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Abstract

In this paper, we propose a novel classification method,
called nearest intra-class space (NICS), for face recogni-
tion. In our method, the distribution of face patterns of each
person is represented by the intra-class space to capture all
intra-class variations. Then, a regular principal subspace
is derived from each intra-class space using principal com-
ponent analysis. The classification is based on the near-
est weighted distance, combining distance-from-subspace
and distance-in-subspace,between the query face and each
intra-class subspace. Experimental results show that the
NICS classifier outperforms other classifiers in terms of
recognition performance.

1. Introduction

In general, appropriate facial representation and effective
classification rules are two central issues in most face recog-
nition systems. In this paper, we will mainly explore various
nonparametric classification rules to design a robust classi-
fier.

Up to now, a lot of pattern classification methods have
been presented. One of the most popular classifiers among
them is the nearest neighbor (NN) classifier [1]. Although
NN is a very simple and convenient method, the represen-
tational capacity of face database is limited by the available
prototypes in each class, which restrict the performance of
NN.

To extend the capacity of covering more variations for
a face class, Li et al. presented the nearest feature line
(NFL) classifier in literature [2]. Following the work of
NFL, Chien et al. [3] presented the nearest feature plane
(NFP) for face classification. Both methods improve the
performance of the NN method by expanding the represen-
tational capacity of available prototypes.

The nearest feature space (NFS) classifier [3] shows pri-
ority than NFL and NFP by Chien et al.’s conclusions. In
contrast to NFL and NFP, NFS creates much more virtual
prototype feature points, of which a substantial part is re-
dundant and unreasonable, even may incur outliers.

In this paper, we incorporate the advantage of virtual
samples with subspace analysis, which has been developed
in recent decades starting from the work of E. Oja [4].
Firstly, we construct the intra-class space in which virtual
samples are generated according to the learned principal
variations. Subsequently, we propose a nearest intra-class
space (NICS) classifier which is numerically stable and
achieves best performance.

The rest of the paper is organized as follows. In Section
2, nearest feature classifiers (NFL, NFP, NFS) plus some
problems associated with them are summarized. Next, we
address the idea of intra-class space and derive the NICS
classifier. Experimental results are reported in Section 4.

2. Nearest Feature Classifiers

Nearest feature classifiers, have been presented for ro-
bust face recognition in presence of varying viewpoints, il-
lumination, expressions, etc. The common merit of these
methods is that they all provide an infinite number of vir-
tual prototype feature points of each class.

2.1. Nearest Feature Line and Plane (NFL and
NFP)

Let x denote the query and {xc
i |1 ≤ c ≤ C, 1 ≤

i ≤ Nc} represent all prototypes, P c
i,j is the projection

point of the query x onto the feature line (FL) xc
ix

c
j . The

FL distance between the query and FL is determined by
d(x, xc

ix
c
j) = ‖x − P c

i,j‖, where ‖ · ‖ represents the Eu-
clidean distance. The NFL distance [2] is the first rank dis-
tance which gives the best matched class c∗. The num-
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ber of projection and distance calculations using NFL is
NNFL =

∑C
c=1 Nc · (Nc − 1)/2.

Two potential problems in NFL can be summarized as
follows: (a) The method becomes computational intractable
when there are too many prototypes in each class; (b) NFL
may fail when the prototypes are far away from the query
point but the FL distance is very small. Problem (b) can be
demonstrated from Fig.1, where we can see that p is much
closer to x1 and x2 than to x3 and x4. However, the FL dis-
tance to L(x3, x4) is smaller than the distance to L(x1, x2),
which may lead to wrong classification.

By extending the geometrical concept of line to plane,
it is easy to construct NFP [3]. The plane ̂xc

ix
c
jx

c
k pass-

ing through three random feature points (xc
i , xc

j and xc
k) is

called feature plane (FP) of x in the class c. The projec-
tion P c

i,j,k onto ̂xc
ix

c
jx

c
k is determined, and d(x, ̂xc

ix
c
jx

c
k) =

‖x − P c
i,j,k‖ is the FP distance. The NFP searches the

best matched class c∗ according to the nearest FP dis-
tance. NFP also suffers from problem (a) and (b), takes
greater computational cost than NFL. The number of pro-
jection and distance calculations using NFP increases to
NNFP =

∑C
c=1 Nc · (Nc − 1) · (Nc − 2)/6.

Figure 1. Drawbacks of NFL and NFS

2.2. Nearest Feature Space (NFS)

The NFS classifier [3] is presented to detect the most
likely identity of query image by finding the nearest dis-
tance to feature spaces (called FS distance). All prototypes
per class span a feature space, which is represented by the
span

Sc = span{xc
1, x

c
2, ..., x

c
Nc

} (1)

a matrix Zc = [xc
1, x

c
2, ..., x

c
Nc

] is built to determine the pro-
jection P c of the query x onto the feature space. We obtain

P c = Zc(ZT
c Zc)−1ZT

c x (2)

then classify the query by finding the nearest feature space
among all classes

c∗ = arg min
1≤c≤C

d(x, Sc) = arg min
1≤c≤C

‖x − P c‖ (3)

No matter how many prototypes are collected, the num-
ber of projection and distance calculations always equals to
NNFS = C. Hence NFS is very efficient for face recogni-
tion.

From the geometrical viewpoint, the feature space is a
glob space based on the origin. The FS distance is not a
good measure. For example, the feature space spanned by
two prototypes x1 and x2 in Fig.1 is the plane P (x1Ox2).
Besides virtual prototypes provided by L(x1, x2), much
more virtual prototypes on P (x1Ox2) are created, which
are redundant and unreasonable. Hence the FS distance
maybe not suitable for similarity measure, and leads to
wrong classification.

Besides above concern, we can find that calculating pro-
jection vectors P c onto each feature space involves matrix
inversion(ZT

c Zc), which is close to singular when proto-
types per class are numerically near enough. So NFS suf-
fers form numerical instability.

3. Nearest Intra-Class Space (NICS)

The key issue of nearest feature classifiers is that how
and where to generate virtual prototype feature points, we
think virtual prototypes should be generated in a linear
patch. Moreover, we construct the patch as the intra-class
space that is demonstrated more reasonable and robust than
the FL, FP and FS.

3.1. Intra-Class Space

To efficiently capture the characteristics of the difference
between training samples, Moghaddam et al. [6] introduced
the intra-personal space (IPS). The IPS is constructed by
collecting all the difference images between any two im-
age pairs pertaining to the same individual over all persons.

Motivated by IPS, we propose the intra-class space
(ICS), which is constructed by collecting all the differ-
ence vectors (images) between any two prototype pairs in
single class (single person). It is evident that ICS is just
a subset of IPS, and it accounts for all intra-class varia-
tions in one class.

As addressed in Section 2.2, small differences be-
tween prototypes are against the robustness of feature
space. Therefore, we produce the principal subspace from
the ICS by applying PCA [5]. Our goal is to find a set
of orthogonal basis vectors (provided by PCA) captur-
ing the directions of maximum variance in prototype points,
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and to remove the directions associated with little vari-
ance such as eigenvectors corresponding to eigenvalues
smaller than a threshold (e.g. 10−10).

Let’s denote the ICS by ∆c. Its construction proceeds as
follows: from the training set {xc

i |1 ≤ c ≤ C, 1 ≤ i ≤ Nc},
we can compute the difference vector δc

i,j = xc
i − xc

j . Now,
we have constructed ∆c = {δc

i,j |1 ≤ i, j ≤ Nc}. With the
availability of the training sample for each ICS ∆c, we can
learn a principal subspace on it, denoted as Uc.

However, the construction of ∆c will take much compu-
tational cost when there are too many prototypes in each
class. We try to get subspace Uc without complex space
construction. Wang et al. [7] proved that the eigenspace of
PCA characterizes the difference between any two face im-
ages by showing that the covariance matrix for {−→xi} equals
that of {(−→xi − −→xj)} after removing the scale. Utilizing the
theorem, we conclude that Uc is also the eigenspace of
{xc

i |1 ≤ i ≤ Nc} which is easier to compute.
Assume Uc = [uc

1, u
c
2, ..., u

c
rc

], where rc denotes the in-
trinsic dimension of ∆c and is usually Nc − 1. An arbitrary
point lying in ∆c is given by

∑
j γju

c
j . Then the ICS gener-

ates virtual samples xc
∨ as below:

xc
∨ − xc

i ∈ ∆c ⇐⇒ xc
∨ − xc

i =
rc∑

j=1

γju
c
j = Ucγ (4)

where i = 1, 2, ..., Nc, and γ ∈ Rrc is the scale vector. By
averaging Eq.(4) over i, we derive the unified formula

xc
∨ − xc ∈ ∆c ⇐⇒ xc

∨ − xc = Ucγ (5)

where xc is the class mean vector. Eq.(5) addresses ICS
from the geometrical perspective. We regard the ICS as a
reference coordinate system with xc as its origin, so the co-
ordinates of virtual samples form the scale vector γ. More-
over, we have the following relation

‖xc
∨ − xc‖ = ‖γ‖ (6)

3.2. Distance-From-Subspace and Distance-In-
Subspace

For any query point x, we define its distance-from-
subspace by d(x, ∆c) and distance-in-subspace by
d(x|∆c). Firstly, we will find the best matched virtual sam-
ple for x in class c. Following the viewpoint of the IPS ref-
erence coordinate system, the virtual sample is just the
projection point pc of x in the reference coordinate sys-
tem.

We define distance-from-subspace d(x, ∆c) as the Eu-
clidean distance between x and its projection pc in the ICS
∆c. Projecting the difference vector x − xc into ∆c, we get
the difference vector pc−xc and its coordinates UT

c (x−xc).

Due to Pythagorean theorem and Eq.(6), d(x, ∆c) is given
by

d(x, ∆c)=‖x − pc‖ =
√
‖x − xc‖2 − ‖pc − xc‖2

=
√
‖x − xc‖2 − ‖UT

c (x − xc)‖2 (7)

Subsequently, we define distance-in-subspace d(x|∆c).
To overcome the problem (b) described in Section 2.1, we
must take the distances between the virtual samples and pro-
totypes into account. We still consider the projected differ-
ence vector pc − xc, which pertains to ∆c and may be lin-
early decomposed to components in principal directions by
Eq.(5). Because of different variance in each direction, we
characterize d(x|∆c) as a Mahalanobis distance between pc

and xc

d(x|∆c) =
rc∑

j=1

y2
j

λc
j

(8)

where [y1, y2, ..., yrc ]T = UT
c (x − xc) and eigenvalue

λc
j corresponds to eigenvector uc

j . In fact, the distance-in-
subspace d(x|∆c) expresses rationality of the best matched
virtual sample of x in ∆c. The smaller d(x|∆c) is, the more
likely the virtual sample pc is in class c.

3.3. NICS Method

Now, we propose NICS classification rule which bal-
ances the two factors: distance-from-subspace and distance-
in-subspace. By weighting d(x, ∆c) and d(x|∆c), we ob-
tain the ICS distance d∆c(x) and find the nearest ICS dis-
tance to classify the query x

c∗ = arg min
1≤c≤C

d∆c(x) = arg min
1≤c≤C

d(x, ∆c)+α·d(x|∆c)

(9)
where α (which we set to 10) is a regularization parameter
that controls the trade-off between distance-from-subspace
and distance-in-subspace.

4. Experimental Results

To demonstrate the efficiency of our method, extensive
experiments are done on different face data sets. All meth-
ods are compared on the same training sets and testing sets,
including NN, NFL, NFP, NFS and our method NICS. All
experiments are implemented using the MATLAB V5.3 un-
der Pentium IV PC with a clock speed of 1.69GHZ.

4.1. ORL Database

There are 10 different images for each subject in the ORL
face database composed of 40 distinct subjects. All the sub-
jects are in up-right, frontal position. The size of each face
image is 92× 112. The first line of Fig.2 shows 6 images of
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the same subject. The standard eigenface method [5] is first
applied to the set of training images to reduce the dimen-
sion of facial image. In our experiments, we use 60 eigen-
faces for each facial feature.

Fig.3 shows the average error rates (%) as functions
of the number of training samples. In each round, k(k =
2, 3, .., 9) images are randomly selected from the database
for training and the remaining images of the same subject
for testing. For each k, 20 tests are performed with differ-
ent configuration of training and test set, and the results are
averaged. The results plus recognition time at k = 5 are
listed in Tab.1, which demonstrates that our method outper-
forms other classifiers.

Figure 2. Samples from one subject in ORL
and FERET

4.2. FERET Database

We tested our method on the more complex and chal-
lenging FERET database. We selected 70 subjects from the
FERET database with 6 up-right, frontal-view images of
each subject. The face images have much more variations
in lighting, facial expressions and facial details. The sec-
ond line of Fig.2 shows one subject from the selected data
set.

The eye locations are fixed by geometric normalization.
The size of face images is normalized to 92× 112. Training
and test process are similar to those on the ORL database.
Similar comparisons between those methods are performed.
This time 100 eigenfaces are used and k changes between
2 to 5, and the corresponding averaging error rates (%) are
plotted in Fig.4. Tab.1 lists the average error rates and recog-
nition time at the case k = 4. There are encouraging results,
which show that the performance of our method is signifi-
cantly better than other classifiers.

Table 1. Comparison of Classifiers

Error Rate(%) Recognition Time(ms)Classifier
ORL FERET ORL FERET

NN 5.55 21.43 3.85 6.63
NFL 4.47 18.50 31.1 40.0
NFP 4.02 18.21 59.5 51.5
NFS 4.67 17.79 4.04 65.8
NICS 3.75 15.43 3.50 8.28
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Figure 3. Error rates on the ORL database
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Figure 4. Error rates on the FERET database
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