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Abstract 

This paper introduces a novel algorithm based on global comprehensive similarity with three 

steps.  To describe the Euclidean space–based relative features among minutiae, we first build 

a minutia-simplex that contains a pair of minutiae as well as their associated textures, with its 

transformation-variant and invariant relative features employed for the comprehensive similarity 

measurement and parameter estimation respectively.  By the second step, we use the ridge-

based nearest neighbourhood among minutiae to represent the ridge-based relative features 

among minutiae.  With these ridge-based relative features, minutiae are grouped according to 

their affinity with a ridge.  The Euclidean space-based and ridge-based relative features among 

minutiae reinforce each other in the representation of a fingerprint.  Finally, we model the rela-

tionship between transformation and the comprehensive similarity between two fingerprints in 

terms of histogram for initial parameter estimation.  Through these steps, our experiment shows 

that the method mentioned above is both effective and suitable for limited memory AFIS owing to 

its less than 1k byte template size. 

Key words: Fingerprint identification; ridge-based nearest neighbourhood among minutiae; 

relative feature; minutia-simplex 

 

 

 

 

 

 

 



 3

1. Introduction 

A fingerprint is a pattern of ridges and valleys on the surface of a finger.  It has been used for 

individual identification for legal purposes.  Automatic fingerprint identification, which is es-

tablished on modern information technology, is even applied to civilian purposes such as access 

control, financial security and verification of firearm purchasers.  In fact, the Automatic Finger-

print Identification Systems (AFISs) have been performed well for years in controllable circum-

stances.  However, limited fingerprint quality, non-linear distortion, limited time and memory 

expense in an off-line AFIS, such as Personal Digital Assistant (PDA) and IC Card systems, are 

still challenging tasks in fingerprint matching. 

This paper introduces an identification algorithm based on global comprehensive similarity 

with the view to overcome the dilemmas encountered in fingerprint matching process.  The new 

method introduces minutiae and local ridge information in fingerprint representation.  Local 

ridge information helps to represent a local fingerprint region and prevent matching from failing 

for insufficient minutiae.  A minutia-simplex is built to describe a 2nd order Euclidean space-

based relative structure [1] between two minutiae, and all minutia-simplexes that closely connect 

minutiae and ridges represent a fingerprint.  So a fingerprint is understood to be composed of 

many local regions, each of which is represented by one or more minutia-simplexes.  If a fin-

gerprint region deforms very little, the relative features of minutiae can be aligned for matching 

by using rigid transformation.  Two minutiae of a minutia-simplex are subject to the positional 

constraint.  Among other relative structures, such as minutia-triplet [2][3], it has more reliable 

performance in fingerprint matching because of its rich relative features.  Compared with minu-

tia-triplet [2][3], however, minutia-simplex has better trade-off between its performance and 

computational expense.  It is known that Euclidean-space relative structures have their own 
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limitation in fingerprint representation.  For example, local texture of two relative structures is 

different though their relative features are similar.  Therefore, ridge-based nearest neighbour-

hood among minutiae is introduced to represent ridge-based relative features with ridge-counts 

between ridges and minutiae.  And minutiae are connected as a topological network with ridges.  

The ridge-based and Euclidean-space relative features reinforce each other in fingerprint repre-

sentation.  As compared with ridge-counts among minutiae in methods [2][4], the ridge-based 

nearest neighbourhood among minutiae is more reliably detected although they may be influ-

enced by outlier rejection. 

In fingerprint matching, local comprehensive similarity and local transformation parameter are 

first obtained by coarsely matching between relative structures. Then, the relationship between 

the comprehensive similarity and transformation is modeled in terms of histogram for calculating 

an initial transformation model. Finally, the variable bounded box method [5] is used for double-

checking local comprehensive similarities. Both the histogram and variable bounded box meth-

ods globally reduce the influence of deformation on matching. For uncontrollable conditions, 

such as large-deformations and large-area outlier rejection, histogram and variable bounded box 

may be affected and as a consequence, their parameters should be aligned accordingly. 

This paper is organized as follows: In section 2, we provide an overview of current fingerprint 

identification methods in literature.  As to Sections 3，we try to manifest how our method 

works in fingerprint reprocessing, fingerprint representation, transformation model analysis and 

final matching.  Section 4 is an objective evaluation of the new method with the experimental 

results.  The last section confirms the value of the proposed method and provides some pros-

pects in the future. 

2. A brief overview of fingerprint identification methods 
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Fingerprint identification involves a wide range of algorithms with different techniques.  These 

schemes are based predominantly on local landmarks, exclusive global features as well as 

comprehensive fingerprint features [6].  The minutiae-based matching methods, such as Jiang’s 

and Bhanu’s matching and indexing methods using minutiae-triplets [2][3] and Gold’s graph 

matching method [4], locate minutiae, match their relative placement in an input fingerprint and 

a template.  The minutiae-based technique is widely used because it takes less memory expense 

and has time saving advantages.  However, a minutia set cannot characterize overall pattern of a 

fingerprint, and a minutiae-based fingerprint matching system can hardly match two fingerprints 

containing different number of unregistered minutiae.  And it is hard to further improve their 

performance. 

The exclusive global feature-based techniques are used not only for indexing [7][8] but also 

for identification [9][10][11][12].  They match the global patterns of the fingerprint texture by 

aligning the input global features and measuring the maximum mutual global information be-

tween two fingerprints.  In these methods, however, the central point should be determined with 

a reliable accuracy and it is difficult to deal with distortion in the fingerprints.  The exclusive 

global information-based AFISs also need more memory to store a fingerprint template than the 

other two kinds of AFISs. 

Comprehensive feature-based techniques [13][14][15] are also seen as a hybrid matching 

method by fusing minutiae, local features and global features.  Local features help accelerate 

the alignment of the unregistered minutia patterns in different sizes.  Global features are used to 

overcome the shortage of minutiae and local features in bad quality fingerprints.  With the rea-

sonable time and memory expenses, comprehensive feature-based techniques outperform two 

aforementioned kinds of matching methods.  Additionally, they combine various classifiers for 
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fingerprint matching.  With the advanced hardware technology, these approaches have become 

popular for their good performance in acceptable memory expense in recent years.  

These methods work well for the controllable environment of small deformation and small-

area outlier rejection, while they are not omnipotent methods which robustly perform with some 

special conditions with large-deformation.  

3. Fingerprint matching technique based on global comprehensive similarity 

The method is a comprehensive feature-based technique with two novel aspects:  First, a minu-

tia-simplex and the ridge-based nearest neighbourhood among minutiae are combined to repre-

sent the relative features among minutiae.  Second, improved from our previous work [16] in 

alignment, the relationship between the comprehensive similarity and transformation is a model 

in terms of histogram for estimating an initial mapping model.  Compared with our previous 

work [16] in alignment, the new method has two novel points: local similarity is checked with 

ridge-based relative features, and the estimated parameter is only used as an initial one. 

3.1. Fingerprint pre-processing 

With our method, fingerprint features are extracted from a thinned fingerprint for two reasons: 

first, it contains enough information to represent the uniqueness of a fingerprint.  Second, in the 

thinned fingerprint, minutiae are more accurately detected and ridges are more efficiently tracked 

than its corresponding grey fingerprint. Generally, a thinned fingerprint is obtained from a serial 

of steps including normalization, enhancement, binarization, thining, and post-processing 

[17][18] .  Cheng’s dyadic scale space-based fingerprint enhancement method [19] has been 

applied in our AFIS for a fingerprint is often affected by multi-spectrum noises.  In this method, 

a fingerprint can be divided into a series of scale spaces with its corresponding Gaussian filter for 

the enhancement.  The combined statistical and structural approach [18] and knowledge-based 
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enhancement method [17] have been employed in our AFIS to binarize and post-process the en-

hanced fingerprint.  The fingerprint pre-processing in our AFIS is displayed in Figure 1, where 

Figure 1-a is from the first fingerprint database (DB1_a) of the 1st International Fingerprint Veri-

fication Competition in 2000 (FVC2000) [20]; Figures 1-b to1-d indicate the corresponding ori-

entation image, binary image and thinned image respectively. 

 
a 

 
b 

 
c 

 
d 

Figure 1. Fingerprint pre-processing with our AFIS.  a: an original fingerprint in 

DB1_a of FVC2000; b: its block orientation field; c: enhanced one; d: thinned one 

3.2. Fingerprint representation in our method 

The uniqueness of a fingerprint is determined by topographic pattern of its texture structure and 

certain ridge anomalies termed as minutiae.  A challenging task of a fingerprint matching 

method is to extract enough reliable features in a small memory expense.  Nowadays, compre-

hensive features combining minutiae and ridge information have been widely used in matching 

and they have been performing well.  However, the proposed technique includes the various 

texture-based features as part of the minutiae-simplex and finds fingerprint alignment.  The 

ridge-based nearest neighbourhood among minutiae is used as a feature to demonstrate the ridge-
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based relative relations among minutiae.  This technique combines the Euclidian space-based 

and ridge-based relative features.  In this section, comprehensive minutiae and their Euclidian-

based and ridge-based relative features will be proposed to characterize the uniqueness of a 

fingerprint. 

3.2.1. Comprehensive minutiae 

A fingerprint of bad quality may be too dry, too wet or the foreground area may be so narrow 

that no enough reliable minutiae can be detected.  In some cases, two fingerprints even from the 

same finger fail to match for lack of common minutiae.  Therefore, minutiae and associated 

ridge information are combined in proposed method to improve fingerprint representation. 

Vector set MF = {MF
i = (xF

i, yF
i, αF

i, βF
i, φF

i1, …, φF
iT, d F

i1, …, d F
iT); |MF| ≥ i≥1, T≥2} denotes 

all comprehensive minutiae in fingerprint F, where |MF| is the number of the minutiae in finger-

print F and T denotes the number of sampled points along a ridge skeleton associated with a mi-

nutia.  MF
i, the ith minutia, see Figure 2, is denoted by a feature vector (xF

i, yF
i, αF

i, βF
i, φF

i1, …, 

φF
iT, d F

i1, …, d F
iT)( |MF|≥ i≥1, T≥2), where: 1) xF

i and yF
i denote its coordinates; 2) αF

i denotes 

its orientation, the angle from the horizontal axis OX to its local ridge direction in the anticlock-

wise direction; 3) βF
i denotes the local grey variance of a 16×16 area centered by MF

i; 4) φF
ik and 

dF
ik (|MF|≥ i≥1, T≥ k≥1) respectively denote the direction and distance from MF

i to the kth point 

sampled along the ridge skeleton beginning at MF
i in the equal step.  And the equal step is a 

constant pixel count between two adjacent sampled points along the skeleton. And it is set to 

three times the ridge width in our study.  φF
ik and dF

ik are determined by kth sampled point on 

the ridge associated with MF
i.  Therefore, φF

ik and dF
ik will be affected by spurs or kinks in the 

skeleton.  To reduce their effect on φF
ik and dF

ik, Luo’s knowledge-based post-processing 

method [17] is used to smooth fingerprint skeleton after thinning. 
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All φF
ik and dF

ik are employed to describe the ridge information associated with MF
i.  βF

i, φF
ik 

and dF
ik (|MF|≥ i≥1, T≥ k≥1) are combined to describe local texture and ridge information of the 

local region associated with MF
i respectively.  These features help align and distinguish input 

features in matching. 

 

Figure 2. Minutiae and their associated local ridge information 

3.2.2. Relative structures among minutiae 

In fingerprint analysis, minutiae are more abstract than fingerprint pixels.  They are related to 

each other and attributed by (unary) properties.  In other words, a fingerprint can be simply rep-

resented by minutiae constrained with their properties and relations.  It is the bilateral or higher 

order relations that convey the contextual constraints.  They play a crucial role in fingerprint 

matching.  In this algorithm, two relative structures among minutiae are introduced as minutia-

simplex and ridge-based nearest neighbourhood among minutiae. 

A. Minutia-simplex 

nth (n≥1) order relative structures among minutiae combine all comprehensive minutiae as a 

whole.  These relative structures are usually classified into unary minutia, minutia-simplex, and 

minutia-triplet.  Minutiae have seldom been used as unary relative structures because they do 

not have relative features to globally represent a fingerprint.  3rd order relative structures, such 

as minutia-triplet employed in many methods [2][3], require more computational expense though 
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they have more robust performance in matching.  2nd order relative structures also have enough 

relative features and keep a good trade-off between computational expense and performance.  

Therefore, minutia-simplex, 2nd order relative structure of minutiae is proposed in our study, as 

shown in Figure 3.  

Let EF={EF
i=(pF

i, qF
i, lF

i, θF
i, uF

i, vF
i); |EF|≥i≥1}denote the minutia-simplex set of fingerprint 

F, where: 1) |EF| is the size of the minutia-simplex set.  2) pF
i and qF

i (|MF|≥pF
i, qF

i≥1) denote 

the serial numbers in the minutia set MF.  F
pi

M  and F
qi

M  are two ending minutiae of a minu-

tia-simplex EF
i when Lh≥ ( ) ( )

2
,, F

q
F
q

F
p

F
p iiii

yxyx － ≥Ll, where Ll and Lh are the lower and upper 

bounds of the length of a valid minutia-simplex respectively; ( )F
p

F
p ii

yx ,  and ( )F
q

F
q ii

yx ,  are the 

coordinates of F
pi

M  and F
qi

M  respectively.  Assume that the local region centred by MF
i de-

forms very little, the relative features of all minutia-simplexes associated with MF
i can be linearly 

transformed in this local region.  3) lF
i= ( ) ( )

2
,, F

q
F
q

F
p

F
p iiii

yxyx －  and denotes the length of the 

minutia-simplex.  4) θF
i= 











−
−

F
q

F
p

F
q

F
p

ii

ii

yy
xx

arctan  denotes the direction of the minutia-simplex.  5) 

uF
i= F

i
F
pi

θα −  and vF
i = F

i
F
qi

θα − .  They are derivative relative features of minutia-simplex EF
i, 

respectively denoting its directional differences away from F
pi

α  and F
qi

α . 

Relative features of a minutia-simplex are divided into two parts, transformation-invariants 

and transformation-variants, which are used for local similarity measurement and alignment re-

spectively.  Transformation-invariants lF
i, uF

i and vF
i are irrelevant with linear transformation, 

such as translation and rotation, and can be used for direct similarity measurement if scaling is 

not considered.  Transformation-variantθF
i changes with rotation and is used to model rotating 
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input minutiae referred to the template.  The size of set EF, |EF|, is determined by thresholds Ll 

and Lh.  |EF| is much less than 








2

FM  because the distances between many minutia pairs are 

beyond the interval [Ll, Lh].  For each minutia, thresholds Ll and Lh are used to set a circular 

region in a minimum deformation, and geometric transformation of a minutia simplex is assumed 

to be linear.  That is, the direction of a minutia-simplex in the local region is in linear relation 

with fingerprint rotation parameter.  In the proposed method, Ll and Lh are set to five and fifteen 

times ridge-width respectively, see Appendix. 

B. Ridge-based nearest neighbourhood among minutiae 

Like a minutia-triplet, a minutia-simplex only describes the Euclidean space-based relative fea-

tures among minutiae.  These relative structures can not completely explain the complex local 

texture and results in mismatch.  For example, minutia-simplex pair (MF
i, MF

j) and (MG
i’, MG

j’) 

in Figure 4 is mismatched because their relative features are very similar.  However, it is easier 

to distinguish the minutia-simplex (MF
i, MF

j) from the minutia-simplex (MG
i’, MG

j’) with their 

ridge-based relative features. 

Let RF
i (|MF|≥i≥1) denote the ridge beginning at MF

i and rF
ij the ridge-count between MF

j and 

the ridge RF
i.  Set {rF

ij | i; |MF|≥j≥1} denotes the ridge-based nearest neighbourhood of MF
i and 

describes the ridge-based relative features among MF
i and other minutiae.  rF

ij is more easily 

detected than ridge-count between two minutiae used in method [2].  In our study, rF
ij is set to 0 

or 1 or 2 in three cases respectively: (1) rF
ij =0 when MF

i and MF
j are on the same ridge RF

i, such 

as M1 and M2 in Figure 5; (2) rF
ij =1 when there is no more than one ridge between MF

j and RF
i, 

like M4 and M5 in Figure 5; (3) rF
ij =2 when MF

i and MF
j meet neither condition (1) nor (2), such 
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as M3 and M6 in Figure 5.  The ridge-based nearest neighbourhood among minutiae describes 

the novel ridge-based relative features among minutiae. 

3.3. Transformation parameter analysis 

For a randomly-placed finger, it is necessary to align input minutiae to the template during 

matching.  The alignment generally includes rotation, translation, and shearing.  The align-

ment significantly affects the comprehensive similarity of two fingerprints.  A transformation 

model also needs to be optimized to obtain the maximal comprehensive similarity.  However, it 

is difficult to estimate the maximal comprehensive similarity if one doesn’t know the optimal 

transformation model.  In our study, the relationship between the comprehensive similarity and 

transformation model was built for estimating an optimal transformation model.  The model is 

confirmed effective by our experimental result. 

This matching algorithm is designed assuming that input and template fingerprints are cap-

tured with the same device but with little scaling deformation under the same condition.  Since 

fingerprint matching performs well in polar coordinate, translation of the input features to the 

template is not used if the central point is set in advance.  So one of the most important tasks in 

alignment is to obtain the optimal rotation parameter. 

3.3.1. Local comprehensive similarity measurement 

In some matching methods, such as Jiang’s local and global structure based minutiae matching 

method [2], local similarities between relative structures are accumulated to calculate the global 

similarity.  In our study, local similarities are also used for estimating transformation-

parameters, and they are calculated by coarsely comparing transformation-invariant relative fea-

tures of minutiae-simplexes. 
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Figure 3. Minutia-simplex EF
i.  Minutiae F

pi
M  and F

qi
M  are its two ending points; 

lFi, θF
i, uF

i, and vF
i are its relative features. 

 

Figure 4.  Differences between ridge-based relative features.  The ridge-based 

nearest neighbourhood of MF
i and MF

j is obviously dissimilar to that of MG
i’ and 

MG
j’ though their Euclidean space-based relative features are similar. 

 

Figure 5. Ridge-based nearest neighbourhood among minutiae.  (1) M1 and M2 are 

located on the same ridge; (2) There is no more than one ridge between M4 and 

ridge R5 beginning at M5; (3) M3 and M6 meet neither condition (1) nor (2). 
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Set S ={(Sij, Iij); Sij≥0, Iij = 0 or 1, |EF|≥ i ≥1, |EG|≥ j ≥1} denote all local comprehensive simi-

larities between two minutia-simplex sets EF and EG, where Sij is the local similarity between EF
i 

and EG
j , and Iij is their matching order.  If Iij = 1, EF

i and EG
j are assumed to be matched in 

positive order; otherwise, in reverse order.  

( )
{ }





=

<=
)1()0(

)1()0(

,max ijijij

ijijij

SSS

SSI
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In Formula (3), ∆l, ∆α, and ∆β denote the error thresholds of distance, direction and grey variance 

of a minutia-simplex respectively.  They are estimated from training datasets and set to 16 pix-

els, 10°, 16 respectively, see Appendix.  ( ) ( )( )G
q

G
p

G
j

F
q

F
p

F
i jjii

MMEMMEdiff ,,,,,1  is produced by 

matching the transformation invariant features of ( )F
q

F
p

F
i ii

MME ,,  and those of ( )G
q

G
p

G
j jj

MME ,,  
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in positive matching order. ( ) ( )( )G
p

G
q

G
j

F
q

F
p

F
i jjii

MMEMMEdiff ,,,,,0  is generated by matching the 

transformation invariant features of ( )F
q

F
p

F
i ii

MME ,,  and those of ( )G
p

G
q

G
j jj

MME ,,  in reversed 

matching order.  And the directional relative features of G
jE , G

jθ , G
ju  and G

jv , are aligned as 

G
jθ + o180 , G

ju + o180 and G
jv + o180  respectively. 

Deformation in fingerprints affects the similarity set S and results in mismatch.  In our study, 

the ridge-based nearest neighbourhood among minutiae is used to check all local similarities. 

3.3.2. Checking local similarity with ridge-based nearest neighbourhood among minutiae 

In local similarity measurement in Formula (1), error thresholds, ∆l, ∆α, and ∆β are used to coun-

teract the influence of spurs on relative features in matching.  The scheme of tolerance devia-

tion also results in mismatch.  For example, two similar local regions, being from two different 

fingers, are often mismatched with the Euclidean space-based relative features.  In our study, 

the ridge-based nearest neighbourhood among minutiae is used to overcome the fault by double-

checking these coarse matching results to determine local mismatch in Set S. 

Each element in set S is mismatch if EF
i and EG

j don’t meet the condition described in Formula 

(4), depicting the difference between the ridge-based nearest neighbourhood of minutia 

pair ( )F
q

F
p ii

MM ,  and that of minutia pair ( )G
q

G
p jj

MM , .  If Iij=1, indicating EF
i is matched to EG

j 

in positive order, F
qp ii

r and F
pq ii

r  are compared with G
qp jj

r and G
pq jj

r  respectively.  Vice versa, if 

Iij=0, indicating EF
i is matched to EG

j in reverse order, F
qp ii

r and F
pq ii

r  are compared with 

G
pq jj

r and G
qp jj

r  respectively. 
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3.3.3. Local transformation parameter estimation 

Affine transformation model is a feasible and effective model for fingerprint matching [21] and it 

needs three parameters θ, tx, and ty if scaling is not considered in our study.  Only the rotation 

parameter θ is required if center points of two fingerprints are given and matching is done in 

polar system.  Based on the coarse matching results, local rotation parameter measurement is 

introduced in this section. 

Set θ ={θij ; |EF|≥i≥1, |EG|≥j≥1} denote all local rotation parameters calculated from all local 

relative structures.  In our study, a local rotation parameter is represented by the direction dif-

ference between a local relative structure and its corresponding template one, which is based on 

the assumption that each local fingerprint region deforms very little.  Formula (5) uses the mean 

of local directional biases of an input minutia-simplex referred to its corresponding template one 

as a local rotation parameter. 
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3.3.4. Modelling the relation between comprehensive similarity and rotation parameter 

Many methods, such as Cappelli’s plastic distortion model [22], Bazen’s thin-plate spline model 

[23], Senior’s equally spaced fingerprint conversion [24], are proposed to model non-linear de-

formation patterns. However, these methods have their limits in fingerprint identification appli-

cation systems though they can partially solve deformation under controllable situations.  For 

example, with the plastic distortion model [22], it is hard to obtain enough information to build 

the deformation model. Senior’s equally spaced fingerprint conversion [24] would fail if the 

compression or traction force is parallel to the local ridge orientation and the inter-ridge space 
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will not change. Bazen’s thin-plate spline model [23] is good at distinguishing the major differ-

ences from different fingerprints, however, it is weak in detecting their minor differences.  

In this paper, using a series of local relative structures with little local deformation, the distri-

bution of global comprehensive similarity along rotation parameter is modelled to calculate an 

optimal rotation parameter.  In matching, the rotation parameter is adjusted in a small interval 

to reduce the impact of mismatches in the coarsely matching stage on the global rotation parame-

ter.  For local similarity set S and its corresponding local directional bias set θ, their relation-

ship is denoted with a similarity function H(S, θ) built with Formula (6) in terms of histogram.  

Figure 7 illustrates H(S, θ), which comes from coarse results by matching two fingerprints from 

the same finger, see Figure 6. 

∑ ∑ ×θ−θδ=θ
= =

F GE

i

E

j
ijij SSH

1 1
1 )()( ，                           (6) 

where δ1(x) is an impulsive function; if x=0, δ1(x) =1; otherwise, δ1(x) =0.  

Local similarity measurement is disturbed by noises so that H(S, θ) will be affected accord-

ingly.  A filter function, [ ])cos(1)( 2
1

d
xxw π−=  (2d+1≥x≥1), is used to decrease noises in H(S, 

θ).  Filtered H(S, θ) is shown in Figure 8.  H(S, θ), a periodical function, can be extended by 

half a period, which doesn’t influence its performance.  And the histogram has only one peak in 

a period, where the rotation parameter is optimal.  In our study, the maximum of H(S, θ) is used 

to coarsely measure the gobal similarity between fingerprints F and G. 

Theoretically, the rotation parameter θ0, where H(S, θ0) is the maximal, is the global optimal 

one, called as θm.  It is calculated with geometric mean method as shown in Formula (7) and 

Figure 9, whereσis set to less than half of directional error threshold ∆α, and γ∈(0,1] is applied 

for an confidence interval of the global similarity.  They are set to 5 and 0.6677 respectively in 
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this method.  For example, if H(S, θ) is of normal distribution, the confidence of the global 

similarity is ( )γφ ln22 − -1=0.6318 when γ=0.6667.  If θm is beyond the interval preset for the 

rotation transformation parameter, this matching fails.  In Formula (7), H(S, θ0)=max{H(S, θ)}; 

h(x)=0 if x<0; otherwise, h(x)=x.  
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Deformation and large-area outlier rejection will influence on the Euclidean relative features 

and then affect the on rotation parameter estimation.  For general controllable environments of 

small deformation and small-area outlier rejection, θm is aligned in the interval [-1°, +1°] to re-

duce the influences on the estimation.  While under special condition of large-deformation and 

large-area outlier rejection, θm should be aligned in a lager interval and non-rigid parameter esti-

mation will perform better. 

3.4. Fingerprint matching 

Deformation in fingerprints may bring false local similarities in S and therefore affects the final 

comprehensive similarity.  Thus the global fingerprint matching is essential after the coarse 

local matching if the transformation model is known.  In this section, the variably–sized bound-

ing method [5] is used to double-check all local comprehensive similarities to reduce the influ-

ence of deformation in fingerprints.  It consists of three steps: setting the center points, aligning 

the input minutiae to the template, and double-checking all the local similarities. 

First, the comprehensive similarity of a pair of minutiae is calculated from local similarity set 

S, shown in Formula (8).  The pair of minutiae with the greatest comprehensive similarity are 

selected as central points. 
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Let U ={Uij; |MF|≥i≥1, |MG|≥j ≥1} denote the set of all comprehensive similarities of minutia  

pairs, where Uij is the sum of local similarities of all minutia-simplex pairs in {(EF
m, EG

n)|((i= 

pF
m or qF

m) and (j= pG
n or qG

n))}, and denotes the comprehensive similarity between MF
i and MG

j.  

(OF, OG) = ( ) ( )( )G
o

G
o

F
o

F
o jjii

yxyx ,,,  is selected as the center points in alignment, where 

{ }ijjioo UU
ji ),(

max=  (|MF|≥i, oi≥1, |MG|≥j, oj≥1).  In Formula (8), function δ2 is used to judge 

whether a minutia-simplex pair is associated with the minutia pair (MF
i, MG

j). 

Second, all minutiae in sets MF and MG are transformed into their corresponding polar

 systems referred to their central points, OF and OG, respectively. Let V={Vij; |MF|≥i≥1 |

MG|≥j≥1} denote all similarities of aligned minutia pairs, where Vij denotes that of MF
i a

nd MG
j, see Formula (9).   
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If Vij ≤0, MF
i and MG

j are mismatched. In Formula (9), b(x, x0, x1) is a step function p

roposed in the variably-sized bounding method [5] shown in Formula (10). The positional

 parameters r0, rs, and rl and direction parameters a0, as, and al decide the size of the v

ariably-sized bounding box; ( )F
i

F
i ϑρ ,  and ( )G

j
G
j ϑρ ,  are the coordinates of MF

i and MG
j i

n polar systems respectively; 
ijm∆  is the vector of error thresholds of aligned minutia-pai
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r MF
i and MG

j; and diff(MF
i, MG

j) denotes the transformation-variant feature differences of

 MF
i referred to MG

j.  
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Figure 6. Fingerprints F and G acquired from the same finger with a sensor 

 

Figure 7. Distribution of comprehensive 

similarity S along rotation parameter θ 

 

Figure 8. Filtered distribution of similar-

ity S along rotation parameter θ. 

 

 

Figure 9. Rotation parameter calculated with geometric mean method from H(S, θ) 
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Finally, all local similarities in S is double-checked with Formula (9) in two cases.  If Imn=1, 

indicating that EF
m and EG

n match in positive order, Smn is invalid when 0≤G
n

F
m ppV  and 

0≤G
n

F
m qq

V .  If Imn=0, indicating that EF
m and EG

n match in inverse order, Smn is invalid 

when 0≤G
n

F
m pq

V  and 0≤G
n

F
m qp

V . 

The revised local similarity set S′= {(S′mn, I′mn); |EF|≥i≥1, |EG|≥j≥1} is performed as final 

matching step to measure the similarity between fingerprints F and G.  ∑
∈ ',

'

'' SIS
mn

mnmn

S
）（

, ∑
∈VV

ij
ij

V , |S′|, 

and |V| are four final indices for global comprehensive similarity measurement between finger-

print F and G.  They made it possible to judge whether two fingerprints come from the same 

finger in quantity.  To reduce the effects of false local similarities in S on parameter estimation, 

θm is changed in the interval [-1°, +1°] to make matching more robust.  The above matching 

process is also looped three times to obtain an optimal team of performance indices ∑
∈ ',

'

'' SIS
mn

mnmn

S
）（

, 

∑
∈VV

ij
ij

V , |S’|, and |V| as the final result in terms of the sum rule. 

4. Results 

Experiments were performed over the fingerprint databases provided by the 1st International Fin-

gerprint Verification Competition in 2000 (FVC2000) [20] , 2nd International Fingerprint Verifi-

cation Competition in 2002 (FVC2002) [25], and 3rd International Fingerprint Verification Com-

petition in 2004 (FVC2004) [26].  Our experiments checked the validity of H(S, θ), analyzed of 

rotation parameter, and evaluated the final matching performance. 

4.1. Validation of H(S,θ) in verification 

Two sets of experiments were conducted to evaluate the performance of H(S, θ).  100 pairs of 

fingerprints were selected from different fingers.  In the first group of 50 pairs, two fingerprints 
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in each pair were not similar as shown in Figures 10-a1 and 10-a2.  In the second group of 50 

pairs, two fingerprints in each pair were similar, see Figures 11-a1 and 11-a2.  Figures 10-c and 

11-c showed that the filtered H(S, θ) of a pair of fingerprints, selected either from the first group 

or the second, has the characters as: 1) the comprehensive similarity is of random distribution 

along the rotation parameter in a period, which is caused by mismatches produced by spurs or 

deformation in fingerprints; 2) both the maximum and sum of H(S,θ) are small.  Compared with 

the shape of Figure 10, that of Figure 11 is more regular because two fingerprints in Figures 11-

a1 and 11-a2 were more similar, which resulted in more local matches. 

4.2. Validation of the rotation transformation parameter estimation 

Two experiments were conducted to evaluate the performance of the H(S, θ) in rotation parame-

ter estimation and alignment.  The first experiment was performed over 20 fingerprints ran-

domly selected from twelve fingerprint databases of FVC2000, FVC2002 and FVC2004.  For 

fingerprint F, its transformed fingerprint F′ was produced by rotating F with an angle θ, which 

changed from -15° to 15°, referred to its central point.  And rotation parameters θ′ between F 

and F′ was estimated from their H(S, θ).  These results were shown in Figure 12.  The mean 

and standard deviation of the absolute errors |θ - θ′|, were 0.42° and 0.26 respectively. 

The second experiment was conducted to evaluate the global alignment of input minutiae with 

the estimated rotation parameter. In this experiment, 50 groups of fingerprints were randomly 

selected from the twelve fingerprint databases. Each group contained three fingerprints from the 

same finger. For each group of fingerprints, as shown in Figures 13-a, 13-b, and 13-c, the minu-

tiae in the second and third fingerprints were mapped onto the first fingerprint with its corre-

sponding estimated rotation parameter θm, see Figure 13-c. Figure 14 illustrates the distribu-tion 

of positional differences between aligned input minutiae and their corresponding template ones. 
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a1 

 
a2 

 
b 

 
c 

 
Figure 10. A pair of fingerprints selected from the first group and their H(S, θ).  

a1 and a2: two from two different fingers; b: their H(S, θ); c: their Filtered H(S,θ). 

 
a1 

 
a2 

 
b 

 
c 

Figure 11. A pair of fingerprints selected from the second group and their H(S, θ).  

a1 and a2: two from two different fingers; b: their H(S,θ); c: their Filtered H(S,θ). 
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Figure 12. The distribution of rotation parameter biases between θ′ and θ.  

 
 a 

 
b 

 
c 

 
d 

Figure 13. Performance of the alignment. Minutiae in fingerprints b and c were 

mapped onto fingerprint a respectively, see d. 

 
a 

 
b 

Figure 14. Distributions of position biases of aligned input minutiae to their cor-

responding template ones. a) Distribution of x biases; b) Distribution of y biases. 
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4.3. Matching performance analysis 

To evaluate the overall matching performance of this method, a series of experiments were con-

ducted over twelve fingerprint databases of FVC2000, FVC2002, and FVC2004, see Tables 1, 2, 

3 and Figures 15, 16 and 17.  In Figure 15, the four solid lines denoted Receiving Operating 

Curves (ROCs) drawn in log-log scales of this method over the four databases of FVC2000 re-

spectively; the “+” lines denoted ones over the four databases of FVC2002; and “Ο” lines de-

noted ones over the four databases of FVC2004.  Tables 1, 2, and 3 described the performance 

of this method over the twelve databases with some performance indices provided by FVC2000 

and FVC2002.  This new method obviously outperformed the previous work, variably-bounded 

box-based matching method [5], see Figure 16.  In the two methods, the same fingerprint en-

hancement method, Cheng’s dyadic scale space-based fingerprint enhancement method [19] and 

Luo’s knowledge-based post-processing method [17] were applied for fingerprint pre-processing 

and comprehensive minutia detection were employed in matching.  Their performance evalu-

ated over DB1_A of FVC2000 demonstrated the effectiveness of the new matching method. 

To judge whether ridge-based feature and ridge information were helpful for fingerprint 

matching, the method without ridge-based relative features nor ridge information, denoted by 

GCS_NN, was compared with the method which having only ridge information called as 

GCS_NR, and the method with ridge-based relative features and ridge information, called as 

GCS_GR over the four fingerprint databases DB1_a of FVC2002, DB1_a, Db2_a, and DB4_a of 

2004 respectively.  Among the twelve fingerprint databases of FVC2000, FVC2002, and 

FVC2004, the overall fingerprint quality of DB1_a and Db2_a of 2004 is the worst while DB1_a 

of FVC2002 and DB4_a of FVC2004 are the better databases.  The differences among the four 

fingerprint databases illustrated by Figure 17 and Table 4 approved that ridge-based relative fea-
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tures and ridge information were available in fingerprint matching, and those features help de-

crease the scores of impostor matches.  For example, there is a step jump at FMR close to -4 of 

ROC, such as line “o” in Figure 17(b), if the scores of impostor matches are too great.  

We noted that our method outperformed Tico’s matching method with an orientation-based 

minutia descriptor[14] over the 1st and 2nd databases of FVC2000 and the Teoh’s matching 

method with integrated wavelet and Fourier-Mellin invariant transformation[10] over the four 

databases of FVC2002. The good performance of GCS_GR over the databases of FVC2000, 

FVC2002 and FVC2004 were contributed by the following aspects: 1) minutia was replaced by 

minutia-simplex, and minutia-simplex had more relative features to represent a fingerprint; 2) the 

ridge-based nearest neighbourhood among minutiae was employed to check coarse matching; 3) 

the rotation parameter was calculated in term of histogram. 

Table 1. Results of our new method over the four databases of FVC2000 

Database 
(FVC2000) 

EER
(%) 

EER* 
(%) 

ZeroFMR
(%) 

ZeroFNMR
(%) 

Rej_Match
(%) 

Rej_Enroll 
(%) 

AE&MT
(S) 

DB1_a 1. 79 1. 79 4.39 100 0.000 0.000 0.82 
DB2_a 0.99 0.99 2.49 100 0.000 0.000 1.10 
DB3_a 3.54 3.54 9.74 100 0.000 0.000 0.85 
DB4_a 1.64 1.64 5.05 100 0.000 0.000 0.87 

Table 2. Results of our new method over the four databases of FVC2002 

Database 
(FVC2002) 

EER
(%) 

FMR100 
(%) 

FMR1000
(%) 

ZeroFMR 
(%) 

Rej_Match 
(%) 

Rej_Enroll 
(%) 

AE&MT
(S) 

DB1_a 1.963 2.500 4.000 5.036 0.000 0.000 0.83 
DB2_a 1.110 1.250 1.964 4.286 0.000 0.000 1.20 
DB3_a 4.312 7.143 10.250 13.107 0.000 0.000 0.73 
DB4_a 2.772 3.429 6.071 7.679 0.000 0.000 0.83 

Table 3. Results of our new method over the four databases of FVC2004 

Database 
(FVC2004) 

EER
(%) 

FMR100 
(%) 

FMR1000
(%) 

ZeroFMR 
(%) 

Rej_Match 
(%) 

Rej_Enroll 
(%) 

AE&MT
(S) 

DB1_a 9.335 18.500 25.036 30.286 0.000 0.000 0.81 
DB2_a 7.345 13.393 16.607 19.893 0.000 0.000 0.76 
DB3_a 8.529 13.107 16.536 22.536 0.000 0.000 1.02 
DB4_a 2.719 4.214 5.571 7.000 0.000 0.000 0.78 
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a 

 
b 

 
c 

 
d 

Figure 15. ROCs (drawn in log-log scales) of our new method over the twelve 

databases of FVC2000, FVC2002, and FVC2004 respectively.  

 

 
Figure 16. Performance difference between the variably bounded box method 

and the new method over DB1_a of FVC2000.  The “*” line and the “o” line de-

note their ROCs (drawn in log-log scales) over the database respectively. 



 28

Table 4. Performance differences among GCS_NN, GCS_NR and GCS_GR over four 

databases 

Database EER of GCS_NN(%) EER of GCS_NR(%) EER of GCS_GR(%) 
DB1_a of FVC2004 13.707 10.028 9.335 
DB2_a of FVC2004 12.773 8.876 7.345 
DB4_a of FVC2004 7.432 3.813 2.719 
DB1_a of FVC2002 3.528 2.363 1.963 
Average of |EER of GCS_NR - EER of GCS_NN|: 3.090 
Average of |EER of GCS_GR - EER of GCS_NR|: 0.930 

 

 
a 

 
b 

 
c 

 
d 

  

Figure 17.Performance differences among GCS_NN, GCS_NR, and GCS_GR over 

four databases. a) Performance difference over DB1_a of FVC2004; b) perform-

ance difference over DB2_a of FVC2004; c) performance difference over DB4_a of 

FVC2004; d) their performance difference over DB1_a of FVC2002. 
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4.4. Template Size Analysis 

In our method, the memory expense of a comprehensive minutia depicted by a minutiae and its 

associate ridge information is 8 bytes if T, the number of sampled points along a ridge skeleton, 

is set to 2. T can be reasonably modified according to the memory requirement of an AFIS. Em-

pirically, the average memory expense used to present ridge-based nearest neighbourhood is no 

more than 4.5 bytes. Therefore, the mean memory expense is 12.5 bytes for a comprehensive 

minutiae representation.  Minutia-simplexes don’t influence the memory expense for storage. 

The number of minutiae varies in different fingerprints but a good one contains 60-80 minu-

tiae [9].  Assuming there are 80 minutiae in a fingerprint, then1000 bytes is more than enough 

for a fingerprint presentation.  In different methods, template size varies.  For a method based 

on comprehensive feature composing of minutiae and ridge information, its template size is gen-

erally more than 1k bytes.  For example, for Jain’s hybrid fingerprint method [13] and Tico’s 

orientation–based minutia descriptor [14], more than 1k bytes is required to describe the features 

of a fingerprint.  For methods based on global features, their template sizes may be larger, such 

as Sujan’s space invariant transforms based fingerprint identification method [11] .  For meth-

ods using only minutiae, such as Gold‘s graph matching method [4], their template sizes are no 

more than 500 bytes, but their performance is compromised. 

5. Conclusion, discussion and further work 

A new fingerprint matching method based on global comprehensive similarity is introduced in 

this paper with two novel techniques.  First, a minutia-simplex and the ridge-based nearest 

neighbourhood among minutiae are performed to represent two relative structures among minu-

tiae in different directions.  Second, H(S, θ) is defined to model the relationship between trans-

formation parameters and comprehensive similarity in terms of histogram.  From this histo-



 30

gram, an optimal rotation parameter is estimated for alignment.  Our method works well over 

the fingerprint databases of FVC2000, FVC2002 and FVC2004, and it can be applied to a mem-

ory-limited AFIS owing to its less than 1k byte template size. However, this method is sensitive 

to the quality of the fingerprint.  The quality of fingerprints affects the reliability of minutiae, 

rotation parameter, center points, and therefore affects matching performance.  As shown in 

Figure 17(a), the ridge-based relative feature has limited ability to improve fingerprint matching 

performance in bad-quality fingerprints. For example, 99_5.tif in the DB2_a of FVC2004 is a 

bad-quality fingerprint with no more than four genuine minutiae detected in our method. In an-

other case, 85_1.tif and 85_8.tif in DB1_a of FVC2004 have a small common region of good 

quality.  As a result, less than three genuine minutiae are matched. 

We will continue our investigations to improve the method in minimizing false match, which 

occasionally occurs under the condition of large deformation in fingerprints and very poor-

quality fingerprints.  Based on Chen’s registration pattern inspection method [27], the adaptive 

matching template will be tested in fingerprint matching to reduce the impacts of deformation in 

a fingerprint.  Global pattern and features, as well as a hybrid matching technique will be inves-

tigated to reduce the sensitivity of poor quality fingerprint.  Additionally, we will study the 

technique that employs a multi-resolution search strategy to calculate the optimal transformation. 

Appendix Threshold Estimation 

In proposed method, the thresholds, i.e., ∆l, ∆α, ∆β (the error thresholds of distance, direction and 

grey variance of a minutia-simplex), Ll and Lh (the lower and upper bounds of the distant attrib-

ute in a valid minutia-simplex), are estimated from a training fingerprint dataset that consists of 

N pairs of fingerprints with the following steps. 
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Step 1. Build a set of transformation-irrelevant feature offset vectors of minutiae-simplex.  

For each pair of fingerprints, Fk and Gk, label their corresponding minutia pairs and push them 

into set ( ){ }kk G
i

F
i MM , ; then randomly select two minutia pairs ( kF

iM , kG
iM ) and ( kF

jM , kG
jM ) 

from set {( kF
iM , kG

iM )} to build two minutia-simplexes kF
mE  and kG

mE  without distant con-

straint; and then compare the transformation-irrelevant features of kF
mE  and kG

mE  to get the 

offsets described by vector ( )mmmm dddld βα ,,, , where { }kk G
m

F
mm lld ,min= , 

( ) 2kkkk G
m

F
m

G
m

F
mm vvuud −+−=α , kk G

m
F
mm lldl −= , and ( ) 2kkkk G

j
F
j

G
i

F
imd βββββ −+−= ; 

finally put the vector into offset vector set Dk.  All combinations of two elements out of the set 

{( kF
iM , kG

iM )} are used to create offset vectors and added into set Dk. 

All pairs of fingerprint are examined by the same method to produce the corresponding offset 

vector sets Dk (N≥k≥1).  These sets are united as D= D1 ∪ D2 ∪ …∪DN. 

Step 2.  Estimate thresholds l∆ , α∆ , and β∆ . Histograms of dl, dα and dβ built with set D 

are denoted as Hdl(dl), Hα(dα) and Hdβ(dβ) respectively.  According to these histograms, 

thresholds l∆ , α∆ , β∆  and their corresponding threshold space T 

= ( ){ }βα βαβα ∆≤∆≤∆≤ dddldddl l ;;,,  are calculated when 1η≥
′

D
D , where 

D′= ( )( ){ }Tdddldddld mmmmmmm ∈βαβα ,,,,, .  

Step 3.  Estimate the lower and upper bounds of the distant feature of a minutia-simplex. 

First, build the histogram of the distant feature of minutia-simplex, called as Hd(d) with set D′ ; 

then find do and an interval [Ll, Lh] on the condition that )( ld LH = )( hd LH , 2η≥′
′′

D
D , 

Hd(do)=max{Hd(d)}(Lh ≥ do ≥ Ll), where 
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D″= ( ) [ ]{ }hlmmmmmmm LLdandDDdddldD ,,,, ∈∈′′=′′ βα . Statistically, if D′  is enough large, 

Hd(d) is of normal distribution.  In threshold estimation, both η1 and η2 are so great that set D″ 

has enough elements, representing the differences among minutia-simplex pairs, to calculate the 

similarity between two fingerprints. 
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