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Abstract 

 
As an emerging biometric for human identification, iris recognition has received 

increasing attention in recent years. This paper makes an attempt to reflect shape 

information of the iris by analyzing local intensity variations of an iris image. In our 

framework, a set of one-dimensional (1-D) intensity signals is constructed to contain 

the most important local variations of the original two-dimensional (2-D) iris image. 

Gaussian-Hermite moments of such intensity signals reflect to a large extent their 

various spatial modes and are used as distinguishing features. A resulting high 

dimensional feature vector is mapped into a low dimensional subspace using Fisher 

linear discriminant, and then the nearest center classifier based on cosine similarity 

measure is adopted for classification. Extensive experimental results show that the 

proposed method is effective and encouraging. 
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1. Introduction 

Biometric personal identification has been largely motivated by the increasing 

requirement for security in a networked society. Unlike traditional token-based or 

knowledge-based methods for personal identification, biometrics [1,2] employs 

various physiological or behavioral characteristics, such as fingerprints, face, facial 

thermograms, iris, retina, gait, palm-prints and hand geometry etc., to accurately 

identify each individual. As a physiological biometric, iris recognition aims to identify 

persons using iris characteristics of human eyes. Recently, iris recognition has 

received increasing attention due to its high reliability [3,11,14]. 
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The human iris, an annular part between the pupil (generally appearing black in an 

image) and the white sclera as shown in Figure 1(a), has an extraordinary structure 

and provides many interlacing minute characteristics such as freckles, coronas, stripes, 

furrows, crypts and so on. These visible characteristics, generally called the texture of 

the iris, are unique to each subject [5-14,30]. Individual differences that exist in the 

development of anatomical structures in the body result in such uniqueness. Some 

research work [10,14,30-32] has also stated that the iris is essentially stable through a 

person’s life. Furthermore, since the iris is an internal organ as well as externally 

visible, iris-based personal identification systems can be non-invasive to their users 

[10-14,31,32], which is greatly important for practical applications. All these desirable 

properties (i.e., uniqueness, stability and non-invasiveness) make iris recognition 

suitable for highly reliable personal identification. 

Iris recognition relies greatly on how to accurately represent local details of the iris. 

Different from previous work on iris recognition [10-19], the proposed algorithm 

analyzes local intensity variations to reflect shape information of the iris. For an input 

image, the annular iris is normalized to a rectangular block of a fixed size for 
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approximate scale invariance, and then a set of 1-D intensity signals is generated to 

contain the most important local variations of the normalized 2-D iris image. 

Gaussian-Hermite moments, which use Gaussian-Hermite orthogonal polynomials as 

transform kernels, are adopted to characterize the details of such signals. Using Fisher 

linear discriminant, a resulting high dimensional feature vector is mapped into a low 

dimensional subspace, and then the nearest center classifier based on cosine similarity 

measure is utilized for recognition. Experimental results on an iris image database 

including 2255 images from 213 subjects, in terms of both absolute performance and 

comparative performance against several well-known iris recognition schemes, 

demonstrate the effectiveness and accuracy of the proposed method. 
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The primary contributions of this paper include: 

1) A new attempt is made to represent the iris characteristics by analyzing local 

intensity variations of an iris image. Experimental results demonstrate that local 

intensity variations can effectively reflect shape information of the iris. 

2) Detailed performance comparison among several well-known existing methods 

for iris recognition is conducted on a database of 2255 iris images. 

The remainder of this paper is organized as follows. Section 2 describes related 

work. Section 3 introduces image preprocessing. Detailed descriptions of feature 

extraction and matching are respectively given in Section 4 and Section 5. 

Experiments and results are reported in Section 6. Section 7 concludes this paper. 

2. Related work 

  In 1987, Flom and Safir first proposed the concept of automated iris recognition 

[30], though an attempt to using the iris as an approach to human identification can be 

traced back to as early as 1885 [8]. By now, there have been some schemes for iris 

representation and matching in the recent literature [7,10-19,30-32]. Here, we have a 
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brief look at the state of the art of iris recognition. 

  Unlike fingerprints, it is difficult to classify and localize apparent features in an iris 

image. From the viewpoint of feature extraction, existing iris recognition methods can 

be roughly divided into three major categories: the phase-based methods [10-12], the 

zero-crossing representation-based method [15] and the texture analysis-based 

methods [13,14,16-19]. Daugman [10-12] used multi-scale quadrature wavelets to 

extract texture phase structure information of the iris to generate a 2048-bit iriscode 

and compared the difference between a pair of iris representations by computing their 

Hamming distance via the XOR operator. Boles and Boashash [15] calculated 

zero-crossing representation of 1-D wavelet transform at various resolution levels of a 

virtual circle on an iris image to characterize the texture of the iris. Iris matching was 

based on two dissimilarity functions. Wildes et al. [13] represented the iris texture 

with a Laplacian pyramid constructed with four different resolution levels and used 

the normalized correlation to determine whether the input image and the model image 

are from the same class. Our previous work [17-19] adopted traditional texture 

analysis methods to capture the iris details. In [18], global texture features of the iris 

were extracted by means of well-known Gabor filters at different scales and 

orientations. Based on the experimental results and analysis obtained in [18], we 

further constructed a bank of spatial filters [19], whose kernels are suitable for iris 

recognition, to represent local texture features of the iris and thus achieved much 

better results. Lim et al. [16] decomposed an iris image into four levels using 2-D 

Haar wavelet transform and quantized the fourth-level high frequency information to 

form an 87-bit code. A modified competitive learning neural network (LVQ) was 

adopted for classification. It should be noted that all these algorithms are based on 

gray images, and color information is not used. The main reason is that the most 
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discriminating information in recognition (i.e. variations of the iris texture) is the 

same in both gray and color images. 

Great progress has been made in iris recognition. However, most existing methods 

for iris recognition generally used some small image sets for performance evaluation, 

and only the method by Daugman has been tested on a larger image database 

involving over 200 subjects [3,11,12]. Currently, there is also no quantitative 

comparison among these methods [10-19]. So we construct an iris image database 

including 2255 images from 213 subjects to compare their recognition performance 

and provide detailed discussions as well. Since the complex texture of the iris 

comprises a large number of interlacing small blocks such as freckles, coronas, stripes, 

furrows, crypts etc., a desirable representation method should be able to well 

characterize the shape of such blocks. In this paper, we make an attempt to analyze 

local intensity variations of an iris image to reflect shape information of the iris. 
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3. Image preprocessing 

An iris image, as shown in Figure 1(a), contains not only the region of interest (iris) 

but also some irrelevant parts (e.g. eyelid, pupil etc.). A change in the camera-to-eye 

distance may also result in variations in the size of the same iris. Furthermore, the 

brightness is not uniformly distributed because of non-uniform illumination. 

Therefore, before feature extraction, the original image needs to be preprocessed to 

localize iris, normalize iris, and reduce the influence of the factors mentioned above. 

Such preprocessing is detailed in the following subsections. 

3.1 Iris localization 

The iris is an annular portion between the pupil (inner boundary) and the sclera 

(outer boundary). Both the inner boundary and the outer boundary of a typical iris can 

- 5 - 



approximately be taken as circles. However, the two circles are usually not concentric 

[10]. We localize the iris using a simple but effective method: 

1) Since the pupil is generally darker than its surroundings, the iris region in an 

image can approximately be found by projecting the image in the horizontal 

and vertical direction according to the following equation: 5 
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where Xp and Yp denote the center coordinates of the pupil in the original 

image I(x,y). 

2) The exact parameters of these two circles are obtained by using edge detection 

(Canny operator in our experiments) and Hough transform in a rectangular 

region centered at the point (X
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p , Yp) determined in the first step. Such 

processing results in a lower computational cost. 

An example of iris localization is shown in Figure 1(b). 

3.2 Iris normalization  

Irises from different people may be captured in different size, and even for irises 

from the same eye, the size may change because of illumination variations and other 

factors (the pupil is very sensitive to lighting changes). Such elastic deformation in 

iris texture will influence the results of iris matching. For the purpose of achieving 

more accurate recognition results, it is necessary to compensate for such deformation. 

Here, we anti-clockwise unwrap the iris ring to a rectangular texture block with a 

fixed size (64x512 in our experiments) by a linear mapping. The normalization can 

thus reduce to a certain extent the distortion of the iris caused by pupil movement. A 

normalized image is shown in Figure 1(c). 
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          (a)                       (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f)  

Figure 1. Iris image preprocessing 
(a) Original image; (b) Localized image; (c) Normalized image;  

(d) Estimated background illumination; (e) Lighting corrected image; (f) Enhanced image. 
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3.3 Image enhancement  

The normalized iris image has still low contrast and may have non-uniform 

brightness caused by the position of light sources. All these may affect the subsequent 

feature extraction and matching. In order to obtain a more well-distributed texture 

image, we first approximate intensity variations across the whole image. The mean of 

each 16x16 small block constitutes a coarse estimate of the background illumination. 

This estimate is further expanded to the same size as the normalized image by bicubic 

interpolation. The estimated background illumination as shown in Figure 1(d) is 

subtracted from the normalized image to compensate for a variety of lighting 
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conditions. Then we enhance the lighting corrected image by means of histogram 

equalization in each 32x32 region. Such processing compensates for non-uniform 

illumination, as well as improving the contrast of the image. Figure 1(f) shows the 

preprocessing result of an iris image, from which we can see that finer texture 

characteristics of the iris become clearer than that in Fig. 1(c). 5 
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4. Feature extraction 

By intuitive observations about iris images, we find that the shape (such as freckles, 

coronas, stripes and furrows etc.) can be considered as an elementary component of 

the iris texture. We thus anticipate that shape information provides discriminating 

features in iris recognition. As we know, the shape is generally characterized by the 

object contours (namely image edges). However, it is difficult to well segment the 

irregular iris blocks of a very small size in gray images. Such irregular blocks cause 

noticeable local intensity variations in iris images. Therefore, we approximately 

reflect shape information of the iris characteristics by analyzing the resulting local 

variations in the iris image. A normalized image is first decomposed into a set of 1-D 

intensity signals which retain most local variations of the iris, and then important and 

meaningful features are extracted from such signals. The moment-based method has 

been widely used to represent local characteristics of images in pattern recognition 

and image processing [20-24]. Here, Gaussian-Hermite moments are adopted to 

characterize local variations of the intensity signals. 

4.1 Generation of 1-D intensity signals  

Generally, local details of the iris spread along the radial direction in the original 

image corresponding to the vertical direction in the normalized image (see Figure 2 

and 4). Therefore, information density in the angular direction corresponding to the 

horizontal direction in the normalized image is much higher than that in other 
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directions [11,19]. In addition, since our basic idea is to reflect shape information of 

the randomly-distributed blocks by analyzing local variations in the iris image, it is 

unnecessary to capture local variations in every line of the iris image for recognition. 

Bearing these two points in mind, we decompose the 2-D normalized image into a set 

of 1-D intensity signals by use of the following equation: 5 
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where Ix denotes gray values of the xth row in the normalized image I of KxL (64x512 

in our experiments), M is the number of rows used to form a signal Si, and N is the 

total number of 1-D signals. In essence, each signal is the average of M successively 

horizontal scan lines which reflect local variations of an object along the horizontal 

direction. A set of such signals should contain the majority of local variations of the 

iris. Additionally, such processing reduces the computational cost required for the 

subsequent feature representation. The recognition rate of the proposed algorithm can 

be regulated by changing the constant M. A small M leads to a large set of signals, 

which results in analyzing the iris characteristics in more detail, and thus increases the 

recognition accuracy. On the contrary, a large M may incur a higher computational 

efficiency but a lower recognition accuracy. 
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In experiments, we find that the iris region closer to the pupil provides the most 

discriminating information for recognition (see Fig. 2) and is also rarely occluded by 

eyelids and eyelashes. So we extract features only in the region closer to the pupil. 

The region of interest (ROI) shown as the section above the dotted line in Fig. 2 takes 

up about 80% of the normalized image. 
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(a) 

 
(b) 

 
(c)  

Figure 2. Illustration of the ROIs 

4.2 Gaussian-Hermite moments 

Moments have been widely used in pattern recognition and image processing, 

especially in various shape-based applications. More recently, the orthogonal moment 

based method has been one of the active research topics in shape analysis. Unlike 

commonly used geometric moments, orthogonal moments use orthogonal polynomial 

functions as transform kernels, which produces minimal information redundancy. The 

detailed study on the different moments and their behavior evaluation may be found in 

[21,24]. Here, Gaussian-Hermite moments are used for feature extraction due to their 

mathematical orthogonality and effectiveness for characterizing local details of the 

signal [23,24]. The nth order 1-D Gaussian-Hermite moment M
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n(x) of a signal S(x) is 

defined as: 
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where g(t,σ) is a Gaussian function, Hn(t) is a Hermite polynomial function of order 

n, and the kernel Kn(t) is a product of these two functions. Figure 3 shows the spatial 

responses of the Gaussian-Hermite moment kernels of different orders and their 

corresponding Fourier transforms. 20 

- 10 - 



 
(a) 

 
(b)  

Figure 3. Gaussian-Hermite moment kernels: 

(a) the spatial responses of the Gaussian-Hermite moment kernels, order 1 to 4; 

(b) the corresponding Fourier spectra of (a). 

From Figure 3, we can see that with the increase of the order of the moment kernels, 

oscillations of the moment kernels also increase, implying that the moment kernels of 

different orders correspond to different spatial modes. In fact, Gaussian-Hermite 

moments are linear combinations of the derivatives of the signal filtered by a 

Gaussian filter [24]. As is well known, the derivatives are important features for 

representing local properties of a signal. In image processing, we often use the 

derivatives of different orders to effectively characterize the image, but how to 

combine them is still a difficult problem. Gaussian-Hermite moments provide an 

approach to constructing orthogonal features from different derivatives. Here, our 

purpose is to analyze local variations of the resulting intensity signals. 

Gaussian-Hermite moments can well represent different spatial modes and are thus 

capable of effectively characterizing the differences between 1-D intensity signals. 

Moreover, from the viewpoint of spectral analysis, each moment kernel is somewhat 

similar to a bandpass filter. The higher the moment kernel’s order is, the higher its 

spatial frequency. This means that Gaussian-Hermite moments capture signal features 
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over a broad frequency range. These desirable characteristics exhibited by 

Gaussian-Hermite moments make them a suitable choice for analyzing local 

variations of the intensity signals. 

4.3 Feature vector 

  For each signal Si described in Section 4.1, we can calculate its Gaussian-Hermite 

moment M
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i, n of order n according to Equation (3). In our experiments, we generate 10 

intensity signals from the ROI, i ∈  {1,…,10}, and use 4 different order 

Gaussian-Hermite moments, n ∈ {1,2,3,4}. In addition, the space constant of the 

Gaussian function in Equation (4) affects the shape of the Gaussian-Hermite moment 

kernels. In the experiments, it is set to 2.5. Since the outputs Mi,n denote different local 

features derived using different moment kernels, we concatenate all these features 

together to form an integrated feature vector, 

V =[ M1,1 , M1,2 , … M10,3 , M10,4 ]T                        (5) 

where T is the transpose operator. Since the length of each intensity signal is 512, the 

feature vector V includes 20480(512x10x4) components. To reduce the space 

dimension and the subsequent computational complexity, we can ‘downsample’ each 

moment Mi, n by a factor d before the concatenation. Here, downsampling means 

replacing d successive feature elements by their average. So, the downsampled feature 

vector Vd can be rewritten as follows: 

Vd =[ M1,1
d

 , M1,2 
d, … M10,3

d
 , M10,4

d
 ]T                      (6) 

Equation (6) shows that the integrated feature vector takes all the outputs Mi, n
d as 

discriminating information. 

4.4 Invariance 

It is desirable to obtain an iris representation invariant to translation, scale, and 

rotation. Invariance to translation is intrinsic to our algorithm since feature extraction 
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is based on a set of intensity signals instead of the original image. To achieve 

approximate scale invariance, we normalize an input image to a rectangular block of a 

fixed size. We can also provide approximate rotation invariance by downsampling 

each moment Mi, n derived in Section 4.3 at different initial position. That is, each 

moment Mi, n is circularly shifted before downsampling. In our experiments, the shift 

values are –12, –8, –4, 0, 4, 8, 12, which approximately correspond to rotate the 

original iris by –9
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o, –6o, –3o, 0, 3o, 6o, 9o, respectively (Note that in practical 

applications, it is unlikely to have very large rotation angles as the user’s face is 

usually nearly upright). We thus define seven templates which respectively denote the 

seven rotation angles for each iris class in the database. This brings the extra 

computational expense. Since the template generation is an off-line process, it is not a 

very serious problem. When matching the input feature vector with the templates of a 

class, the minimum of the seven scores is taken as the final matching distance. 

5. Matching 

By feature extraction, an iris image can be represented as a high dimensional 

feature vector depending on the downsampling factor d. To reduce the computational 

cost and improve the classification accuracy, Fisher linear discriminant is first used to 

generate a new feature vector with salient information of the original feature vector, 

and then the nearest center classifier is adopted for classification in a low dimensional 

feature subspace. 

Two popular methods for dimensionality reduction are principal component 

analysis (PCA) and Fisher linear discriminant (FLD). Compared with the PCA, the 

FLD not only utilizes information of all samples but also shows interest in the 

underlying structure of each class. In general, the latter can be expected to outperform 

the former [26,27]. Fisher linear discriminant searches for projected vectors that best 
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discriminate different classes in terms of maximizing the ratio of between-class to 

within-class scatter, which can be described by the following equation: 
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where c is the total number of classes, μ is the mean of all samples, μi is the mean 

of the ith class, Ni is the number of samples of the ith class, xi
j is the jth sample of the 

ith class, S

5 

10 

15 

B  is the between-class scatter matrix, and SW is the within-class scatter 

matrix. In our experiments, an enhanced Fisher discrimination model (EFM) is 

utilized for the solution to the optimal projective matrix W. The EFM method [28] 

improves the generalization capability of Fisher linear discriminant using a more 

effective numerical solution approach. Further details of Fisher linear discriminant 

may be found in [25-29]. 

The new feature vector, f , is defined as follows: 

dTVWf =                               (8) 

where Vd is the original feature vector derived in Section 4.3. The proposed algorithm 

makes use of the nearest center classifier defined in Equation (9) for classification in a 

low dimensional feature subspace constructed by the optimal projective matrix W.  
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where f is the feature vector of an unknown sample, fi is the feature vector of the ith 

class, c is the total number of classes, ||•|| denotes the norm operator, and d ( f, fi ) is 

cosine similarity measure. The feature vector, f , is classified into the jth class, the 

closest mean, using the similarity measure d

20 

 ( f, fi ). 
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6. Experimental results 
Extensive experiments on a reasonably sized image database are performed to 

evaluate the effectiveness and accuracy of the proposed method. The experiments are 

completed in two modes: identification (one-to-many matching) and verification 

(one-to-one matching). In identification mode, for a test sample, the algorithm makes 

a one-to-many search of the entire database to find a template most like the test 

sample. If the test sample and the found template are from the same class, this is a 

correct recognition. Therefore, in identification mode, the algorithm can be measured 

by Correct Recognition Rate (CRR), the ratio of the number of samples being 

correctly classified to the total number of test samples. In verification mode, assuming 

that a test sample is from a specified subject, a one-to-one comparison is made to 

verify whether the test sample is from the specified subject. Such comparisons result 

in two independent error rates, False Match Rate (FMR) and False Non-Match Rate 

(FNMR). The FMR (sometimes called false positive rate) is the probability that a test 

sample of an imposter is falsely declared to match a template of an authorized subject 

and the FNMR (sometimes called false negative rate) is the probability that a test 

sample of an authorized subject is falsely declared not to match his template. By 

adjusting a matching threshold, a Receiver Operating Characteristic (ROC) curve [3,4] 

can be created. The ROC curve is a plot of genuine match rate (1-FNMR) against 

false match rate for all possible matching thresholds and shows the overall 

performance of an algorithm. The ideal ROC curve is a step function at the zero false 

match rate. Two commonly used performance measures derived from the ROC curve 

are the area under the ROC curve (denoted as AUC or Az) and Equal Error Rate 

(EER). The Az reflects how well the intra-class and inter-class distributions can be 

distinguished and generally ranges from 0.5 to 1. A value of 0.5 implies that the 

intra-class and inter-class distributions are the exactly same (hence completely 
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inseparable). In the ideal case, the Az should be 1 (namely both the FMR and FNMR 

are zero), indicating that the intra-class and inter-class distributions are disjoint. The 

EER is the point where the false match rate and the false non-match rate are equal in 

value. The smaller the EER is, the better the algorithm. In our experiments, the 

measures described above are used for performance evaluation. The following 

subsections detail the experiments and results. 
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6.1 Image database 

Unlike fingerprint and face, there is no common iris database of a reasonable size 

for algorithm evaluation. Therefore, we collect a large number of iris images using a 

homemade digital optical sensor to form a database named CASIA Iris Database. The 

database includes 2255 iris images from 306 different eyes (hence 306 different 

classes) of 213 subjects. The images are acquired during different stages and the time 

interval between two collections is at least one month, which provides a challenge to 

our algorithm. To the best of our knowledge, this is currently the largest iris database 

available in the public domain. The profile of the database is shown in Table 1. The 

subjects consist of 203 members of the CAS Institute of Automation and 10 visiting 

students from Europe.  

Table 1.  CASIA Iris Database 

Subjects Age and Gender Time Interval Environment 

Age < 25 41%
Chinese 95.3%

25 < = Age < 50 55%

Age >=50 4%
Others 4.7%

Male : Female 7 : 3

At lease one month 
between two 

capture stages 

Normal office 
conditions 
(indoor) 

 

The homemade sensor works in PAL mode (i.e., 25 frames/second) and provides 

near infrared illumination under which the iris exhibits more abundant texture features. 

The subject needs to position himself about 4cm in front of the sensor to obtain a clear 

iris image. Moreover, a surface-coated semi-transparent mirror is placed in front of 

20 
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the lens so that a person can see and keep his eye in the center of the sensor. The 

captured iris images are 8-bit gray images with a resolution of 320x280. In general, 

the diameter of the iris in an image from our database is greater than 200 pixels. This 

makes sure that there is enough texture information for reliable iris recognition. The 

CASIA Iris Database includes two main parts. One is our earlier image set [18] 

containing 500 images from 25 different subjects. Each individual provides 20 images 

(10 for each eye). In the first stage, five images of each eye are acquired. Four weeks 

later, five more images of each eye are taken. The other part contains 1755 images 

from 188 subjects which are captured in three different stages. The images form 256 

iris classes (Note that not every individual provides iris images of both eyes, but at 

least 5 images for each eye). The total number of iris classes is thus 306 (2x25+256). 

Some samples from the CASIA Iris Database are shown in Figure 4. For each iris 

class, we choose three samples from images taken in the first stage for training and all 

samples captured at other stages serve as test samples. This is consistent with the 

widely accepted standard for biometrics algorithm testing [3,4] (Training images and 

testing images should be respectively captured at different stages). To satisfy this 

requirement, 100 images taken in the first stage are not used in the experiments. 

Therefore, for the CASIA Iris Database, there are 918 images for training and 1237 

images for testing. 
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Figure 4.  Iris samples from the CASIA Iris Database 
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6.2 Recognition results 

The downsampling factor d defined in Eq. (6) has important effects on both the 

accuracy and the computational cost of the whole algorithm. In fact, it is a tradeoff 

between accuracy and speed. A large downsampling factor d means a fast speed while 

a low accuracy. In contrast, a small downsampling factor d results in a high accuracy 

but a slow speed. We thus carry out experiments on the integrated feature vector V
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d 

defined by Eq. (6) with different downsampling factors. From the recognition results 

shown in Table 2, we can see that the performance differences are not very significant 

when the downsampling factor is less than 32, whereas when the downsampling factor 

is 64, the recognition rate descends dramatically. This is because that the larger the 

downsampling factor is, the more information of the iris loses. We choose the 

downsampling factor of 16 in the subsequent experiments since it maintains a good 

compromise between accuracy and speed. Therefore, the dimensionality of the feature 

vector after downsampling is 1280.  

Table 2. Recognition results using different downsampling factors 

Downsampling 
factor 

Dimensionality 
of features 

Recognition rate (%) 

8 2560 99.68 
16 1280 99.52 
32 640 98.71 
64 320 86.98 

 

  Figure 5 describes variations of the recognition rate with the increasing 

dimensionality of the reduced feature vector, from which we can find that with the 

increase of dimensionality of the reduced feature vector, the recognition rate also 

rapidly increases. However, when the dimensionality of the reduced feature vector is 

up to 120 or much higher, the recognition rate nearly stabilizes at a very high level of 

about 99.43%. Particularly, the proposed method achieves 99.60% recognition rate 
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using 160 features. As a result, we use only 160 features in the next series of 

experiments. 

 

Figure 5.  Recognition performance under different dimensionality of features 

 We test the proposed algorithm in two modes, namely identification and 

verification. In identification tests, an overall correct recognition rate of 99.60% is 

achieved. The verification results are shown in Figure 6 and Table 3. Figure 6 is the 

ROC curve of the proposed method on the CASIA Iris Database. Points on this 

curve denote all possible system operating states in different tradeoffs. To exhibit 

the possible operating states more clearly, the horizontal axis of Figure 6 is spread 

out using the logarithmic scale. The Az (the area under the ROC curve) is up to 

0.9998, and the EER is only 0.29%. These results are quite encouraging and 

indicate the high performance of the proposed method. Table 3 lists three typical 

operating states of the proposed method. In particular, if one and only one false 

match occurs in 100,000 trails, the false non-match rate is only 1.13%. The 

experimental results demonstrate that the proposed iris representation is effective 

and local variations can well represent the differences between irises. 
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Figure 6. Verification results 

Table 3.  The typical operating states of the proposed method  

False match rate (%) False non-match rate (%)

0.001 1.13 

0.01 1.05 

0.1 0.65 

 

6.3 Comparison and discussions 5 

10 

15 

Among existing methods for iris recognition, those proposed by Daugman [10-12], 

Wildes et al. [13], and Boles et al. [15] respectively are the best known. Moreover, 

they characterize the local details of the iris from different viewpoints, i.e. 

phase-based approach, texture analysis-based approach and zero-crossing 

representation method. To further prove the effectiveness of the proposed method, we 

make detailed comparison between the current method and the above three methods 

(and our previous work [18,19]) on the CASIA Iris Database in two modes 

(verification and identification). For the purpose of comparison, we implement the 

three methods according to the published papers [10-15,31,32] (We compare our 

experimental results of each algorithm with its published results and find that they are 

consistent. This verifies to a large extent the correctness of our implementations of 
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other methods.). Because the method by Wildes et al. [13] only works in verification 

mode, we do not test its performance in identification mode. Table 4 and Figure 7 

detail the experimental results. 

Table 4.  Comparison of CRRs, Azs and EERs 

Methods Correct recognition 
rate (%) 

Az (area under 
the ROC curve)

Equal error 
rate (%) 

Boles [15] 92.64 0.9452 8.13 
Daugman [11] 100 0.9999 0.08 
Previous [18] 94.91 0.9902 2.84 
Previous [19] 99.19 0.9989 0.57 

Proposed 99.60 0.9998 0.29 
Wildes [13] - 0.9975 1.76 

5  

 

Figure 7.  Comparison of ROC curves 

Table 4 illustrates that the Az of each algorithm is greater than 0.9 and the CRR 

exceeds 90% as well. This implies the high accuracy of these methods. To better 

distinguish these well performing methods, the horizontal axis of Figure 7 is spread 

out using the logarithmic scale. Also, the ROC curves are presented in two plots in 

order to further improve legibility of Figure 7. From the results shown in Table 4 and 

Figure 7, we can find that Daugman’s method has the best performance, followed by 

the proposed method and the methods described in [19], [13] (by Wildes et al.), [18] 

and [15] (by Boles et al.) respectively.  

10 

15 

The experimental results demonstrate that our current method is much better than 
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our previous methods [18,19] and the method by Wildes et al. [13]. This is determined 

by their inherent capabilities in representing the image including many randomly 

distributed characteristics. Generally, the texture-based approach is efficient to 

process regular features of an image. However, the iris image consists of many 

randomly distributed and irregular blocks. This implies that texture features may not 

exactly represent the iris characteristics. The proposed method can effectively analyze 

local variations of the intensity signals which reflect to a large extent random shape 

information of the iris and thus achieves much higher performance. Boles and 

Boashash [15] only employed extremely little information along a virtual circle on the 

iris to represent the whole iris, which results in a relatively low accuracy as shown in 

Figure 7. Lim et al. [16] made use of the fourth-level high frequency information of an 

iris image’s 2-D Haar wavelet transform for feature extraction. As we know, the 

fourth-level details of an image’s wavelet decomposition contain essentially very low 

frequency information. That is, their method did not effectively exploit middle 

frequency components of the iris which play an important role in recognition as well 

[11]. Unlike these two methods, our current method employs much more information 

of the iris and is thus expected to achieve better results. From Table 4 and Figure7, we 

can see that both Daugman’s method and the current method obtain better results than 

other methods. This is because that they well characterize random shape features of 

the iris. Binary phase features used in Daugman’s algorithm are in essence local shape 

features of the iris. The proposed iris representation also reflects shape information of 

the iris by analyzing local variations of the intensity signals. Daugman’s method is 

slightly better than the proposed method in both identification and verification tests. 

Daugman demodulated phase information of each small local region using multi-scale 

quadrature wavelets, and then quantized the resulting phasor denoted by a 
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complex-valued coefficient to one of the four quadrants in the complex plane. To 

achieve high accuracy, the size of each local region must be small enough, which 

results in the high dimensionality of the feature vector (2048 components). That is, his 

method captures much more information in much smaller local regions. This makes 

his method slightly better than ours.  5 

10 

Table 5 illustrates the computational cost of the methods described in 

[11,13,15,18,19] and the current algorithm, including the CPU time for feature 

extraction (from a preprocessed image to a feature vector) and matching (from a pair 

of feature vectors to the match result). It should be pointed out that the results only 

reflect the approximate computational cost of each method since the methods used in 

experiments are our implementations instead of the original ones. 

Table 5. Comparison of the computational complexity 

Method Feature 
extraction (ms) 

Matching 
(ms) Others 

Daugman [11] 682.5 4.3 - 
Wildes [13] 210.0 401.0 Registration 
Boles [15] 170.3 11.0 - 

Previous [18] 720.3 7.5  
Previous [19] 426.8 13.1 - 

Proposed 260.2 8.7 Feature 
reduction 

 

The above experiments use 200 different iris images and are carried out in Matlab 

6.0 on a 500Mhz PC with 128M SDRAM. Since the current method and the method 

of Boles et al. [15] are based on 1-D signal analysis, they cost less time than others in 

feature extraction. The method in [13] only takes about 210ms to build a four-level 

Laplacian pyramid representation of an image, whereas the piecewise correlation 

based matching generally needs high computational expense. Table 5 shows that 

Daugman’s method implements matching faster than others. This is because that this 

15 
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method can compute the distance between a pair of feature vectors by the XOR 

operation. If the XOR operation is performed using some optimization schemes in 

C/C++, the running time for matching can be significantly reduced. That is, 

Daugman’s method is efficient to make one-to-many search in a large-scale database. 

In verification mode (i.e., one-to-one matching), the differences of the computational 

cost between the above methods (except for the method by Boles et al.) are not very 

significant. Note that the method in [13] and the proposed method require extra cost 

for image registration and feature reduction, respectively.  
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Based on the above results and analysis, we can conclude:  

1) The proposed method achieves high performance. This also indicates that local 

intensity variations are discriminating features for recognition.  

2) Compared with texture features (e.g., our previous methods [18,19] and Wildes’s 

method [13]), features based on local intensity variations are more effective for 

recognition. This is because texture is by nature a regional image property and 

cannot precisely characterize shape information of the iris. 

6.4 Future work 

The experimental results demonstrate that our attempt to analyze local variations 

for iris recognition is reasonable and promising. Future work will include 

characterizing local variations using more effective features as well as representing 

shape features of the iris using 2-D Gaussian-Hermite moments. 

1) Compared with Daugman’s method, our current method takes more time for 

feature matching but has a lower computational cost for feature extraction. We are 

currently working on exploiting more significant features to represent local 

variations, for instance, by only computing moments of local sharp variation 

points as features. This may result in much faster matching speed as well as higher 

accuracy. In addition, the current scheme for downsampling is only to average the 
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adjacent feature elements and does not pay more attention to the most 

discriminating feature elements for recognition. Therefore, feature selection is an 

important research issue in the near future. 

2) Although the experimental results show that the 1-D signals used in our method 

well capture the details of the iris, there is an inevitable information loss when 

transforming the 2-D normalized image into a set of 1-D signals. Therefore, the 

performance of the current algorithm can be further improved by directly 

computing the 2-D Gaussian-Hermite moments of the normalized image. 

Currently, we are also working on how to effectively represent local shapes of the 

iris using 2-D Gaussian-Hermite moments. 
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7. Conclusions  

With the increasing emphasis on security, automated personal identification based 

on biometrics has been an active topic in pattern recognition. Recently, iris 

recognition has received increasing attention due to its high reliability. In this paper, 

we have developed a new iris recognition method which analyzes local variations to 

characterize the details of the iris. The method first constructs a set of 1-D intensity 

signals containing the majority of local variations of the iris, and then calculates 

Gaussian-Hermite moments of such signals as features. To reduce the computational 

cost and improve the classification accuracy, Fisher linear discriminant and the 

nearest center classifier are adopted for classification. On the CASIA Iris Database of 

2255 images from 213 different subjects, the proposed method achieves encouraging 

results. We expect to further improve the performance by characterizing local 

variations using more effective features as well as representing local shapes of the iris 

using 2-D Gaussian-Hermite moments. 
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