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Abstract

We propose a novel face recognition strategy combining
various discriminating Gabor features in multi-scales and
multi-orientations. A bank of well-chosen Gabor filters is
applied on the image to construct a group of feature vectors,
and then the Null Space-based LDA (NLDA) is performed
simultaneously on each orientation channel and the origi-
nal image to give 5 component classifier outputs, which are
then combined to increase the final recognition rate. Ex-
perimental results on the FERET database demonstrate the
effectiveness and flexibility of our proposed method.

1. Introduction

Despite its inferior accuracy to most other biometric sys-
tems, automatic face recognition (AFR) has always been a
major focus of research interest for its non-invasive nature
and tremendous potentials in commercial and law enforce-
ment applications. Exhaustive survey of AFR techniques
[10] indicate the primary difficulty in recent dominating ap-
proaches comes from the immense variability of facial im-
agery due to several confounded factors such as illumina-
tion, viewpoint, body movement, and facial expression.

Evidence from psychological studies suggests that, in-
stead of working exclusively with a global, holistic face rep-
resentation, human vision system (HVS) seems to use both
holistic and dominant feature information for the perception
and recognition of faces. Whereas a precise search for the
main facial features, such as eyes, noses and mouths, still re-
mains very challenging in real applications, hybrid systems
using both geometric and photometric information lack in
a solid groundwork as they are over-sensitive to those de-
tected feature points/landmarks.

We therefore focused our research towards extracting
some significant space and spatial frequency features con-
tained in the 2D image, which jointly characterize a face
pattern in multi-scales and multi-orientations. Gabor filters,
or other similar wavelets, which achieve such optimal joint

localization in both space and frequency domains, have
shown to be highly useful in many AFR applications such as
facial feature extraction and pose estimation. Lades et al [5]
pioneered the use of Gabor filters for face recognition using
the Dynamic Link Architecture framework, which was later
expanded by Wiskott et al [9] to the “Elastic Bunch Graph
Matching” method. Liu et al [6] employed an enhanced
Fisher discrimination model (EMD) on an augmented Ga-
bor feature vector, which was derived from the Gabor trans-
formation of face images. The underline basis for these ef-
fective approaches is the observation that the textual pattern
of human face is fairly constant despite some slight varia-
tions introduced by the factors discussed at the beginning.

Unlike the aforementioned approaches, we make an ex-
perimental analysis of all the Gabor features from the data
fusion standpoint. Given a normalized facial image, a bank
of well-chosen Gabor filters is applied on it to construct
a group of feature vectors. A “channel-based” set of sep-
arate subspaces are built by the Null Space-based Linear
Discriminate Analysis (NLDA) of the original images and
all the feature vectors corresponding to their respective Ga-
bor channels. As different channel is tuned to different tex-
ture information, we believe a combination of these comple-
mentary representations should lead to improved recogni-
tion. Following the theoretical framework presented in [4],
we compare some mainstream rules for combining classi-
fier outputs. Experimental results conducted on the FERET
database strongly support our assumption and show high
superiority of the newly developed method to those outputs
from any individual classifiers.

2. Gabor Feature Extraction

Biological evidence has shown that Gabor filters seem to
be a good approximation to the sensitivity profiles of neu-
rons in the visual cortex, and their mathematical properties
provide a fair degree of insensitivity to irrelevant variations
in image intensity. Motivated by these observations, a num-
ber of groups have applied Gabor filters to analyzing tex-
tured facial images containing highly specific frequency or



orientation characteristics. In this section, the basic prop-
erties of the Gabor filters are briefly reviewed, followed by
the description of our extracted facial features.

2.1. Gabor Channel Filters

The Gabor filters, or Gaussian wavelets, are complex ex-
ponential functions modulated by Gaussian functions. In
the particular case of the Gaussian envelope being circularly
symmetric, and having the same orientation as the complex
sine grating, the expression for a Gabor filter can be defined
in the spatial domain by
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wherem is the index for the scale andn is the index for the
orientation. The second term in the square brackets com-
pensates for the DC value. As in [3], the half peak radial
and orientation bandwidths are defined by
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Hereb is chosen to be 1 for all filters in the bank and cor-
responds to a half peak radial bandwidth of one octave.
The complete bank of filters used for sampling the joint
space-frequency domain is obtained by rotation, with a45 ◦

step, to get 4 orientation channels (n ∈ {0, 1, 2, 3}), and by
limiting the number of central frequencies to 3 (fm−1 =

fm/
√

2, m ∈ {0, 1, 2}), starting with the Nyquist frequency
(f2 = π/2). Fig.1 shows the even part of our designed3× 4

Gabor filters and their coverage of the Fourier domain.

2.2. Gabor Feature Representation

Given a facial imageI(x, y), we convolve it with a filter
hmn(x, y) in the bank, and denote the filtered image by

Wmn(x, y) = I(x, y) ∗ hmn(x, y) (3)

The results of an even (cosine-type) and an odd (sine-
type) part can be combined in a single magnitude image

Figure 1. (a) Even part of the3 × 4 Gabor filters; (b)
Coverage of the Fourier domain by their corresponding fre-
quency channels.

corresponding to the energy ofWmn(x, y). The multi-
hierarchical Gabor representations (normalized to zero
mean and unit variance) of a human face imageI(x, y)

are illustrated in Fig.2.(a). Applying the convolution theo-
rem,Wmn(x, y) can be computed efficiently via Fast Fourier
Transform (FFT).

Figure 2. (a) Magnitude of the filtered images for a hu-
man face; (b) Feature masks (ρ = 0.5) with the selected
points in black.

As the dimensionality of the total resulted Gabor fea-
ture vectors is very high, the memory and computational
requirements for performing subsequent subspace analysis
are inevitably large. We therefore adopt a simple “com-
pressing” scheme to determine the dominating regions of
different Gabor channels. GivenN training images, we per-
form (3) to obtain3 × 4 set ofN feature images for each
channel. For a particular feature set, its point-wise variance
image can be computed as

Vmn = {vmn(i, j)|vmn(i, j) = var(Wmn(i, j))} (4)

wherei, j are image coordinate index andvar is the variance
operator. Theρ percentage of the points inVmn with the
largest value is selected to form a feature mask (Fig.2.(b)).
It’s clear to see that most key points in the masks appear
at the important facial features, thus can be used to gen-
erate lower dimensional representative feature vectorsOρ

mn

by concatenating the masked Gabor filtered imageW ∗
mn .

Fig.2 also illustrates that both the magnitude images and
the feature masks are relatively insensitive to the Gabor ker-
nel scale, while vary significantly across different orienta-
tions. We therefore divide all Gabor channels to 4 groups
according to their respective orientations and conduct 4 aug-
mented feature vectors as follows:

Xρ
n = (Oρ

1n
T

Oρ
2n

T
Oρ

3n
T

)T (5)

where T is the transpose operator. These feature vec-
tors thus encompasses important discriminating informa-
tion from each orientation channel.

3. Null Space-based LDA (NLDA)

The Gabor feature vectors introduced above reside in a
high dimensional space even after the compressing stage.



It’s necessary for us to further reduce the feature space to a
lower dimensional representation.

Linear Discriminate Analysis (LDA), which utilizes the
most discriminating features, provides an effective low-
dimensional feature space for classification. Its goal is to
seek an optimal projectionWopt, from the raw data space to
a reduced feature space, which maximizes the ratio of the
between-class scatter matrixSb to the within-class scatter
matrixSw, i.e.,

Wopt = arg max
W

|W T SbW |
|W T SwW | (6)

The most widely used method performs Principle Compo-
nent Analysis (PCA) firstly to make the resultingSw full-
rank, and then standard LDA is used to seek the finial pro-
jection. However, it was mentioned in [1] that the optimal
discriminate vectors of LDA could be derived from the null
space (or kernel in [1]) ofSw. In fact, if a certain vectorq
belongs to the null space ofSw (i.e.qT Swq = 0), and also
satisfiesqT Sbq 6= 0, the radio in (6) will definitely reach the
maximum value. In this correspondence, Huang et al [2] in-
troduced an efficient null space approach to solve the small
sample size problem. Our recent work [7] gave an in-depth
study to this method, which can be described as follows:

- Remove the null space ofSt (the total scatter matrix).
Perform eigen-anlysis onSt, chose all the eigenvectors

corresponding to the nonzero eigenvalues to construct a pro-
jection matrixP , and then we get:

P T SwP = S
′
w P T SbP = S

′
b (7)

- Extract the null space ofSw.
Perform eigen-anlysis onS

′
w, chose all the eigenvectors

corresponding to the zero eigenvalues to construct a projec-
tion matrixY , and then we get:

Y T S
′
wY = 0 Y T S

′
bY = S

′′
b (8)

We’ve proved in [7] that through these two steps,S
′′
b is

full-rank, and there is no need to further diagonalize it lest
the selected projections overfit the training samples. There-
fore, the overall NLDA projection matrix isWopt = PY .

4. Cross-Module Combination

On combining classifiers, it is of great importance to ex-
tract independent or uncorrelated feature sets. Empirical re-
sults in Section 2.2 illustrated that, the Gabor representation
from different channels seems to provide an observer with
multiple cues and this in itself facilitates data fusion. Thus
we simultaneously apply NLDA on these 4 feature groups
as well as the original images, and perform the decision
level combination that is fairly appropriate for component
classifiers using complementary information.

For ac class problem, letdm,n be the Euclidean distance
between themth class center and the test sample in thenth

module, an estimation of posterior probability can be ap-
proximated as

P (ωm|xn) =
1/d2

m,n∑c

m=1
1/d2

m,n

(9)

Based on some probability assumptions, [4] gave a the-
oretical justification to a number of common combination
schemes, which we list in Table.1. As mentioned in [4], the
combination rule developed under the most restrictive as-
sumptions, the SUM rule, out-performs other schemes, and
its sensitivity to estimation errors was also investigated. Our
experiments in Section 5 empirically evaluate these main-
stream combination rules and obtain results consistent with
those analysis in [4].

Table 1. Some combination rules and their formulations.

Rule Formulation

Product h = arg maxm

∏
n

P (ωm|xn)

Sum h = arg maxm

∑
n

P (ωm|xn)

Max h = arg maxm maxn P (ωm|xn)

Min h = arg maxm minn P (ωm|xn)

5. Experiments and Discussion

To demonstrate the effectiveness of our method, exten-
sive experiments were performed on the FERET database
[8]. We have selected 70 subjects from this database with 6
up-right, frontal-view images of each subject. The images
were selected to bear with moderate differences in illumi-
nation, expressions and facial details. Using the manually
detected centers of the two eyes, all images were properly
rotated, translated and scaled to fit a grid size of64 × 64,
followed by a histogram equalization step to eliminate light-
ing effect. Each of these images can then be segmented by
means of an predefined mask centered at the middle of the
normalized image rectangle, as illustrated in Fig.3.

The first experiment was designed to evaluate the per-
formance of various combination rules and their superior-
ity over any NLDA based single decision making scheme,
i.e. using information from only one Gabor channel or the
original images. We randomly divided the database into
two parts: 3 images of each person were selected as train-
ing samples, while the remaining 3 as testing images. The
L1 norm similarity measure and the Nearest Neighbor rule
(for non-combination method only) were adopted to clas-
sify each probe input. We repeated the experiments for all

Figure 3. Normalized subjects from the FERET database



possible combination of the training and testing sets, and
obtained the following averaged results. (Table.2)

Table 2. Recognition rate (%) for different combination
rules and different single decision making schemes.

ρ = 0.25 ρ = 0.50 ρ = 0.75 ρ = 1.00

Product 95.79 96.67 96.79 96.69

Sum 96.10 96.78 96.86 96.79

Max 94.43 95.21 95.33 95.41

Min 83.88 89.52 90.81 91.02

Original image 92.26

Channel 1 (0 ◦) 52.93 69.50 72.55 75.00

Channel 2 (45 ◦) 78.19 86.79 89.07 89.71

Channel 3 (90 ◦) 84.55 89.81 90.86 91.21

Channel 4 (135 ◦) 82.98 88.29 90.21 90.38

It was noted that any single Gabor channel, capturing
only part of the overall facial texture information, did not
provide superior performance to the original intensity im-
age. But as different channels potentially offered comple-
mentary representation about the face pattern, the integra-
tion of classifier outputs from them and the original image
yielded significantly improved performance. We also found
that the MIN and MAX rules, which rely on order statistics,
were less robust in our particular circumstance where com-
ponent classifiers might bear high degree of overlap of the
distribution of the posterior probability estimation.

Our next experiment compared some appearance based
methods that have become quite popular in the literature,
namely LDA/NLDA (based on all Garbor feature or inten-
sity feature), Liu et al [6] with alternative methods devel-
oped in this paper. We chose the compression factorρ to be
0.25 and adopt SUM rule for classifier combination. Test
process was almost the same with the first experiment, ex-
cept that we let the number of training samples per class
k increase from 2 to 5, while keeping an empty intersection
with the testing set. The averaged results (Table.3) from this
experiment led to such intuitive conclusions:

- In respect of small size problem, Null Space-based
LDA is more suitable for dimensionality reduction.

- Gabor feature, which captures salient visual properties
such as spatial localization, orientation selectivity, is
superior to intensity representation for classification.

- Hybrid system based on combination schemes consis-
tently outperforms a single best classifier.

Table 3. Recognition rate (%) for different methods.

k = 2 k = 3 k = 4 k = 5

Intensity+LDA 72.62 84.21 91.62 95.24

Gabor+LDA 77.00 86.02 91.90 95.71

Intensity+NLDA 84.02 92.26 95.29 97.86

Gabor+NLDA 85.33 93.76 97.43 99.52

Liu et al [6] 81.14 89.71 93.91 97.38

Our method 90.74 96.10 98.14 99.52

6. Conclusion

In this paper, a novel face recognition strategy combin-
ing various Null Space-based Gabor features is proposed
and evaluated on the FERET database. Our excellent per-
formance mainly relies on the discriminating feature selec-
tion, improved dimensionality reduction and the final com-
bination strategy. Liu et al [6] claimed that EFM outper-
forms LDA, but in our experiment it was numerically un-
stable and only gave limited improvement. Its regular sub-
sampling scheme may lose important discriminant informa-
tion in the face region. As more Gabor channels were se-
lected and applied on larger size images, high accuracy was
also reported in [6]. However, in our experiment no sin-
gle decision making schemes can exceed the performance
achieved by the combination system.
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