
135 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004

A Hierarchical Self-Organizing Approach for

Learning the Patterns of Motion Trajectories

Weiming Hu, Dan Xie, and Tieniu Tan, Senior Member, IEEE

Abstract—The understanding and description of object behav­
iors is a hot topic in computer vision. Trajectory analysis is one of
the basic problems in behavior understanding, and the learning of
trajectory patterns that can be used to detect anomalies and predict
object trajectories is an interesting and important problem in tra­
jectory analysis. In this paper, we present a hierarchical self-orga­
nizing neural network model and its application to the learning of
trajectory distribution patterns for event recognition. The distribu­
tion patterns of trajectories are learnt using a hierarchical self-or­
ganizing neural network. Using the learned patterns, we consider
anomaly detection as well as object behavior prediction. Compared
with the existing neural network structures that are used to learn
patterns of trajectories, our network structure has smaller scale
and faster learning speed, and is thus more effective. Experimental
results using two different sets of data demonstrate the accuracy
and speed of our hierarchical self-organizing neural network in
learning the distribution patterns of object trajectories.

Index Terms—Hierarchical self-organizing neural network, tra­
jectory analysis and learning, anomaly detection, behavior predic­
tion.

I. INTRODUCTION

V ISUAL surveillance has attracted much attention in com­
puter vision due to its potential applications. In a visual

surveillance system, the main problems include object detec­
tion, object classification, tracking and event recognition. In re­
cent years, event recognition has been widely considered [1],
[2]. Trajectory analysis is one of the basic problems in event
understanding and is the focus of this paper. Other important is­
sues such as object tracking are discussed elsewhere [17]–[20].

Most current visual surveillance and event recognition
systems depend on known scenes, where the objects move
in predefined ways [3]–[6]. These methods are not adaptable
to changing environments, because for each scene one set
of object behaviors should be defined, and the definition of
object behaviors should be updated as object behaviors change.
Furthermore, it is hard to predefine all object behaviors even
when the environment does not change. It is highly desirable
to establish a general approach for event recognition based on
automatically generated behavior models. Johnson et al. [7]
described a statistical model for object trajectories generated
from image sequences. The movement of an object is described

Manuscript received January 4, 2002; revised October 15, 2002. This work
was supported in part by the NSFC by Grant 60105002, the Natural Science
Foundation of Beijing by Grant 4031004, the National 863 High-Tech. R&D
Program of China by Grants 2002AA117010 and 2002AA142100, the LIAMA
Project, and the Institute of Automation, Chinese Academy of Sciences.

The authors are with the National Laboratory of Pattern Recognition, Institute
of Automation, Chinese Academy of Sciences, Beijing 100080 China (e-mail:
wmhu@nlpr.ia.ac.cn; xdan@nlpr.ia.ac.cn; tnt@nlpr.ia.ac.cn).

Digital Object Identifier 10.1109/TNN.2003.820668

by a sequence of flow vectors. Each vector consists of 4
elements that represent the position and velocity of the object
in the image plane. The statistical model of object trajectories is
formed with two two-layer competitive learning networks that
are connected with leaky neurons. Both networks are trained
using vector quantization in which only the winning neuron
is excited and the other neurons are retained. Johnson et al.
[8] generalized the model in [7] to the learning of interactions
among humans, for example shaking hands. Stauffer et al.
[9] presented a method very similar to [7] to learn patterns
of activity using real-time tracking. This method involves
developing a codebook of representations using an on-line
vector quantization on the entire set of representations acquired
by the tracker. Joint co-occurrence statistics are accumulated
over the codebook by treating the set of representations in
each sequence as an equivalency multiset. Finally, a hierar­
chical classification is performed using only the accumulated
co-occurrence data. However, these methods are not applied
to anomaly detection or to activity prediction. Sumpter et
al. [10] presented a novel approach for learning long-term
spatio-temporal patterns of objects in image sequences, using a
neural network paradigm to predict future behavior. Owens et
al. [11] determined whether a point on a trajectory is abnormal
using the distribution of flow vectors. This method does not
represent the distribution of trajectories, so neither recognizes
behaviors nor predicts them. Fernyhough et al. [12] established
the spatio–temporal region by learning the results of tracking
objects in a video sequence and constructing a qualitative event
model by qualitative reasoning and statistical analysis.

In this paper, we propose a hierarchical self-organizing neural
network approach for learning trajectory patterns in the context
of event recognition. We develop the side links of neurons to
form some lines, thus, the second competitive network in [7],
[10] with very slow learning speed is skipped. Corresponding
to the hierarchical self-organizing neural network model, we de­
velop two neighborhoods, namely the neuron neighborhood and
the internal net neighborhood. The neurons in the both neigh­
borhoods update their weights to different extent in the learning
process. Thus, the trajectory patterns can be learned. Based on
the learned patterns, abnormal events can be detected and object
behaviors can be predicted. Two sets of training data from an in­
door traffic scene and an outdoor campus scene respectively are
used to validate the algorithms.

II. TRAJECTORY CODING

The goal of trajectory coding is to acquire the training data.
The trajectory coding method in this paper is the same as that
used in [7], [10] to which the following description refers.

1045-9227/04$20.00 © 2004 IEEE

136

Given an image sequence, we obtain a series of trajectories
by tracking the centroid of each object over time. (The object
cetroids are detected automatically by visual algorithms. Please
see our previous papers [17]–[20] for more detail.) In our ex­
periments, trajectories are sampled at a fixed rate (once every

frames). Let the two-dimensional (2-D) image coordinates
of the centroid of an object at the th sampling be .
After sampling times, we obtain a point sequence that is
composed of pairs of 2-D image coordinates

(1)

The motion direction of the object at time is:
, where

. The speed of the object
at time is represented by the distance between the two succes­
sive points: . We can use

to represent the
velocity of the object at time . Instead of the point sequence

, an object trajectory is equivalently described by a sequence
of flow vectors. Each flow vector represents the position of
the object, and its instantaneous velocity in the image plane at
time , that is, . Flow vectors
are transformed so that each component lies in the interval

(i.e.,). The relative scaling of velocity
and positional components are chosen to balance their relative
contribution to the measure of similarity between flow vectors.
Thus an object is, after preprocessing, represented by a set

of flow vectors: .

III. A HIERARCHICAL SELF-ORGANIZING NEURAL NETWORK

A. Self-Organizing Feature Map

The Kohonen self-organizing feature maps neural network
[13]–[16] is composed of an input layer and an output layer.
Each neuron in the input layer is linked with each neuron in
the output layer by weights. It is assumed that is the
input vector, is the matrix of weights, and is the
matching response of the output neurons. At time , for each
output neuron , the output is calculated by:

. The symbol represents an operation that can be defined
in two ways: 1) dot product, i.e., . In this case,
the winning neuron holds the maximum of all dot products of
the input and the weights of each output neuron; 2) Euclidean
distance, i.e., . Here the winning neuron
holds the minimum output.

Each output neuron has a neighborhood in the output
layer. The winning neuron and its neighbors in region are
activated to different extents, while neurons outside are re­
tained. is a gain coefficient in the range (0, 1). Mathemati­
cally, we have the following.

(2)

where and decrease as increases.
The network learns by an unsupervised self-adaptive training

of the weights as each training sample is considered in turn.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004

Fig. 1. Comparison between normal neural network and our hierarchical
neural network.

After a number of trainings, topologically similar samples are
mapped to adjacent output neurons.

B. Hierarchical Self-Organizing Neural Network

In the self-organizing feature map, neurons in the output layer
are relatively independent and their relationships are defined by
neighborhoods. In many cases, a set of neurons that have certain
intimate relationships constitutes a group that is defined as an in­
ternal net; all neurons are partitioned into several internal nets;
and all internal nets constitute an external net. The relationships
between neurons in an internal net are defined by neuron neigh­
borhoods. An internal net can be treated as a “big neuron” and
the relationships between internal nets in the external net are de­
fined by internal net neighborhoods. As a consequence, we can
form a hierarchical self-organizing neural network model com­
posed of several internal nets and an external net. Fig. 1(a) shows
a normal neural network with 6 6 neurons and a neighborhood
with 3 3 neurons. Fig. 1(b) shows a hierarchical neural net­
work with 4 4 internal nets, one of which consists of 5 5
neurons, and an internal net neighborhood with 3 3 internal
nets. The hierarchical neural network is used to model compli­
cated relationships between neurons.

In the hierarchical self-organizing neural network model, the
neurons in an internal net are trained with the self-organizing
feature map learning method, i.e., the winning neuron and the
ones in its neighborhood are activated, while neurons outside
the neighborhood are retained. Internal nets in the external net
are also trained with the self-organizing feature map learning
method, i.e., the internal nets in the internal net neighborhood
are activated to different extents, while internal nets outside the
internal net neighborhood are retained. The hierarchical self-
organizing learning process can be further understood from the
learning of trajectory distribution patterns as described in the
next section.

It should be mentioned that there are other hierarchical
self-organizing neural networks [21], [22], but the neural
network structures and learning process of these networks are
different from ours. In [21], there are self-organizing maps at
two levels: the state map and the dynamics maps. The dynamics
maps are associated with each node of the state map and used
to predict the next state of the state map. The learning process
consists of two phases: first the training of the state map and
next the training of the dynamics maps. In [22], the hierarchical
self-organizing map is composed of two self-organizing maps.

137 HU et al.: SELF-ORGANIZING APPROACH FOR LEARNING THE PATTERNS OF MOTION TRAJECTORIES

Fig. 2. Existing network structures. (a) Neural network structure used in [7].
(b) Neural network structure used in [10].

First, for each input vector, the best matching unit is chosen
from the first map and its index is input to the second map.
Second, the best matching unit from the second map is chosen
and its index is the output of the hierarchical network. The
existing hierarchical self-organizing map methods have a mul­
tilayer structure and two training phases (we refer to [21], [22]
for more details). In our hierarchical self-organizing structure,
all neurons are partitioned into several internal nets; the internal
nets and the external net are both in the same layer; and there
is no two stage training phase, unlike existing hierarchical
self-organizing maps.

IV. LEARNING ALGORITHM

The motivation of learning is to model the probability den­
sity functions of trajectories. In this section we first compare
our neural network structure with the existing ones, and then in­
troduce the learning algorithm.

A. New Network Structure

As mentioned in Section 1, previous work [7]–[10] models
the probability density functions of motion trajectories via two
two-layers competitive learning networks that are connected
with leaky neurons. The network structures are shown in
Fig. 2(a) and (b). In Fig. 2(a), the first network acquires the dis­
tribution model of flow vectors. A corresponding
to a flow vector is used as an input vector. The number of
output neurons equals the number of flow vectors. The output
of the first neural network is inputted to the second network.
The second network builds the distribution of trajectories.
The number of its input neurons equals that of output neurons
in the first neural network. Its output neurons correspond
to trajectories. The learning speed of the second network is
much slower than that of the first one. In Fig. 2(b), feedback
is introduced to the second competitive network in Fig. 2(a)
giving a more efficient prediction of object behavior. This
idea is very original. However, the number of input and output
neurons in the second network remains to be the number of
flow vectors, so the efficiency of learning decreases inevitably
as the size of the network increases. Furthermore, this neural
network structure cannot be used to detect unusual behaviors.

Fig. 3. Network structure used in this paper.

We introduce the side links between neurons to the first neural
network in the existing neural network structures as shown in
Fig. 3. The output neurons are linked to lines, i.e., the side links
between the neurons are built (this is different from existing
methods). Each line corresponds to a trajectory and forms an in­
ternal net. The relationship between all internal nets forms the
external net. Each neuron corresponds to a flow vector , whose
components, in turn, correspond to the weights of the neuron.
The neural network is learned from a sequence of corresponding
movements among neurons, and gradually organizes toward an
optimal solution in which the distribution of output neurons is
consistent with the distribution of flow vectors in training sam­
ples, and the distribution of the neuron lines (internal nets) is
consistent with the distribution of training trajectories. In this
way we skip over the second neural network with a large scale
and very slow learning speed, which is used to build the dis­
tribution patterns of trajectories, in the existing neural network
structures. Our network structure is much simpler than the ex­
isting ones, but it can build the same distribution patterns of tra­
jectories as the others. Therefore, it is more effective. This is
confirmed by the experimental results. We explain the neuron
neighborhood and the internal net neighborhood shown in Fig. 3
in Sections IV-C and IV-D.

B. Initialization

At the initialization phase, the weights of neurons are set to
random values. The number of internal nets used to describe the
distribution patterns of trajectories is essentially arbitrary. The
more internal nets are used, the greater the accuracy of the mode
and in turn the longer the learning time. The number of internal
nets should be much less than that of trajectory samples. Before
the learning process, all internal nets have the same number of
neurons as the maximal number of vectors in each sample tra­
jectory. After the learning process, by the adjustment of the in­
ternal nets, trajectories of different length are modeled (see Sec­
tion IV-F).

The trajectory samples should be normalized to the same
length. Assuming that one sample trajectory has sampling
points, where represents the coordinates of the last
point in the trajectory, and each trajectory should be normal­
ized to sampling points, - flow vectors all represented by

are padded to the sample trajectory so as to get a

138

Fig. 4. Neuron neighborhood.

vector made up of sampling points. In this way, all the sample
trajectories are normalized to the same length.

C. Definition of Neuron Neighborhood

In our algorithm, the winning neuron and the neurons that
directly or indirectly connect with it form a neuron neighbor­
hood, as shown in Fig. 4. A neighborhood can be represented
by a series of layers. As shown in Fig. 4, neuron makes up
layer 1; neurons and which directly connect with make
up layer 2; neurons and which directly connect with neuron

or neuron which is in layer 2 make up layer 3; ; neurons
which directly connect with neurons in layer make up
layer . The neighborhood of neuron at time is represented
by which is composed of neurons within layer rel­
ative to the neuron . So which decreases as increases
determines the size of neighborhood. The layer function
represents the level of activation between neurons in layer k and
neuron c: .

D. Definition of Internal Net Neighborhood

As the initial weights are set to random values, if we only ad­
just the weights of the neurons in the internal net that contains
the winning neuron, some neurons are idle (i.e., they cannot be
activated), and some neurons are busy. This directly affects the
learning results. The internal net neighborhood is used to tackle
this problem, as shown in Fig. 3. We define the internal net that
best matches the trajectory sample that includes the input flow
vector as the center of the internal net neighborhood. All the in­
ternal nets that have matching relationships with the input vector
are included within the internal net neighborhood. For an input
flow vector belonging to the trajectory , the matching rela­
tionship between an internal net and is determined by the
number of points in the internal net that best match the points in

. The more neurons in the internal net that match the points
in , the higher the matching degree between the internal net
and . The matching degree also determines the sensitivity by

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004

which the neurons in the different internal nets in the current in­
ternal net neighborhood adjust their weights, i.e., the higher the
matching degree, the more intensively the neurons activate, and
vice versa.

E. Training of Weights

Based on the two neighborhoods defined earlier, we can
apply the hierarchical self-organizing learning method to
learning the distribution patterns of trajectories. When in­
putting a flow vector assumed to belong to trajectory ,
the learning process includes the following two steps. First we
select the internal net in the output layer that best matches
as follows:

int num[];

for

For each flow vector , find neuron that best matches . The Euclidean

distance between neuron and flow vector is minimum:

(3)

If neuron belongs to internal , then ;

}

If is satisfied,

then the internal net best matching trajectory
 is line .

The second step is the adjustment of weights. We define the
internal net as the center of the current internal net neighbor­
hood, and each internal net satisfying is included
in the internal net neighborhood. For each internal net in the
current internal net neighborhood, we find the neuron on in­
ternal net that corresponds to in order. The weights of
neuron and the neurons in the neighborhood of neuron
are updated as shown in (4) at the bottom of the page.

Function is a scalar-valued function of and decreases
as increases. The function can be defined by

, where is a positive constant and , or by
, where is the total number of iterations.

Function represents the sensitivity of the neurons in in­
ternal net in the current internal net neighborhood:

.

Neighborhood
 shrinks gradually as increases until there

is only one neuron in . The size of the neighborhood
is represented with the maximum topological distance between
the winning neuron and neurons in the neighborhood. can
decrease linearly with the increase in .
The value should not be too large, because there is some
incorrect matching at the beginning and the limit to can
reduce the negative effect of such mismatching.

(4)

139 HU et al.: SELF-ORGANIZING APPROACH FOR LEARNING THE PATTERNS OF MOTION TRAJECTORIES

Fig. 5. Tracking of toy vehicles in model scene.

After the flow vectors belonging to the trajectory are used
to train the network, the flow vectors in the next trajectory are
inputted. One loop of learning is finished when all the flow vec­
tors in the training set have been used once. The learning process
terminates if the predefined number of iterations is achieved, or
the change of neuron weights in this loop of learning is less than
a predefined value

(5)

otherwise another loop of learning is implemented. Equation (5)
is called the stability condition.

F. Adjusting the Length of Each Internal Net

For the sake of the convenience of learning, the internal nets
each have the same number of neurons and the trajectory sam­
ples are normalized to the same length. After learning is fin­
ished, each internal net is adjusted to the original length that
corresponds to the original trajectory samples that still were not
normalized to the same length. The adjustment method is intro­
duced in the following.

For each internal net , we find all trajectory samples
which best match it. An array is

used to record the number of padded points for the samples to be
normalized. For each sample in the sample set , if points
are padded during the length normalization,

. If , i.e., in the
sample set , most samples need be padded by points, then
we truncate points at the latter part of internal net . Thus tra­
jectories of different lengths are modeled.

V. ANOMALY DETECTION AND BEHAVIOR PREDICTION

After the learning procedure and based on the weights of neu­
rons, we can judge whether one event is abnormal according to
the trajectory produced by the observed event, and can predict
the future trajectory along which the object will move according
to the observed partial trajectory.

A. Anomaly Detection

by a set of flow vectors,
for each flow vector

After we represent a trajectory
in , we find the

output neuron that best matches it. If the distance between the
flow vector and the neuron is higher than a threshold , the point
in the trajectory represented by the flow vector is flagged as
unusual. If the number of unusual points in a trajectory is higher
than a predefined value, the event represented by the trajectory
is marked as abnormal. The threshold is decided as follows:
for each flow vector in the samples, we find the neuron which
best matches it and calculate the Euclidean distance between

. The threshold is 50% of the maximum
.

Johnson et al. [7] can only judge whether the whole trajectory
is abnormal, but cannot detect the parts of trajectory where the
abnormality occurs. Our algorithm can not only judge whether
the whole trajectory is abnormal, but also detect whether part of
the trajectory is abnormal and point out the abnormal part.

the neuron and

B. Prediction

If we only have a partial trajectory , for each flow vector
in trajectory , we find the neuron that matches it best,

and record the matched line by an array . If the flow
vector matches a neuron belonging to line

. Knowing the array , we can calculate
the probabilities of the partial trajectory matching neuron
lines. It is assumed that is the number of flow vectors in

and is the probability of matching line , and then
%. represents the probability

of the object moving along the trajectory represented by line .
Let be the index for which is the maximum of the
array . The line is the most likely trajectory along
which the object will move.

VI. PROCEDURE AND COMPLEXITY

The procedure of the algorithm is described in the following:

Step 1) Build the set of training data
by coding the

sample trajectories; Due to the reason described
in Section II, We normalize to the
interval .

Step 2) Initialization. Randomize the initial weights of the
output neurons, and normalize the input samples to
the same length, etc.

Step 3) Train the weights of the neural network using the
hierarchical self-organizing learning method.

Step 4) Adjust the lengths of all internal nets.
Step 5) Apply the distribution patterns learned to anomaly

detection and behavior prediction
The running time is mainly spent on learning the distribution

patterns of trajectories. The quality of the learning result de­
pends on the number of learning steps. The more learning steps,
the better the results. Generally, the number of iterations is
(is the number of output neurons) and the number of weights
that should be updated upon every input is , so the time
complexity of the self-adaptive process is .

VII. EXPERIMENTAL RESULTS

We implemented all algorithms using Visual C++ 6.0 on the
Windows 2000 platform. The tracking of moving objects is the

140 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004

Fig. 6. Tracking of pedestrian in a campus scene.

Fig. 7. Two hundred and one sample trajectories in model scene.

Fig. 8. Two hundred sixty-eight sample trajectories in outdoor campus scene.

Fig. 9. Result learned with our method in model scene. After 102 iterations
(14.15 s).

basis of our work. In most cases, the tracked objects are vehicles
or pedestrians. Moving objects are tracked in the image plane
to obtain a series of trajectories and each point on a trajectory
indicates the centroid of the tracked object. The centroids of the
object at different time are connected to form the trajectories.
The following two groups of training data are used in this paper.

1) The first group of training data is acquired by tracking the
moving toy vehicles controlled by radio in a traffic model
scene, as shown in Fig. 5. The moving vehicle tracked
is labeled with a white ‘+’ sign, whose center is at the
centroid of the object.

2) The second group of training data is acquired by tracking
moving objects in a real outdoor campus such as pedes­
trians, bikes and cars. An example of pedestrian tracking
is shown in Fig. 6. (Figs. 5 and 6 illustrate how we acquire
sample trajectories.)

With continuous tracking, we acquired two sets of training
trajectories, as shown in Figs. 7 and 8. There are 201 trajectories
in the model scene as shown in Fig. 7, and 268 trajectories in the
outdoor campus scene as shown in Fig. 8.

Fig. 9 shows the distribution of the neurons and the distribu­
tion of the neuron lines in the output layer after the learning fin­
ished. A white line represents an internal network in our neural
network, and corresponds to a trajectory. Each neuron in the
output layer is displayed as an arrow, whose centroid represents
an object position corresponding to the components , and
whose size and direction represent respectively an object’s mo­
tion velocity corresponding to the components . There
are 58 lines in total. The network stability condition is
corresponding to Formula 5. To reach the stability condition,
102 iterations and 14.15 s running time are needed (all the data
of running time in this paper are calculated on a Pentium3-933
computer with 256M RAM). As shown in Fig. 9, there are no
oscillations and the learned patterns of trajectories are consis­
tent with the sample trajectories, so the results can be treated as
acceptable.

Fig. 10 shows the distribution of neurons in the output layer
in the campus scene at the phase of initialization and after 5,
10, 20, 50, and 162 iterations. The number of lines is 48. The
network stability is the same as that used in the first example
corresponding to Fig. 9. As shown in Fig. 10, with the number
of iterations increasing the patterns of lines gradually approxi­
mate to the sample trajectories. The comparison between these
lines and the sample trajectories shows the learned results to be
plausible.

In the following, we compare our method with that used in
[7]. In [7], the movement of objects is described using the po­
sitions and velocities of the objects in the image plane as the
same as ours. The neural network structure used in [7] has been
introduced in Section IV-A. Its scale is large and thus affects
the learning speed and the learning results. In [7], vector quan­
tization is used to train the neural network. Different from the
Kohonen self-organizing feature map, vector quantization only
updates the weight of the winning neuron, keeping the weights
of other neurons unchanged. Fig. 11 is the learning result of the
method used in [7] for the samples from the model scene when
the network stability condition is the same as Fig. 9. To reach the
stability condition, 797 iterations and 39.88 s running time are
needed. Fig. 12 shows the learning process of the method used in
[7] for the samples from the campus scene when the network sta­
bility condition is the same as Fig. 10. Comparing Fig. 11 with
Figs. 9, and 12 with Fig. 10, we find that the method used in [7]
needs more iterations and more running time than ours to reach
the same stability condition. In addition, it produces local oscil­
lations in the leaned patterns of trajectories. These oscillations
lead to unacceptable results while our results are acceptable as
aforementioned. Table I demonstrates the number of iterations
and the running time required by the two training algorithms
for the model scene with different stability conditions. For each

141 HU et al.: SELF-ORGANIZING APPROACH FOR LEARNING THE PATTERNS OF MOTION TRAJECTORIES

Fig. 10. Learning process with our method in campus scene. (a) Random initial weights. (b) After 5 iterations (0.63 s). (c) After 10 iterations (1.32 s). (d) After
20 iterations (2.65 s). (e) After 50 iterations (7.20 s). (f) After 162 iterations (23.39 s).

Fig. 11. Result learned with vector quantization (presented in [7]) in model
scene. After 797 iterations (39.88 s).

stability condition, the experiment was performed three times
with different initial weights. From Table I, we can see that our
method needs fewer iterations and less running time to reach
the same stability condition than that used in [7]. The reason
our method is more effective than that use in [7] rests with the
following two aspects.

•	 We skip over the second competitive network in [7] whose
scale is big, resulting in a slow learning speed.

•	 In [7], vector quantization is used to train the network. In
experiments we find that when vector quantization is used
to learn the distribution patterns of trajectories, most neu­
rons are not excited at the early stage of training and shift
toward the center of samples just according to the weight
sensitivity determined in the learning process. This slows
down the speed of the network convergence and greatly
affects the learning accuracy.

Fig. 13 is an example of anomaly detection in the model
scene. The car entered the scene from the left then turned right.
The trajectory of the car is shown as a series of arrowheads.
Abnormal points are marked with white “x” signs at the center
of arrowheads. As shown in (a), (b), and (c), points too close
to the center of the road are detected. When the car made the
turn, it moved within the proper region. However, when the car
began to run down, it ran into the driveway for the reverse direc­
tion. Several abnormal points are, therefore, desirably detected
as shown in (f), (g), (h). As mentioned in Section V-A, if there
is more than the certain number of unusual points (e.g., three

points) in a trajectory, the event represented by the trajectory
can be marked as abnormal.

Fig. 14 is an example of anomaly detection in the campus
scene. In (a) and (b), a pedestrian walked within a normal re­
gion. In (c), the pedestrian entered a parking lot, and then he en­
tered the region (a grassplot) where admission is forbidden [as
shown in (d), (e)]. After he left the region, he walked in a wrong
direction [as shown in (f), (g)]. These are correctly marked as
abnormal. In (h), he moved within the proper route and no anom­
alies were marked.

Fig. 15 shows an example of prediction in the model scene.
The car entered the scene from the left and then turned left. In
(a), there are three predicted trajectories for the car. In (b), the
probabilities of the car running along these three trajectories are
changed respectively. In (c), the rightmost trajectory is deleted
because the probability of the car running along it is very small.
(When the probability of an object moving along a trajectory is
less than 15%, the trajectory and its corresponding probability
are not shown in Figs. 15 and 16.) In (d), the tendency of the
car to turn left is very clear. The middle trajectory is deleted.
Another similar example of behavior prediction in the outdoor
campus scene is demonstrated in Fig. 16.

In the above text, the hierarchical self-organizing neural net­
work method is compared with the method used in [7] in the
context of learning trajectory patterns, and then the results of
anomaly detection and behavior prediction are demonstrated.
Experimental results show that the hierarchical self-organizing
neural network model can effectively lean the distribution pat­
terns of motion trajectories, and anomaly detection and behavior
prediction can both be achieved. The results of trajectory pat­
terns learning, anomaly detection and behavior prediction are
consistent with one’s visual judgement. This demonstrates the
acceptable accuracy of the algorithms in learning patterns of tra­
jectories, as well as detecting anomalies and predicting object
behaviors.

VIII. CONCLUSION

In this paper, we argue that event models can be established
automatically by learning rather than predefined manually, and

142 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004

Fig. 12. Learning process with vector quantization (presented in [7]) in outdoor campus scene. (a) Random initial weights. (b) After 50 iterations (3.81 s). (c)
After 100 iterations (7.61 s). (d) After 300 iterations (22.86 s). (e) After 500 iterations (34.89 s). (f) After 893 iterations (62.19 s).

TABLE I

COMPARISON OF THE REQUIRED NUMBER OF ITERATIONS

Fig. 13. Example of anomaly detection in the model scene.

focus on learning the patterns of trajectories using a self-or­
ganizing approach. The main contributions and results of this
paper are as follows:

•	 We propose a new neural network structure for learning
the patterns of trajectories. Our network structure is much
simpler and more effective than the existing ones.

•	 Based on the new network structure, we present a hierar­
chical self-organizing neural network and its application
to learning the distribution patterns of trajectories.

•	 We use the learned patterns of trajectories to detect anom­
alies and predict object behaviors.

•	 Experiments on image sequences taken in a traffic model
scene and an outdoor campus scene show that our method
is more effective than that used in [7], as our method needs
fewer iterations and less running time to reach the same
stability condition, and produces more acceptable results.

Future work will involve more robust event detection and pre­
diction based on three-dimensional (3-D) object tracking, for

143 HU et al.: SELF-ORGANIZING APPROACH FOR LEARNING THE PATTERNS OF MOTION TRAJECTORIES

Fig. 14. Example of anomaly detection in the campus scene.

Fig. 15. Example of prediction in indoor model scene.

Fig. 16. Example of prediction in the campus scene.

example, by using 3-D vehicle models, so that accidents such
as car clash may be predicted accurately.

ACKNOWLEDGMENT

This work is partly supported by NSFC (GrantNo.
60520120099) and Natural Science Foundation of Beijing (
Grant No. 4041004).

REFERENCES

[1]	 T. Collins, A. J. Lipton, and T. Kanade, “Introduction to the special sec­
tion on video surveillance,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 22, pp. 745–746, 2000.

[2]	 R. J. Howarth and H. Buxton, “Conceptual descriptions from monitoring
and watching image sequences,” Image and Vision Computing, vol. 18,
no. 9, pp. 105–135, 2000.

[3]	 R. J. Howarth and B. Hilary, “An analogical representation of space and
time,” Image and Vision Computing, vol. 10, no. 7, pp. 467–478, 1992.

[4]	 E. Andre, G. Herzog, and T. Rist, “On the simultaneous interpretation of
real world image sequences and their natural language description: The
System Soccer,” in Proc. ECAI-88, Munich, 1988, pp. 449–454.

[5]	 K. Schaefer, M. Haag, W. Theilmann, and H. Nagel, “Integration of
image sequence evaluation and fuzzy metric temporal logic program­
ming,” in KI-97: Advances in Artificial Intelligence, Lecture Notes
in Computer Science, 1303, C. Habel, G. Brewka, and B. Nebel,
Eds. New York: Springer, 1997, pp. 301–312.

[6]	 M. Brand and V. Kettnaker, “Discovery and segmentation of activities in
video,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, pp. 844–851,
2000.

[7]	 N. Johnson and D. Hogg, “Learning the distribution of object trajectories
for event recognition,” Image and Vision Computing, vol. 14, no. 8, pp.
609–615, 1996.

[8]	 N. Johnson, A. Galata, and D. Hogg, “The acquisition and use of in­
teraction behavior models,” in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. Silver Spring, MD, 1998, pp.
866–871.

[9]	 C. Stauffer and W. E. L. Grimson, “Learning patterns of activity using
real-time tracking,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22,
pp. 747–757, 2000.

[10]	 N. Sumpter and A. Bulpitt, “Learning spatio-temporal patterns for pre­
dicting object behavior,” Image and Vision Computing, vol. 18, no. 9,
pp. 697–704, 2000.

[11]	 J. Owens and A. Hunter, “Application of the self-organizing map to tra­
jectory classification,” Proc. IEEE Workshop on Visual Surveillance, pp.
77–83, 2000.

[12]	 J. Fernyhough, A. G. Cohn, and D. C. Hogg, “Constructing qualitative
event models automatically from video input,” Image and Vision Com­
puting, vol. 18, no. 9, pp. 81–103, 2000.

[13]	 T. Kohonen, Self-Organizing Maps: Springer-Verlag, 1995.
[14]	 W. M. Hu, J. H. Xu, X. L. Yan, and Z. J. He, “Partitioning on MCM

using a new neural network model,” Science in China Series E, vol. 42,
no. 3, pp. 312–320, 1999.

[15]	 W. M. Hu, C. C. Li, Y. S. Zhu, and X. L. Yan, “Neural network approach
for timing, power dissipation and wire connection driven placement,”
Chinese J. Semiconductors, vol. 20, no. 9, pp. 797–803, 1999.

[16]	 M. C. Su and H. T. Chang, “Fast self-organizing feature map algorithm,”
IEEE Trans. Neural Networks, vol. 11, pp. 721–733, 2000.

[17]	 H. Yang, J. G. Lou, H. Z. Sun, W. M. Hu, and T. N. Tan, “Efficient and
robust vehicle localization,” in IEEE Int. Conf. Image Processing, 2001,
pp. 355–358.

[18]	 J. G. Lou, H. Yang, W. M. Hu, and T. N. Tan, “An illumination invariant
change detection algorithm,” in Asian Conf. Computer Vision, 2002, pp.
13–18.

144

[19]	 J. G. Lou, H. Yang, W. M. Hu, and T. Tan, “Visual vehicle tracking using
an improved EKF,” in Asian Conf. Computer Vision, 2002, pp. 296–301.

[20]	 Y. Tian, T. N. Tan, and H. Z. Sun, “A novel robust algorithm for real-time
object tracking,” Chinese J. Automation, vol. 28, no. 5, pp. 851–853,
2002.

[21]	 O. Simula, E. Alhoniemi, J. Hollmen, and J. Vesanto, “Monitoring
and modeling of complex processes using hierarchical self-organizing
maps,” in IEEE Int. Symp. Circuits Syst. (ISCAS’96), 1996, pp. 73–76.
volume Supplement.

[22]	 M. Goktepe, N. Yalabik, and V. Atalay, “Unsupervised segmentation
of gray level Markov model textures with hierarchical self-organizing
maps,” in Int. Conf. Pattern Recog., 1996, pp. 90–94.

Weiming Hu received the Ph.D. degree from the De­
partment of Computer Science and Engineering, Zhe­
jiang University.

From April 1998 to March 2000, he was a
Postdoctoral Research Fellow with the Institute
of Computer Science and Technology, Founder
Research and Design Center, Peking University.
Since April 1998, he has been with the National
Laboratory of Pattern Recognition, Institute of
Automation, Chinese Academy of Sciences, as an
Associate Professor. His research interests are in

visual surveillance and monitoring of dynamic scenes, neural networks, and
filtering of Internet objectionable images. He has published more than 40
papers on national and international journals, and international conferences.

Dan Xie received the Bachelor’s degree in automatic
control from Beijing University of Aeronautics and
Astronautics (BUAA), China, in 2001.

He is currently pursuing the Master’s degree at
BUAA, where he is majoring in computer graphics
and virtual reality. His current research interests
include pattern recognition, machine learning, and
neural networks.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004

Tieniu Tan (M’92–SM’97) received the B.Sc. degree
in electronic engineering from Xi’an Jiaotong Uni­
versity, China, in 1984 and the M.Sc., DIC, and Ph.D.
degrees in electronic engineering from Imperial Col­
lege of Science, Technology and Medicine, London,
UK, in 1986, 1986, and 1989, respectively.

He joined the Computational Vision Group,
Department of Computer Science, The University
of Reading, England, in October 1989, where
he worked as Research Fellow, Senior Research
Fellow, and Lecturer. In January 1998, he returned

to China to join the National Laboratory of Pattern Recognition, the Institute
of Automation of the Chinese Academy of Sciences, Beijing. He is currently
Professor and Director of the National Laboratory of Pattern Recognition as
well as President of the Institute of Automation. He has published widely
on image processing, computer vision and pattern recognition. His current
research interests include speech and image processing, machine and computer
vision, pattern recognition, multimedia, and robotics.

Dr. Tan serves as referee for many major national and international journals
and conferences. He is an Associate Editor of Pattern Recognition and of the
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, as
the Asia Editor of Image and Vision Computing. He was an elected member of
the Executive Committee of the British Machine Vision Association and Society
for Pattern Recognition (1996–1997) and is a founding co-chair of the IEEE
International Workshop on Visual Surveillance.

