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Abstract—Unlike other biometrics such as fingerprints and face,
the distinct aspect of iris comes from randomly distributed fea-
tures. This leads to its high reliability for personal identification,
and at the same time, the difficulty in effectively representing such
details in an image. This paper describes an efficient algorithm for
iris recognition by characterizing key local variations. The basic
idea is that local sharp variation points, denoting the appearing or
vanishing of an important image structure, are utilized to repre-
sent the characteristics of the iris. The whole procedure of feature
extraction includes two steps: 1) a set of one-dimensional intensity
signals is constructed to effectively characterize the most impor-
tant information of the original two-dimensional image; 2) using
a particular class of wavelets, a position sequence of local sharp
variation points in such signals is recorded as features. We also
present a fast matching scheme based on exclusive OR operation to
compute the similarity between a pair of position sequences. Ex-
perimental results on 2 255 iris images show that the performance
of the proposed method is encouraging and comparable to the best
iris recognition algorithm found in the current literature.

Index Terms—Biometrics, iris recognition, local sharp varia-
tions, personal identification, transient signal analysis, wavelet
transform.

I. INTRODUCTION

WITH AN increasing emphasis on security, automated
personal identification based on biometrics has been

receiving extensive attention over the past decade. Biometrics
[1], [2] aims to accurately identify each individual using
various physiological or behavioral characteristics, such as fin-
gerprints, face, iris, retina, gait, palm-prints and hand geometry
etc. Recently, iris recognition is becoming an active topic in
biometrics due to its high reliability for personal identification
[1]–[3], [9], [10], [12]. The human iris, an annular part between
the pupil (generally appearing black in an image) and the
white sclera as shown in Fig. 1, has an extraordinary structure
and provides many interlacing minute characteristics such as
freckles, coronas, stripes, furrows, crypts and so on. These
visible characteristics, generally called the texture of the iris,
are unique to each subject [5]–[12], [34]–[36]. The uniqueness
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Fig. 1. Samples of iris images.

of the iris pattern is the direct result of the individual differences
that exist in the development of the anatomical structures in the
body. Some research work [12], [34]–[36] has also stated that
the iris is essentially stable over a person’s life. Furthermore,
since the iris is an internal organ as well as externally visible,
iris-based personal identification systems can be noninvasive
to their users [9]–[12], [35], [36], which is of great importance
for practical applications. All these desirable properties (i.e.,
uniqueness, stability, and noninvasiveness) make iris recogni-
tion a particularly promising solution to security.

A. Related Work

Flom and Safir first proposed the concept of automated iris
recognition in 1987 [34]. Since then, some researchers worked
on iris representation and matching and have achieved great
progress [7]–[23], [35], [36]. Daugman [8]–[10] made use of
multiscale Gabor filters to demodulate texture phase structure
information of the iris. Filtering an iris image with a family of
filters resulted in 1024 complex-valued phasors which denote
the phase structure of the iris at different scales. Each phasor
was then quantized to one of the four quadrants in the com-
plex plane. The resulting 2048-component iriscode was used
to describe an iris. The difference between a pair of iriscodes
was measured by their Hamming distance. Sanchez-Reillo et
al. [16] provided a partial implementation of the algorithm by
Daugman. Wildes et al. [11] represented the iris texture with
a Laplacian pyramid constructed with four different resolu-
tion levels and used the normalized correlation to determine
whether the input image and the model image are from the
same class. Boles and Boashash [13] calculated a zero-crossing
representation of one-dimensional (1-D) wavelet transform at
various resolution levels of a concentric circle on an iris image
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to characterize the texture of the iris. Iris matching was based
on two dissimilarity functions. In [19], Sanchez-Avila et al.
further developed the iris representation method by Boles et
al. [13]. They made an attempt to use different similarity
measures for matching, such as Euclidean distance and Ham-
ming distance. Lim et al. [15] decomposed an iris image into
four levels using 2-D Haar wavelet transform and quantized
the fourth-level high-frequency information to form an 87-bit
code. A modified competitive learning neural network (LVQ)
was adopted for classification. Tisse et al. [20] analyzed the
iris characteristics using the analytic image constructed by the
original image and its Hilbert transform. Emergent frequency
functions for feature extraction were in essence samples of
the phase gradient fields of the analytic image’s dominant
components [25], [26]. Similar to the matching scheme of
Daugman, they sampled binary emergent frequency functions
to form a feature vector and used Hamming distance for
matching. Park et al. [21] used a directional filter bank to
decompose an iris image into eight directional subband out-
puts and extracted the normalized directional energy as fea-
tures. Iris matching was performed by computing Euclidean
distance between the input and the template feature vectors.
Kumar et al. [22] utilized correlation filters to measure the
consistency of iris images from the same eye. The correlation
filter of each class was designed using the two-dimensional
(2-D) Fourier transforms of training images. If the correla-
tion output (the inverse Fourier transform of the product of
the input image’s Fourier transform and the correlation filter)
exhibited a sharp peak, the input image was determined to
be from an authorized subject, otherwise an imposter. Bae et
al. [23] projected the iris signals onto a bank of basis vectors
derived by independent component analysis and quantized the
resulting projection coefficients as features.

Our earlier attempts to iris recognition developed the texture
analysis-based methods [14], [17], [18] and a local intensity
variation analysis-based method [37]. In [17], the global tex-
ture features of the iris were extracted by means of well-known
Gabor filters at different scales and orientations. Based on the
experimental results and analysis obtained in [17], we further
constructed a bank of spatial filters [18], whose kernels are suit-
able for iris recognition, to represent the local texture features
of the iris and thus achieved much better results. Different from
the above two methods, we also developed a Gaussian–Her-
mite moments-based method [37]. This method is our prelimi-
nary work using local intensity variations of the iris as features.
Gaussian–Hermite moments [24] which use Gaussian–Hermite
polynomial functions as transform kernels belong to a class of
orthogonal moments. This means that they produce minimal
information redundancy. Gaussian–Hermite moments can well
characterize local details of a signal since they construct orthog-
onal features from the signal’s derivatives of different orders
[24]. We decomposed an iris image into a set of 1-D intensity
signals (see Section IV-A for more details) and represented local
variations of the intensity signals using Gaussian–Hermite mo-
ments (order 1 to 4). To reduce computational cost and improve
classification accuracy, we adopted Fisher linear discriminant
to reduce the dimensionality of original features and the nearest
center classifier for matching.

It should be noted that all these algorithms are based on gray
images, and color information is not used. The main reason is
that the most important information for recognition (i.e., texture
variations of the iris) is the same in both gray and color images.
From the methods described above, we can conclude that there
are four main approaches to iris representation: phase-based
methods [8]–[10], zero-crossing representation [13], [19], tex-
ture analysis [11], [14], [15], [17], [18], [21], and intensity vari-
ation analysis [23], [37]. However, the question of which ap-
proach is most suitable for extracting iris features has never been
answered.

B. Outline

In this paper, we first present our intuitive observations about
the characteristics of the iris based on the appearance of nu-
merous iris images, and then introduce a new algorithm for iris
recognition inspired by such observations. Finally, we perform a
series of experiments to evaluate the proposed algorithm. More-
over, in order to answer the question of which approach is most
suitable for extracting iris features, we carry out extensive quan-
titative comparison among some existing methods and provide
detailed discussions on the overall experimental results. To the
best of our knowledge, this is the first attempt in comparing the
existing algorithms on a reasonably sized database.

The remainder of this paper is organized as follows. Section II
provides an overview of our method based on an intuitive under-
standing for iris features. Detailed descriptions of image prepro-
cessing, feature extraction and matching are given in Section III
and Section IV respectively. Experimental results and discus-
sions are reported in Section V. Section VI concludes this paper.

II. OVERVIEW OF OUR APPROACH

Six iris samples captured by our home-made digital optical
sensor are shown in Fig. 1. We can see from these images that
the iris consists of many irregular small blocks, such as freckles,
coronas, stripes, furrows, crypts, and so on. Furthermore, the
distribution of these blocks in the iris is also random. Such ran-
domly distributed and irregular blocks constitute the most dis-
tinguishing characteristics of the iris.

Intuitively, if we can precisely locate each of these blocks in
the image and recognize the corresponding shape as well, then
we will obtain a high performance algorithm. But it is almost im-
possible to realize such an idea. Unlike fingerprint verification,
where feature extraction can rely on ridge following, it is diffi-
cult to well segment and locate such small blocks in gray im-
ages. Moreover, classifying and recognizing the shape of such
blocks is unpractical due to their great irregularity. From the
viewpoint of signal processing, however, we can regard these
irregular blocks as a kind of transient signals. Therefore, iris
recognition can be solved using some approaches to transient
signal analysis. As we know, local sharp variations denote the
most important properties of a signal. In our framework, we thus
record the position of local sharp variation points as features in-
stead of locating and recognizing those small blocks. Fig. 2 il-
lustrates the main steps of our method.

First, the background in the iris image is removed by local-
izing the iris. In order to achieve invariance to translation and
scale, the annular iris region is normalized to a rectangular block
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Fig. 2. Diagram of our approach.

of a fixed size. After lighting correction and image enhance-
ment, we construct a set of 1-D intensity signals containing the
main intensity variations of the original iris for subsequent fea-
ture extraction. Using wavelet analysis, we record the position
of local sharp variation points in each intensity signal as fea-
tures. Directly matching a pair of position sequences is also very
time-consuming. Here, we adopt a fast matching scheme based
on the exclusive OR operation to solve this problem. The pro-
posed method is detailed in the following sections.

III. IRIS IMAGE PREPROCESSING

Our preprocessing operates in three steps. First, the iris is lo-
calized and the irrelevant parts (e.g. eyelid, pupil etc.) are re-
moved from the original image. Then, the localized iris is un-
wrapped to a rectangular block of a fixed size in order to reduce
the deformation caused by variations of the pupil and obtain ap-
proximate scale invariance. Finally, lighting correction and con-
trast improvement are applied to compensate for differences of
imaging conditions.

A. Localization

The iris is an annular portion between the pupil (inner
boundary) and the sclera (outer boundary). Both the inner
boundary and the outer boundary of a typical iris can approxi-
mately be taken as circles. However, the two circles are usually
not concentric [8]. We first roughly determine the iris region
in the original image, and then use edge detection and Hough
transform to exactly compute the parameters of the two circles
in the determined region. The detailed steps are as follows.

1) Project the image in the vertical and horizontal direc-
tion to approximately estimate the center coordinates

of the pupil. Since the pupil is generally darker
than its surroundings, the coordinates corresponding to
the minima of the two projection profiles are considered
as the center coordinates of the pupil

(1)

Fig. 3. Iris image preprocessing: (a) original image; (b) localized image;
(c) normalized image; (d) estimated local average intensity; and (e) enhanced
image.

where and denote the center coordinates of the
pupil in the original image .

2) Compute a more accurate estimate of the center coordi-
nates of the pupil. We binarize a 120 120 region cen-
tered at the point by adaptively selecting a rea-
sonable threshold using the gray level histogram of this
region. The centroid of the resulting binary region is con-
sidered as a new estimate of the pupil coordinates. Note
that one can improve accuracy for estimating the center
coordinates of the pupil by repeating this step since the
coordinates estimated by image projection de-
scribed in the first step are sometimes slightly far from
the real center coordinates of the pupil.

3) Calculate the exact parameters of these two circles using
edge detection (Canny operator [27] in our experiments)
and Hough transform [28] in a certain region determined
by the center of the pupil .

In the experiments, we perform the second step twice for
a reasonably accurate estimate. Compared with the localiza-
tion method by Wildes et al. [11] where the combination of
edge detection and Hough transform is also adopted, our method
approximates the iris region before edge detection and Hough
transform. This will reduce the region for edge detection and
the search space of Hough transform, and thus result in lower
computational cost. An example of iris localization is shown in
Fig. 3(b).

B. Normalization

Irises from different people may be captured in different size,
and even for irises from the same eye, the size may change due
to illumination variations and changes of the camera-to-eye dis-
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tance. Such elastic deformation in iris texture will affect the
matching results. For the purpose of achieving more accurate
recognition results, it is necessary to compensate for such de-
formation. Wildes et al. [11] solved this problem by registering
the input image with the model image. Daugman [8]–[10] rep-
resented the iris using a fixed parameter interval in a doubly di-
mensionless pseudo polar coordinate system, whereas our pre-
vious method [14], [17], [18] normalized the iris into an image
of a fixed size. The normalization schemes described in [15],
[16], [20], [21], and [23] are similar to our approach. These ex-
isting methods are essentially the same except the method by
Wildes et al. [11]. In experiments, we counter-clockwise un-
wrap the annular iris to a rectangular texture block with a fixed
size. The normalization not only reduces to a certain extent the
distortion of the iris caused by pupil movement but also simpli-
fies subsequent processing.

C. Enhancement

The normalized iris image has low contrast and may have
nonuniform brightness caused by the position of light sources.
All these may affect the subsequent processing in feature ex-
traction and matching. In order to obtain a more well-distributed
texture image, we first approximate intensity variations across
the whole image. The mean of each 16 16 small block con-
stitutes a coarse estimate of the background illumination. This
estimate is further expanded to the same size as the normalized
image by bicubic interpolation. The estimated background illu-
mination as shown in Fig. 3(d) is subtracted from the normal-
ized image to compensate for a variety of lighting conditions.
Then we enhance the lighting corrected image by means of his-
togram equalization in each 32 32 region. Such processing
compensates for the nonuniform illumination, as well as im-
proves the contrast of the image. Fig. 3(e) shows the prepro-
cessing result of an iris image, from which we can see that finer
texture characteristics of the iris become clearer than those in
Fig. 3(c).

IV. FEATURE EXTRACTION AND MATCHING

As mentioned earlier, the characteristics of the iris can be con-
sidered as a sort of transient signals. Local sharp variations are
generally used to characterize the important structures of tran-
sient signals. We thus construct a set of 1-D intensity signals
which are capable of retaining most sharp variations in the orig-
inal iris image. Wavelet transform is a particularly popular ap-
proach to signal analysis and has been widely used in image pro-
cessing [29]–[33]. In this paper, a special class of 1-D wavelets
(the wavelet function is a quadratic spline of a finite support)
is adopted to represent the resulting 1-D intensity signals. The
position of local sharp variation points is recorded as features.

A. Generation of 1-D Intensity Signals

Local details of the iris generally spread along the radial di-
rection in the original image corresponding to the vertical direc-
tion in the normalized image [see Fig. 3(e)]. Therefore, infor-
mation density in the angular direction corresponding to the hor-
izontal direction in the normalized image is much higher than
that in other directions [9], [18]; i.e., it may suffice only to cap-

ture local sharp variations along the horizontal direction in the
normalized image to characterize an iris. In addition, since our
basic idea is to represent the randomly distributed blocks of the
iris by characterizing local sharp variations of the iris, it is un-
necessary to capture local sharp variation points in every line
of the iris image for recognition. Bearing these two aspects in
mind, we decompose the 2-D normalized image into a set of
1-D intensity signals according to the following equation:

...

...

(2)

where is the normalized image of (64 512 in our ex-
periments), denotes gray values of the th row in the image ,

is the total number of rows used to form a signal , is the
total number of 1-D signals. In essence, each intensity signal is
a combination of successive horizontal scan lines which re-
flect local variations of an object along the horizontal direction.
A set of such signals contains the majority of the local sharp
variations of the iris. This is confirmed by the experimental re-
sults reported in Section V. Moreover, such processing reduces
the computational cost required for subsequent feature repre-
sentation. In experiments, we find that the iris regions close to
the sclera contain few texture characteristics and are easy to be
occluded by eyelids and eyelashes. Therefore, we extract fea-
tures only in the top-most 78% section (corresponding to the re-
gions closer to the pupil) of the normalized image. The relation
between the total row number of the normalized image, the
total number of 1-D signals and the number of rows used
to form a 1-D signal is denoted as . Since
the total row number of the normalized image is fixed, the
product of the total number of 1-D signals and the number

of rows used to form a 1-D signal is a constant in experi-
ments. The recognition rate of the proposed algorithm can be
regulated by changing the parameter . A small leads to a
large set of signals which results in characterizing the iris de-
tails more completely, and thus increases recognition accuracy.
A large , however, implies a lower recognition rate with a
higher computational efficiency. This way, we can trade off be-
tween speed and accuracy. In experiments, we choose
and .

B. Feature Vector

As a well-known multiresolution analysis approach, the
dyadic wavelet transform has been widely used in various
applications, such as texture analysis, edge detection, image
enhancement and data compression [29]–[33]. It can decom-
pose a signal into detail components appearing at different
scales. The scale parameter of the dyadic wavelets varies only
along the dyadic sequence . Here, our purpose is to
precisely locate the position of local sharp variations which
generally indicate the appearing or vanishing of an important
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image structure. The dyadic wavelets satisfy such requirements
as well as incur lower computational cost, and are thus adopted
in our experiments. The dyadic wavelet transform of a signal

at scale is defined as follows (in convolution form):

(3)

where is the wavelet function at scale . In our algo-
rithm, the function is a quadratic spline which has a com-
pact support and one vanishing moment [29], [31], [33]. This
means that local extremum points of the wavelet transform cor-
respond to sharp variation points of the original signal. There-
fore, using such a transform, we can easily locate the iris sharp
variation points by local extremum detection. Mallat [33] has
proved that the dyadic wavelet transform based on the above
wavelet function could be calculated with a fast filter bank al-
gorithm. The detailed implementation may be referred to [33].
As (3) shows, the wavelet transform of a signal includes a family
of signals providing detail components at different scales. There
is an underlying relationship between information at consecu-
tive scales, and the signals at finer scales are easily contami-
nated by noise. Considering these two points (information re-
dundancy at consecutive scales and the effect of noise on sig-
nals at finer scales), we only use two scales to characterize dif-
ferences among 1-D intensity signals. As we know, a local ex-
tremum is either a local minimum or a local maximum. Iris
images shown in Fig. 3 illustrate that the irregular blocks of
the iris are slightly darker than their surroundings. Therefore,
it is reasonable to consider that a local minimum of the wavelet
transform described above denotes the appearing of an irreg-
ular block and a local maximum denotes the vanishing of an
irregular block. A pair of adjacent local extremum points (a
minimum point and a maximum point) indicates that a small
block may exist between them. However, there are a few adja-
cent local extremum points between which the amplitude differ-
ence is very small. Such local extremum points may correspond
to relatively faint characteristics in the iris image (i.e., local slow
variations in the 1-D intensity signals) and are less stable and
reliable for recognition. A threshold-based scheme is used to
suppress them. If the amplitude difference between a pair of ad-
jacent local extrema is less than a predetermined threshold, such
two local extremum points are considered from faint iris char-
acteristics and not used as discriminating features. That is, we
only utilize distinct iris characteristics (hence local sharp varia-
tions) for accurate recognition. For each intensity signal , the
position sequences at two scales are concatenated to form the
corresponding features:

(4)
where the first components are from the first scale, the next

components from the other scale, denotes the position of
a local sharp variation point in the intensity signal, and ,
respectively, represent the property of the first local sharp vari-
ation point at two scales. If the first local sharp variation point

(or ) is a local minimum of the wavelet transform,
(or ) is set to 1, otherwise 1. Features from different 1-D in-

Fig. 4. Illustration of feature transform.

tensity signals are concatenated to constitute an ordered feature
vector

(5)

where denotes the features from the th intensity signal, and
is the total number of 1-D intensity signals. Note that since

the number of local sharp variation points is distinct for different
irises, the dimensionality of the feature vector is not a con-
stant. In our experiments, the feature vector generally consists
of about 660 components. In addition, at each scale, we replace
each feature component denoting the actual position of local
sharp variation points by its difference with the previous com-
ponent. This will save memory since the difference (i.e., the
interval between two consecutive local sharp variation points)
is less than 256 and can be represented in a byte.

C. Matching

We determine whether two irises are from the same class by
comparing the similarity between their corresponding feature
vectors. Directly computing the distance between a pair of posi-
tion sequences is inconvenient. Inspired by the matching scheme
of Daugman [8]–[10], a two-step approach is proposed to solve
this problem.

1) The original feature vector is expanded into a binary fea-
ture vector (called feature transform, in our algorithm).

2) The similarity between a pair of expanded feature vectors
is calculated using the exclusive OR operation.

Fig. 4 illustrates how to transform original features derived from
one intensity signal at a scale into a sequence of 0’s and 1’s
(hereinafter, called a binary sequence). The length of the bi-
nary sequence at a scale is the same as the length of the 1-D
intensity signal defined in (2). At each position denoted by the
original feature components, the binary sequence changes from
1 to 0 or from 0 to 1. In the algorithm, we utilize the component

of the original features to set the values of the first
elements of the binary sequence. We define that the values of
the first elements of the binary sequence are set to 1
if is equal to 1 (i.e., is a local maximum point of the
wavelet transform), otherwise 0. By such processing, a position
sequence as shown in Fig. 4 can be expanded into a binary se-
quence. Using the same scheme, the original features of an iris
defined in (5) can be written as

(6)

where and are the binary sequences from the
th 1-D intensity signal at the first and the second scale, re-
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TABLE I
CASIA IRIS DATABASE

spectively. As described above, the length of a binary sequence
is . Therefore, the expanded binary feature vector

defined in (6) contains components whose values are 0
or 1. For such feature vectors, a very fast exclusive OR operation
can be utilized for matching. The similarity function is defined
in the following:

(7)

where and denote two different expanded binary fea-
ture vectors, is the exclusive OR operator, is the length of
the binary sequence at one scale, and is the total number of
1-D intensity signals.

It is desirable to obtain an iris representation invariant to
translation, scale, and rotation. By simple operations, the
proposed iris representation can be translation, scale and
rotation invariant. Translation invariance is inherent in our
algorithm because the original image is localized before
feature extraction. To achieve approximate scale invariance,
we normalize irises of different size to the same size. Rotation
invariance is important for an iris representation since changes
of head orientation and binocular vergence may cause eye
rotation. In our algorithm, the annular iris is unwrapped into
a rectangular image. Therefore, rotation in the original image
corresponds to translation in the normalized image. Fortunately,
translation invariance can easily be achieved for the intensity
signals derived from the normalized image. Since an intensity
signal of length in essence originates from a closed ring,
it can be regards as a complete period of an infinite signal
with period . Accordingly, both the wavelet coefficients and
features (including the original features and the expanded
binary features) are also considered as signals of period .
Because the binary sequence at each scale [such as ,
described in (6)] can be regarded as a periodic signal, we obtain
translation invariant matching by circular shift. With a pair of
binary sequences from two different images of the same iris as
an example, if there is a rotation between two original images,
there is a horizontal shift between such a pair of sequences.
To register the two sequences, we first circularly shift one of
the binary sequences, and then compute the similarity between
them. After several circular shifts, the minimum matching
score is considered from the situation where the two sequences
are best registered and is taken as the final matching score.
That is, the proposed algorithm will be rotation invariant only
by the circular shift-based matching. The method for solving
rotation invariance is similar to the brute force search scheme
by Daugman [8]–[10] and our previous scheme [17], [18].

V. EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed method, we col-
lected a large number of iris images using a homemade sensor to
form a database named CASIA Iris Database. The database in-
cludes 2255 iris images from 306 different eyes (hence, 306 dif-
ferent classes) of 213 subjects. The images are acquired during
different sessions and the time interval between two collections
is at least one month, which provides a challenge to our algo-
rithm. To the best of our knowledge, this is the largest iris data-
base available in the public domain. The profile of the database
is shown in Table I. The subjects consist of 203 members of
the CAS Institute of Automation and ten visiting students from
Europe.

Most existing methods for iris recognition generally used
small image sets for performance evaluation, and only the
method by Daugman has been tested on a larger image set
involving over 200 subjects [3], [9], [10]. As we mentioned
earlier, there is no detailed comparison among these methods
[9]–[23], despite of the great importance of such comparative
studies (especially from the practical point of view). We
thus conducted a comparative study of these methods on the
CASIA Iris Database. The experiments were completed in two
modes: verification (one-to-one matching) and identification
(one-to-many matching). In verification mode, the receiver
operating characteristic (ROC) curve and equal error rate
(EER) are used to evaluate the performance of the proposed
method. The ROC curve is a false match rate (FMR) versus
false non-match rate (FNMR) curve [3], [4], which measures
the accuracy of matching process and shows the overall perfor-
mance of an algorithm. The FMR is the probability of accepting
an imposter as an authorized subject and the FNMR is the
probability of an authorized subject being incorrectly rejected.
Points on this curve denote all possible system operating states
in different tradeoffs. The ideal FMR versus FNMR curve
is a horizontally straight line with zero false nonmatch rate.
The EER is the point where the false match rate and the false
nonmatch rate are equal in value. The smaller the EER is,
the better the algorithm. In identification mode, the algorithm
is measured by correct recognition rate (CRR), the ratio of
the number of samples being correctly classified to the total
number of test samples.

A. Performance Evaluation of the Proposed Method

To assess the accuracy of the proposed algorithm, each iris
image in the database is compared with all the other irises in the
database. For the CASIA Iris Database, the total number of com-
parisons is 2 304 242, where the total number of intra-class com-
parisons is 7223 and that of inter-class comparisons is 2 297 019.
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Fig. 5. Distributions of intra-class and inter-class distances. (a) The results from comparing images taken at the same session. (b) The results from comparing
images taken at different sessions.

As we know, the time lag between the date when images used
for building the templates are captured and the date when the
test images are taken has an effect on intra-class matching dis-
tances since there may be great variations between images of
the same iris taken at different time. To explore the impact of
the time lag on the proposed method, we respectively analyze
the experimental results based on comparisons between images
taken at the same session and those based on comparisons be-
tween images taken at different sessions. In our experiments,
the time lag between different capture sessions is at least one
month. For the results from comparing images taken at the same
session, the distribution of the intra-class matching distance is
estimated with 3512 comparisons and the inter-class distribu-
tion is estimated with 1 165 164 comparisons. For the results
from comparing images taken at different sessions, the distribu-
tion of the intra-class matching distance is estimated with 3711
comparisons and the inter-class distribution is estimated with
1 131 855 comparisons. Fig. 5 shows distributions of intra-class
and inter-class matching distances in the two cases.

For a satisfying biometrics algorithm, intra-class distances
should hardly vary with time. From the results shown in Fig. 5,
we can see that the intra-class distance distribution derived from
comparing images of the same iris taken at the same session
and that derived from comparing images of the same iris taken
at different sessions are very close. This demonstrates the high
stability of the proposed iris features. It should be noted that the
same iris sensor is used to capture images at different sessions.
If we make use of different iris sensors at different image cap-
ture sessions, the differences between the above two intra-class
distance distributions may increase. However, this needs to be
further investigated. Fig. 5 also reveals that the distance be-
tween the intra-class and the inter-class distribution is large, in-
dicating the good discriminability of the extracted features. This
is verified by the following verification results. Fig. 6 shows the
ROC curves of the proposed method, from which two observa-

tions can be made. First, the ROC curve based on different ses-
sion comparisons interlaces with that based on the same session
comparisons. That is, the performance change caused by the
time-lag is extremely small for the proposed method. Second,
the performance of our algorithm is very high and the EER is
only 0.09% for different session comparisons. In particular, if
one and only one false match occurs in 1 000 000 trails, false
nonmatch rate is less than 1.60%. The above experimental re-
sults are highly encouraging. This also demonstrates that our iris
representation and matching schemes are very effective and the
1-D intensity signals defined in (2) well capture the most dis-
criminating information of the iris.

Experiments were carried out to investigate the cause of a
few large intra-class distances. Such two pairs of iris images
are listed in Figs. 7 and 8, from which two main reasons can be
identified.

1) Eyelids and eyelashes may occlude the effective regions
of the iris for feature extraction, and the failure of iris lo-
calization (i.e., large localization errors) may cause false
nonmatching. Such an example is shown in Fig. 7. In
our experiments, we found that 57.7% false nonmatches
are incurred by the occlusion of eyelids and eyelashes
and 21.4% false nonmatches come from the inaccurate
localization. In addition, the inaccurate localization usu-
ally occurs in the occluded images since the eyelids and
eyelashes bring about some edge noises and decrease lo-
calization accuracy. In order to reduce such false non-
matches, we are working on detecting eyelids and eye-
lashes so that feature extraction is only performed in the
regions of no occlusion as well as localizing the iris more
exactly.

2) As shown in Fig. 8, the difference of the pupil size be-
tween these two original images of the same eye is very
significant. One has a pupil of normal size, and the other
a considerably dilated pupil. Currently, we can recover
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Fig. 6. Verification results.

Fig. 7. An example of false nonmatch due to eyelid/eyelash occlusion.

Fig. 8. An example of false nonmatch due to excessive pupil dilation.

the deformed iris caused by the dilation or constriction of
the pupil to the normal iris by normalization. However,
under the extreme conditions (namely the iris texture is
excessively compressed by the pupil), the iris after nor-
malization still has many differences with its normal state

(i.e., the iris has a pupil of normal size). Therefore, the
matching distance between such a pair of iris images is
very large. In our experiments, 10.7% false nonmatches
result from the pupil changes. This is a common problem
in all iris recognition methods. Iris normalization is thus
an important research issue in the future.

Besides the above reasons, other factors that can result in false
nonmatching include the specular reflection from the cornea or
eyeglasses, poorly focused images and motion-blurred images.
Since these factors are relevant to noninvasive iris imaging, it
is difficult to completely avoid the corresponding false non-
matches. However, with the improvement of iris imaging, such
cases can be reduced.

B. Comparison With Existing Methods

The methods proposed by Daugman [8]–[10], Wildes et al.
[11], Boles and Boashash [13] are the best known among ex-
isting schemes for iris recognition. Furthermore, they charac-
terize local details of the iris based on phase, texture analysis
and zero-crossing representation. Therefore, we choose to com-
pare our algorithm with theirs. For the purpose of comparison,
we implemented the three methods according to the related
papers [8]–[13], [35], [36] (in our current implementations of
the methods by Daugman [9] and Wildes et al. [11], we did
not carry out their schemes for eyelid and eyelash detection.
Nevertheless, this should not invalidate our comparison exper-
iments and the resulting conclusions. This is because if we
performed eyelid and eyelash detection with all these methods,
their respective performance will be slightly improved.). The
method by Wildes et al. only works in verification mode [11],
so we do not test its performance in identification mode. Some
methods such as our previous method based on local intensity
variation analysis [37] and those presented in [11], [18] need
more than one sample for each class for training. Therefore, for
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TABLE II
COMPARISON OF CRRS AND EERS

each iris class, we choose three samples from images taken at
the first session for training and all samples captured at other
sessions serve as test samples. This is also consistent with the
widely accepted standard for biometrics algorithm testing [3],
[4] (training images and testing images should be respectively
captured at different sessions). For the CASIA Iris Database,
there are 918 images for training and 1237 images for testing.
(To satisfy the above requirement, 100 images taken at the first
session are not used in the experiments.) When matching the
input feature vector with the three templates of a class, the av-
erage of the three scores is taken as the final matching distance.
Table II and Fig. 9 describe the experimental results conducted
on the CASIA Iris Database in two modes (verification and
identification), where denotes our previous method based on
local intensity variation analysis [37].

From the results shown in Table II and Fig. 9, we can find
that Daugman’s method and the proposed method have the best
performance, followed by our previous method based on local
intensity variation analysis [37], our previous method [18], the
methods by Wildes et al. [11] and Boles et al. [13]. The pro-
posed method has an encouraging performance and its EER
is only 0.07%. Wildes et al. [11] decomposed the iris texture
into four different frequency bands and used the normalized
correlation for verification. Image registration, which generally
brings about high computational cost, is an important step in
this method. Although combining the block correlation values
by the median operation leads certain robustness against mis-
registration, misregistration is still a main reason for false non-
matching. That is, misregistration may affect the verification
accuracy of this method. Our previous method [18] adopted a
bank of spatial filters to represent local texture information of
the iris. The disadvantage of this method is that it cannot ex-
actly capture the fine spatial changes of the iris. The theoret-
ical basis of the method [13] comes from the signal reconstruc-
tion theory based on the wavelet transform [30], [33]. However,
good reconstruction does not necessarily mean accurate recog-
nition. This is because that information used for reconstruction
includes some “individual” features of an image which do not
exist in all samples from the same class and may reduce recog-
nition accuracy. Furthermore, this method only employed ex-
tremely little information along a concentric circle on the iris
to represent the whole iris. These factors result in a relatively
low accuracy as shown in Fig. 9. More recently, Sanchez-Avila
and Sanchez-Reillo [19] further developed the method of Boles
et al. by using different similarity measures for matching. When
the similarity measure was Hamming distance, this method cap-
tured a small amount of local variations of the iris and thus

achieved 97.9% correct recognition rate on a data set of 200
images from 10 subjects. However, the proposed method con-
structs a set of intensity signals to contain the most important
details of the iris and makes use of stable and reliable local vari-
ations of the intensity signals as features. This leads to the high
performance of the proposed method. Another method from our
group was based on local intensity variation analysis [37]. Sim-
ilar to the proposed method, it characterized local variations
of a set of 1-D intensity signals using Gaussian–Hermite mo-
ments and obtained satisfying results. But averaging the ad-
jacent feature components for dimensionality reduction over-
looks the effect of the most discriminating features on recog-
nition accuracy. Both the proposed algorithm and the method
by Daugman achieve the best results. Daugman projected each
small local region onto a bank of Gabor filters, and then quan-
tized the resulting phasor denoted by a complex-valued coef-
ficient to one of the four quadrants in the complex plane. In
essence, this scheme analyzed local variations of the iris by
comparing and quantizing the similarity between Gabor filters
and the local regions. To achieve high accuracy, the local re-
gion for feature extraction must be small enough. This results
in a high dimensional feature vector (2048 components). Com-
pared with Daugman’s method (which is the most exploited
commercially), our current method contains about 660 compo-
nents. This is because that our method only records the position
of local sharp variations as features and contains less redundant
information. Daugman skillfully applied Gabor filters to rep-
resent local shape of the iris, while we used quadratic spline
wavelets to characterize local sharp variations of the iris. That
is, the two methods aim to capture local variations of the iris as
discriminating features. Therefore, they achieve quite close per-
formance. Since the proposed iris representation is based on 1-D
filtering and feature matching adopts the exclusive OR operation,
our method is very efficient. Table III illustrates the computa-
tional cost of the methods described in [9], [11], [13], [18] and
the current algorithm, including the CPU time for feature ex-
traction (from an input image to a feature vector) and matching
(from a pair of feature vectors to the matching result).

The above experiments used 200 different iris images and
were performed in Matlab 6.0 on a 500-MHz PC with 128 M
RAM. Table III shows that the current method, our previous
method [37] and the method of Boles et al. [13] consume less
time than others [9], [18] for feature extraction. The reason is
that they are based on 1-D signal analysis and the other methods
involve 2-D mathematical operation. The method by Wildes et
al. [11] only takes about 210 ms to build a four-level Laplacian
pyramid representation of an image, whereas the piecewise cor-
relation based matching generally needs high computational ex-
pense as shown in Table III. Since Daugman’s method and our
method can compute the distance between a pair of feature vec-
tors by the exclusive OR operation, they implement matching
faster than others. If the exclusive OR operation is carried out
using some optimization methods in C/C++, the running time
for matching may be further reduced (as Daugman reported in
[9], the matching speed of his method can be only 0.01 ms). Note
that the method by Wildes et al. [11] and our previous method
[37] require extra cost for image registration and feature reduc-
tion, respectively.
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Fig. 9. Comparison of ROCs.

TABLE III
COMPARISON OF THE COMPUTATIONAL COMPLEXITY

C. Discussions

From the above analysis and comparison, we can draw the
following conclusions:

1) The proposed method and the methods described in [9],
[13] can be considered as the local variation analysis
based schemes. They all make some attempts to analyze
local intensity variations of the iris using similar ideas but
different approaches, namely they utilize local variations
to reflect shape information of the iris characteristics.
In recently published work on iris recognition, the
methods described in [16], [19], [20], [23] also adopt
different approaches to represent local variations of
the iris, whereas Park et al. [21] uses texture features
(normalized directional energy features) for recognition.
Therefore, existing methods for iris recognition should
be essentially classified into two main categories: local
variation analysis based methods [8]–[10], [13], [16],
[19], [20], [23] and texture analysis based methods [11],
[15], [17], [18], [21].

2) In general, the methods based on local variation anal-
ysis (Daugman’s method [9] and our previous one [37])
have better performance than the texture analysis based
methods (see Table II and Fig. 9). The main reason is that
texture features are incapable of precisely capturing local
fine changes of the iris since texture is by nature a regional
image property. In other words, features which can ef-
fectively represent local variations are more efficient than
texture features for iris recognition.

3) All experimental results have demonstrated that the pro-
posed method achieves high performance in both speed
and accuracy. This confirms that local sharp variations
truly play an important role in iris recognition and our
intuitive observation and understanding are reasonable.

4) The current features are a kind of “minutiae” features or
local features, so it may be easily affected by iris localiza-
tion, noise and the iris deformation caused by pupil move-
ment. To improve robustness, we can add some global fea-
tures, which are complementary to local features, into the
current method. A combination of local and global fea-
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tures is expected to further improve the performance of
our method. Texture features are well-known global in-
formation. In the next stage, we will associate the current
features with global texture information for more efficient
and robust iris recognition.

VI. CONCLUSIONS

In this paper, we have presented an efficient algorithm for iris
recognition which is invariant to translation, scale and rotation.
This method regards the texture of the iris as a kind of transient
signals and uses the wavelet transform to process such signals.
The local sharp variation points, good indicators of important
image structures, are extracted from a set of intensity signals
to form discriminating features. Experimental results have il-
lustrated the encouraging performance of the current method in
both accuracy and speed. In particular, a comparative study of
existing methods for iris recognition has been conducted. Such
performance evaluation and comparison not only verify the va-
lidity of our observation and understanding for the characteris-
tics of the iris but also will provide help for further research.
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