAFFIC ACCIDENTS 
After the vehicle activity patternsax acquired. we can predict 

the future trajector) along which a vehicle will move using the 
weights of neurons according to the observed partial trajectory. 
According to their body shapes and sizes. we can further predict 
whether vehicles will come inta collision ornot. 

Given pan of a trajectory (h,~),(~,y*b...Cr,,y,)), we can 

X=Csi . ex l ,y l ,~ ,~ , ,~ ,y2 ,&~,  ~ ~ , . . . ~ m ,  y , ,&~ ,~ , )  
acquire a corresponding sub-sample: 

The prediction of  vehicle motion is obtained by computing the 
degree of matching between the partial sequence X and each 
pattern T, in the activity pattern set {r}  . The process to 

predict traffic accidents includesthe following major steps: 
Locate panial test sequence X in a cenain activity pattern 

T .  . Compute matching degree P(T, 1 X) between panial tesf 

sequence .I: and activity patiem T, 
Compute the probability of collision between two vehicles. * 

A. 

Suppose that the length of the partial test sequenceX is m 
and the length of pattern trajectory is n (m < n) .  Since the 

starting point X ( x ,  ~ y , )  in X may not correspond to the 

starting point T,(X,: Y,) in r .  we should find the segment in 

pattern Tj most similar to  X. The test trajectory: 

Locating Tesr Sequence X in Parrern TI 

x = ( ( x , , ~ , ) , ( x ~ , . v ~ )  ...., (xm:ym)} isactuallyasequencevarying 
withtimt. The last point in the test trajectory is very important to 
the localizationtask because it denotes the current positionofthe 
vehicle. Thus, we locate the test trajectory in the patterns 
referring to the last point x ( X , , , ,  y,) . The points in the test 

trajectoiy X do not contribute equally to the matchingbetween X 
andthe patterns. We canseethatthe currentpoint X ( X m , y m )  
contributes most, the X(X,.,,ym.,) second, ... , and the 

startingpoint X(X, ,  y,) l eas t  Therefore we introducea weight 

w ( j )  foreachpoint ( X j , Y j ) :  

(I-,)' - 
w ( j )  = e m' , j = I,& ..., m. (1) 

Let T,, = T, ( s ,  , ~ t ,  Y , ,  &i , x k + i , ~ i + i  ,6xi+i 3 @i+i 3 - o  

X,,,,,y,,.,, &x+n-l ,&+,,). The weighted distance between 

X and T,, can be defined as: 

Q, =(s, -si~e)'+~((-l(~,,,.,)-X(x,))'+(T(y,.,,)-~(yi)J 
1-1 

+tT(&+j-,)-X%)Y +C(&,)-fl4)~)Xno) (2) 
If the distance between the sub-sequence starting with point 

T, ( X , ,  yk ) and partial trajectory X becomes minimum we 
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choose qk as thesubsequence in T, whichisclosest to X . I n  

otherwords, when partial trajectory X belongs to pattern ?; ,the 

sub-sequence startingwith point T,(Xk, Y ,  ) best matches X. 
B.D egree ofMarcking 

Define the distance between pattern T, and partial trajectory 

x as @ .{[in{ D,* 1. The degrees of matching b e t w e n  

and .Y i s  calculated by: , (3 P ( T I X ) =  
( ] I D , )  

,=I 

where K i s  the total number of activity patterns and D, is the 

distance between X and the sub-sequence in  T, which best 

matches .Y 

C. Prediction of collision 
Suppose that the observed partial trajector). o f  vehicleA i s  X :  

and that of vehicle E i s  Y. the occurrence probability in which 
vehicle .A and vehicle B wi l l  come into collision can be calculated 
by the following items: 
I) The probability that partial trajectory .Y belongs to each 

pattern P(T, 1 X): 
2) The probability that partial trajectov X belongs to each 

pattern P(TJ I 13 : 
The probability ofcollision when partial trajectory .Y belongs 
to pattern ?; and partial trajectory Y bclongs to pattern TI .  

3) 

ltcm 3 can be denoted as a function of T, and T, : 

f ( ( . ~ . ~ , ) . o ' , r , i )  = (4) i: 
where 'O'denotes no collision and ' 1 '  denotes collision. 

Then the oc~urrence probability B(.Y, Y) olvehicle.4 with 

observed trajectory .Yand vehicle 8 with observed trajcctop I' 
coniins into collisional a later time b computed by: 

< I '  

B( .Y. i? = 11 P(7; 1 .Y)P(7, I X)f((.Y. 5 j. [ >., 5 )) ( 5 )  
/ i l  13 

where K i s  the size ofthe pattern sef. 
The problem here is to decide the value of the 

function f ( ( .x .  ) : ( y ,  TI )) . For simplicity. wc represent a 

vehicle witharcctanplarbou boundingthe vehicle projection on 
the ground plane. Thus whether the collision would happen or 
nor can be formulated as whether the two rectangular boxes o f  
certain sizes would intersect or not at certain time. 

I n  Fig.4, the twosolid lines represent respectively the patterns 

?; and Ti intheparternset: thesolidpointsaresamplepoints at 

equai times in the two corresponding patterns; the arrowheads 
show the direction ofmotion:the two rectangles bonded with the 
solid lines represent the vehicle projections at the current time: 
and the rectangles bounded with the dashed lines represenr the 
vehicle projections afiersome time i f the two vehicles move alone 
the two patterns. Suppose that at time I. vehicle A is  at position 

A(Xl,yI) ,withdirection 

and vehicle B i s  at 

direction of motion 

(&,,&,). The length 
of the rectangle for 
vehicle A i s  L,, and the 
width o f  the rectangle is  
IY,.The length of the 
rectangle for vehicle 
and the width o f  the rectangle is W. The algorithm for judging 
whether vehicles A and E wi l l  come into collision is  described as 
followvs: 
I =  the current time io; 
WHILE(Sample points inpanems 7; and 

is b, Fis. 4. Collision Judgment 

both exist) 

BEGM 
Compute intersection points between each line segment in one 

rectangle and each line segment in another one attime I: 
IFthere are n points of intersection 
THEN FOReach point of intersection 

BEGIN 
Compute distance d, between the point and.4 (.rI, y l )  ; 
Compute distance d2  between the point and 

IF (d,  < m / 2 j o r ( d ,  <-I?) 

B (.r2, yl 1 : 

THEY RETURNcollision: 
END 

i = i i the sampling time: 
END 

RETURh' no collision: 
In  fact. i t  isnot accurate enough to judge whicie collision with 

Formula (4) when partial trajectoriesXand lbelong respectively 

IO patterns and T I .  The probability of collision is Elated to 

time r when the collision may happen and current time I,,. The 
longer the predicted collision timer i s  away fromcurr&t time I,,. 
the lesslikely thecollision. On the contray. the closer time I i s  to 
currenttime hi the more likely the collision. So svhcn the above 
geometric conditionofvehicle collision i s  satisfied. we introduce 
an weight function to Formula (4) which is thus improved in the 
following fashion: 

f ( ( X , 7 , ) , ( Y , 7 , ) )  = ( 6 )  

l,-L,f -- 
where '0 stands for no collision. and e 'a- i s  the 

probabilitvofcollision. Assume that thedriver's response time b 
11 fames. that is  to say. i f t h e  driver knows the daneerh h m e s  
ahead. the collisions might be avoided. \\'e consider that the 
probability distribution should be changed fast a i  this time. so 
o = h  
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VII .  EXPERIMENTS 
Al l  thc algori thm t~zrc implemented using Vistiol C+ 6.0 on 

the Windows ZOO0 plalfbmi Sincc i t  is dif.iicult and dangerous to 

also involves inany events such as turning left. turning right. 
entering and Icaving. .Ihc inudcl also includes radio- controlled 
toy cars. Because the algorithns for vehicle localizatioii and 
tracking are based on 3D models. we have also made 3D 
wk-frame models for the toy cars. 

We have implemented a real-time 3D model based vehicle 
trackin_esystcm intlie trafficmodel scenc. Bydrivingthetoy can. 
w'c can acquire a series of trajectories. Ry leaming these 
trajectories. w e  can obtain tlie activity patterns that are used to 
realize Ihc prediction of car collision Since al l  experiments arc 
bascd on 3D modcl bascd tracking. a l l  the data used in the 
cipcriments arc i n  a single \vorld coordinate systcm I n  order to 
show the cupeiiment results more intuitively. the triLjectories in 
the frillowing figuresovcrlaid i n  the 

Fig. 6 shows 400 t r + m r i c s  
acquired by 3D model based 
vehicle tracking. The learning 
results of activity patterns arc 
shown in Fig. 7.  in which the black 
lines represent the trajectory 
samples and the white ones 
denote the learned activity 

Fig. 6 .  Trajectory samples 

patterns. The results appear to be satistictory since there are no 
oscillations and thc Icarned patterns are consistent with the 
samples 

Two lest instances are shown in 
Fig. 8 and Fig. 9 i n  which t l ie 
vehicles are tracked accurately 
using 3Dwire-frame vrhiclc models. 
.The image sequences are sampled 
once every three frames. The 
figure for frame 45 in f i e .  8 i s  at a Fig 1 Lr~mcd activity patienis - 
larger size in order tosho\v the projected w,irc-frame model more 
clearly. 

Table I shows the occurrence probability o f  collision for test 
image sequence I .  The first row shows the results of Formula ( 5 )  
with Fo'orinula e). m d  tlic sccond row shows the results with 
Formula (6) to which the u,eight function is introduced. Test 
image sequence I shows a casein which two vehicles come close 
but do not collide. In 'Table l i  the probability shown in row 1 
begins to decrease from frame 33, whereas that shown in row 2 
begins to decrease obviously from frame 30. This shows that the 
probability with weight analysis is  better for prediction than that 
without weight analysis since the two vehicles do not at last 
collide. But i t  i s  still very dangerous that the vehicles in the test 
sequence approachedeach otherso closely. Thusat frame 27, the 

probabilities in twro rows areboth above 70%. which can serve as 
a warning indicator. 

f m e  39 frame 42 frame 45 
Fig. 8. linage scq~~cnce  I fortest 

frame 24 frame27 frame 30 
Fig. 9. Image sequence 2 for test 

'l'able 2 shows the probabilities olvehicle collision in  Fig. 9. 
where collision actually occurred. The two rows show the 
probabilities with and w i t b u t  weight analysis respectively. We 
can secthat,.iust before the collision occurs, the probabilities with 
weight analysisobservedinf~~nes 2 1  and30are largerthan those 
without weight analysis. Sothe possibilities with weight analysis 
are also better for prediction than those without weight analysis. 

Fig. 10 shows the experimental results for other 7 image 
sequences. The solidcurves represent the probability sequences 
corresponding b the cases in which collisions happen. The 
dash-dot curves correspond to the cases in which collisions do 
not happen but the vehicles comeclose to each other. The dotted 
curves correspond to the cases in which no danger exists. 
Because in the initial frames there is  too little information, the 
collision probabilities predicted in the initial sampling phase are 
instable. I n  practice, we just ignorc the first few frames. We set a 
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t h re sho ld  to discr iminate  b e t w e e n  t h e  n o r m a l  and d a n g e r o u s  
SituationS. s h o w n  as line b in Fie. IO. W h e n  t h e  p r o b a b i l i v  of 

[41 H. Kollnigand H-H. Nagel. 3D pore estimation by directly matching 
polyhedral models to gray value gradienld' , Intemationd Joumal of 
Comouter Vision. Vol. 23. No. 3. DO. 283-302. 1997 

FOllll"ja\ 
Formula 

Formula 
(6 1 

squencer", Intemattonal Journal ofcamputer  Vision, Vol 35. No I-: I 12 I 15 I 1s I 21 I 24 I 27 I 3 0  I 33 I 36 I39 I 42 1 4 s  I on 295.319 1999 
~~ ~~ . , ~ ~  ... . ~ ~ ,  

I61 M. Trivedi, I. Mikic, G. Kogut. '' Distributed vidco networks f o r  
hcident detection and management" , IEEE Conference on 
Intelligent Tranrponation Systems. Dearbarn. Michigan, October 
2000 

j4 43 57 74 62 S2 2' ' [7] R. Fraile and S. J. Maybank. '' Vehicle Trajectory Approximation 

31 3 8  w 44 60 75 72 44 31 n o o 

12 I5 I 8  21 24  27 30 

Fis. IO .  Analysis of tinific accidence prediction 

VIII. CONCLUSIONS 

We h a v e  presented a probabi l i ry  model for traffic acc iden t  
p red ic t ion  We firs t  ob ta in  sample d a t a  inc lud ing  mot ion  
t ra jector ies  b y  3D mode l  based  veh ic l e  t racking.  We t h e n  
rstnblisn a probabi l i ty  model fo rp red ic t ing  t raff ic  accidents .  \Vs 
predict  t h e  t ra jectory a l o n g  wh ich  a veh ic l e  w i l l  m w e  by matching 
its current partialtra,iectoi? w i t h  rheleamed ac t iv i ty  panems. and 
t iunhercaiculate  t he  p o s s i b i l i v  in w h i c h  t w o  vehicles  wil l  collide. 
Eupcrimenrs f o r t r a f f c  acc iden t  p r e d i c t i o n v e  pe r fo rmed  based  on 
the  jD m o d e l  b a s e d  veh ic l e  t r ack ing  s y s t e m .  T h e  resul ts  
demons t r a t e  t h e  e f f ec r iveness  o f t h e  p r o p o s e d  a l g o r i t h m .  
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