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Abstract—The understanding and description of object behav­
iors is a hot topic in computer vision. Trajectory analysis is one of 
the basic problems in behavior understanding, and the learning of 
trajectory patterns that can be used to detect anomalies and predict 
object trajectories is an interesting and important problem in tra­
jectory analysis. In this paper, we present a hierarchical self-orga­
nizing neural network model and its application to the learning of 
trajectory distribution patterns for event recognition. The distribu­
tion patterns of trajectories are learnt using a hierarchical self-or­
ganizing neural network. Using the learned patterns, we consider 
anomaly detection as well as object behavior prediction. Compared 
with the existing neural network structures that are used to learn 
patterns of trajectories, our network structure has smaller scale 
and faster learning speed, and is thus more effective. Experimental 
results using two different sets of data demonstrate the accuracy 
and speed of our hierarchical self-organizing neural network in 
learning the distribution patterns of object trajectories. 

Index Terms—Hierarchical self-organizing neural network, tra­
jectory analysis and learning, anomaly detection, behavior predic­
tion. 

I. INTRODUCTION 

V ISUAL surveillance has attracted much attention in com­
puter vision due to its potential applications. In a visual 

surveillance system, the main problems include object detec­
tion, object classification, tracking and event recognition. In re­
cent years, event recognition has been widely considered [1], 
[2]. Trajectory analysis is one of the basic problems in event 
understanding and is the focus of this paper. Other important is­
sues such as object tracking are discussed elsewhere [17]–[20]. 

Most current visual surveillance and event recognition 
systems depend on known scenes, where the objects move 
in predefined ways [3]–[6]. These methods are not adaptable 
to changing environments, because for each scene one set 
of object behaviors should be defined, and the definition of 
object behaviors should be updated as object behaviors change. 
Furthermore, it is hard to predefine all object behaviors even 
when the environment does not change. It is highly desirable 
to establish a general approach for event recognition based on 
automatically generated behavior models. Johnson et al. [7] 
described a statistical model for object trajectories generated 
from image sequences. The movement of an object is described 
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by a sequence of flow vectors. Each vector consists of 4 
elements that represent the position and velocity of the object 
in the image plane. The statistical model of object trajectories is 
formed with two two-layer competitive learning networks that 
are connected with leaky neurons. Both networks are trained 
using vector quantization in which only the winning neuron 
is excited and the other neurons are retained. Johnson et al. 
[8] generalized the model in [7] to the learning of interactions 
among humans, for example shaking hands. Stauffer et al. 
[9] presented a method very similar to [7] to learn patterns 
of activity using real-time tracking. This method involves 
developing a codebook of representations using an on-line 
vector quantization on the entire set of representations acquired 
by the tracker. Joint co-occurrence statistics are accumulated 
over the codebook by treating the set of representations in 
each sequence as an equivalency multiset. Finally, a hierar­
chical classification is performed using only the accumulated 
co-occurrence data. However, these methods are not applied 
to anomaly detection or to activity prediction. Sumpter et 
al. [10] presented a novel approach for learning long-term 
spatio-temporal patterns of objects in image sequences, using a 
neural network paradigm to predict future behavior. Owens et 
al. [11] determined whether a point on a trajectory is abnormal 
using the distribution of flow vectors. This method does not 
represent the distribution of trajectories, so neither recognizes 
behaviors nor predicts them. Fernyhough et al. [12] established 
the spatio–temporal region by learning the results of tracking 
objects in a video sequence and constructing a qualitative event 
model by qualitative reasoning and statistical analysis. 

In this paper, we propose a hierarchical self-organizing neural 
network approach for learning trajectory patterns in the context 
of event recognition. We develop the side links of neurons to 
form some lines, thus, the second competitive network in [7], 
[10] with very slow learning speed is skipped. Corresponding 
to the hierarchical self-organizing neural network model, we de­
velop two neighborhoods, namely the neuron neighborhood and 
the internal net neighborhood. The neurons in the both neigh­
borhoods update their weights to different extent in the learning 
process. Thus, the trajectory patterns can be learned. Based on 
the learned patterns, abnormal events can be detected and object 
behaviors can be predicted. Two sets of training data from an in­
door traffic scene and an outdoor campus scene respectively are 
used to validate the algorithms. 

II. TRAJECTORY CODING 

The goal of trajectory coding is to acquire the training data. 
The trajectory coding method in this paper is the same as that 
used in [7], [10] to which the following description refers. 
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Given an image sequence, we obtain a series of trajectories 
by tracking the centroid of each object over time. (The object 
cetroids are detected automatically by visual algorithms. Please 
see our previous papers [17]–[20] for more detail.) In our ex­
periments, trajectories are sampled at a fixed rate (once every 

frames). Let the two-dimensional (2-D) image coordinates 
of the centroid of an object at the th sampling be . 
After sampling times, we obtain a point sequence that is 
composed of pairs of 2-D image coordinates 

(1) 

The motion direction of the object at time is: 
, where 

. The speed of the object 
at time is represented by the distance between the two succes­
sive points: . We can use 

to represent the 
velocity of the object at time . Instead of the point sequence 

, an object trajectory is equivalently described by a sequence 
of flow vectors. Each flow vector represents the position of 
the object, and its instantaneous velocity in the image plane at 
time , that is, . Flow vectors 
are transformed so that each component lies in the interval 

(i.e., ). The relative scaling of velocity 
and positional components are chosen to balance their relative 
contribution to the measure of similarity between flow vectors. 
Thus an object is, after preprocessing, represented by a set 

of flow vectors: . 

III. A HIERARCHICAL SELF-ORGANIZING NEURAL NETWORK 

A. Self-Organizing Feature Map 

The Kohonen self-organizing feature maps neural network 
[13]–[16] is composed of an input layer and an output layer. 
Each neuron in the input layer is linked with each neuron in 
the output layer by weights. It is assumed that is the 
input vector, is the matrix of weights, and is the 
matching response of the output neurons. At time , for each 
output neuron , the output is calculated by: 

. The symbol represents an operation that can be defined 
in two ways: 1) dot product, i.e., . In this case, 
the winning neuron holds the maximum of all dot products of 
the input and the weights of each output neuron; 2) Euclidean 
distance, i.e., . Here the winning neuron 
holds the minimum output. 

Each output neuron has a neighborhood in the output 
layer. The winning neuron and its neighbors in region are 
activated to different extents, while neurons outside are re­
tained. is a gain coefficient in the range (0, 1). Mathemati­
cally, we have the following. 

(2) 

where and decrease as increases. 
The network learns by an unsupervised self-adaptive training 

of the weights as each training sample is considered in turn. 
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Fig. 1. Comparison between normal neural network and our hierarchical 
neural network. 

After a number of trainings, topologically similar samples are 
mapped to adjacent output neurons. 

B. Hierarchical Self-Organizing Neural Network 

In the self-organizing feature map, neurons in the output layer 
are relatively independent and their relationships are defined by 
neighborhoods. In many cases, a set of neurons that have certain 
intimate relationships constitutes a group that is defined as an in­
ternal net; all neurons are partitioned into several internal nets; 
and all internal nets constitute an external net. The relationships 
between neurons in an internal net are defined by neuron neigh­
borhoods. An internal net can be treated as a “big neuron” and 
the relationships between internal nets in the external net are de­
fined by internal net neighborhoods. As a consequence, we can 
form a hierarchical self-organizing neural network model com­
posed of several internal nets and an external net. Fig. 1(a) shows 
a normal neural network with 6 6 neurons and a neighborhood 
with 3 3 neurons. Fig. 1(b) shows a hierarchical neural net­
work with 4 4 internal nets, one of which consists of 5 5 
neurons, and an internal net neighborhood with 3 3 internal 
nets. The hierarchical neural network is used to model compli­
cated relationships between neurons. 

In the hierarchical self-organizing neural network model, the 
neurons in an internal net are trained with the self-organizing 
feature map learning method, i.e., the winning neuron and the 
ones in its neighborhood are activated, while neurons outside 
the neighborhood are retained. Internal nets in the external net 
are also trained with the self-organizing feature map learning 
method, i.e., the internal nets in the internal net neighborhood 
are activated to different extents, while internal nets outside the 
internal net neighborhood are retained. The hierarchical self-
organizing learning process can be further understood from the 
learning of trajectory distribution patterns as described in the 
next section. 

It should be mentioned that there are other hierarchical 
self-organizing neural networks [21], [22], but the neural 
network structures and learning process of these networks are 
different from ours. In [21], there are self-organizing maps at 
two levels: the state map and the dynamics maps. The dynamics 
maps are associated with each node of the state map and used 
to predict the next state of the state map. The learning process 
consists of two phases: first the training of the state map and 
next the training of the dynamics maps. In [22], the hierarchical 
self-organizing map is composed of two self-organizing maps. 
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Fig. 2. Existing network structures. (a) Neural network structure used in [7]. 
(b) Neural network structure used in [10]. 

First, for each input vector, the best matching unit is chosen 
from the first map and its index is input to the second map. 
Second, the best matching unit from the second map is chosen 
and its index is the output of the hierarchical network. The 
existing hierarchical self-organizing map methods have a mul­
tilayer structure and two training phases (we refer to [21], [22] 
for more details). In our hierarchical self-organizing structure, 
all neurons are partitioned into several internal nets; the internal 
nets and the external net are both in the same layer; and there 
is no two stage training phase, unlike existing hierarchical 
self-organizing maps. 

IV. LEARNING ALGORITHM 

The motivation of learning is to model the probability den­
sity functions of trajectories. In this section we first compare 
our neural network structure with the existing ones, and then in­
troduce the learning algorithm. 

A. New Network Structure 

As mentioned in Section 1, previous work [7]–[10] models 
the probability density functions of motion trajectories via two 
two-layers competitive learning networks that are connected 
with leaky neurons. The network structures are shown in 
Fig. 2(a) and (b). In Fig. 2(a), the first network acquires the dis­
tribution model of flow vectors. A corresponding 
to a flow vector is used as an input vector. The number of 
output neurons equals the number of flow vectors. The output 
of the first neural network is inputted to the second network. 
The second network builds the distribution of trajectories. 
The number of its input neurons equals that of output neurons 
in the first neural network. Its output neurons correspond 
to trajectories. The learning speed of the second network is 
much slower than that of the first one. In Fig. 2(b), feedback 
is introduced to the second competitive network in Fig. 2(a) 
giving a more efficient prediction of object behavior. This 
idea is very original. However, the number of input and output 
neurons in the second network remains to be the number of 
flow vectors, so the efficiency of learning decreases inevitably 
as the size of the network increases. Furthermore, this neural 
network structure cannot be used to detect unusual behaviors. 

Fig. 3. Network structure used in this paper. 

We introduce the side links between neurons to the first neural 
network in the existing neural network structures as shown in 
Fig. 3. The output neurons are linked to lines, i.e., the side links 
between the neurons are built (this is different from existing 
methods). Each line corresponds to a trajectory and forms an in­
ternal net. The relationship between all internal nets forms the 
external net. Each neuron corresponds to a flow vector , whose 
components, in turn, correspond to the weights of the neuron. 
The neural network is learned from a sequence of corresponding 
movements among neurons, and gradually organizes toward an 
optimal solution in which the distribution of output neurons is 
consistent with the distribution of flow vectors in training sam­
ples, and the distribution of the neuron lines (internal nets) is 
consistent with the distribution of training trajectories. In this 
way we skip over the second neural network with a large scale 
and very slow learning speed, which is used to build the dis­
tribution patterns of trajectories, in the existing neural network 
structures. Our network structure is much simpler than the ex­
isting ones, but it can build the same distribution patterns of tra­
jectories as the others. Therefore, it is more effective. This is 
confirmed by the experimental results. We explain the neuron 
neighborhood and the internal net neighborhood shown in Fig. 3 
in Sections IV-C and IV-D. 

B. Initialization 

At the initialization phase, the weights of neurons are set to 
random values. The number of internal nets used to describe the 
distribution patterns of trajectories is essentially arbitrary. The 
more internal nets are used, the greater the accuracy of the mode 
and in turn the longer the learning time. The number of internal 
nets should be much less than that of trajectory samples. Before 
the learning process, all internal nets have the same number of 
neurons as the maximal number of vectors in each sample tra­
jectory. After the learning process, by the adjustment of the in­
ternal nets, trajectories of different length are modeled (see Sec­
tion IV-F). 

The trajectory samples should be normalized to the same 
length. Assuming that one sample trajectory has sampling 
points, where represents the coordinates of the last 
point in the trajectory, and each trajectory should be normal­
ized to sampling points, - flow vectors all represented by 

are padded to the sample trajectory so as to get a 
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Fig. 4. Neuron neighborhood. 

vector made up of sampling points. In this way, all the sample 
trajectories are normalized to the same length. 

C. Definition of Neuron Neighborhood 

In our algorithm, the winning neuron and the neurons that 
directly or indirectly connect with it form a neuron neighbor­
hood, as shown in Fig. 4. A neighborhood can be represented 
by a series of layers. As shown in Fig. 4, neuron makes up 
layer 1; neurons and which directly connect with make 
up layer 2; neurons and which directly connect with neuron 

or neuron which is in layer 2 make up layer 3; ; neurons 
which directly connect with neurons in layer make up 
layer . The neighborhood of neuron at time is represented 
by which is composed of neurons within layer rel­
ative to the neuron . So  which decreases as increases 
determines the size of neighborhood. The layer function 
represents the level of activation between neurons in layer k and 
neuron c: . 

D. Definition of Internal Net Neighborhood 

As the initial weights are set to random values, if we only ad­
just the weights of the neurons in the internal net that contains 
the winning neuron, some neurons are idle (i.e., they cannot be 
activated), and some neurons are busy. This directly affects the 
learning results. The internal net neighborhood is used to tackle 
this problem, as shown in Fig. 3. We define the internal net that 
best matches the trajectory sample that includes the input flow 
vector as the center of the internal net neighborhood. All the in­
ternal nets that have matching relationships with the input vector 
are included within the internal net neighborhood. For an input 
flow vector belonging to the trajectory , the matching rela­
tionship between an internal net and is determined by the 
number of points in the internal net that best match the points in 

. The more neurons in the internal net that match the points 
in , the higher the matching degree between the internal net 
and . The matching degree also determines the sensitivity by 
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which the neurons in the different internal nets in the current in­
ternal net neighborhood adjust their weights, i.e., the higher the 
matching degree, the more intensively the neurons activate, and 
vice versa. 

E. Training of Weights 

Based on the two neighborhoods defined earlier, we can 
apply the hierarchical self-organizing learning method to 
learning the distribution patterns of trajectories. When in­
putting a flow vector assumed to belong to trajectory , 
the learning process includes the following two steps. First we 
select the internal net in the output layer that best matches 
as follows: 

int num[ ]; 

for 

For each flow vector , find neuron that best matches . The Euclidean 

distance between neuron and flow vector is minimum: 

(3) 

If neuron belongs to internal , then ; 

} 

If is satisfied,


then the internal net best matching trajectory
 is line . 

The second step is the adjustment of weights. We define the 
internal net as the center of the current internal net neighbor­
hood, and each internal net satisfying is included 
in the internal net neighborhood. For each internal net in the 
current internal net neighborhood, we find the neuron on in­
ternal net that corresponds to in order. The weights of 
neuron and the neurons in the neighborhood of neuron 
are updated as shown in (4) at the bottom of the page. 

Function is a scalar-valued function of and decreases 
as increases. The function can be defined by 

, where is a positive constant and , or by  
, where is the total number of iterations. 

Function represents the sensitivity of the neurons in in­
ternal net in the current internal net neighborhood: 

.

Neighborhood
 shrinks gradually as increases until there 

is only one neuron in . The size of the neighborhood 
is represented with the maximum topological distance between 
the winning neuron and neurons in the neighborhood. can 
decrease linearly with the increase in . 
The value should not be too large, because there is some 
incorrect matching at the beginning and the limit to can 
reduce the negative effect of such mismatching. 

(4) 
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Fig. 5. Tracking of toy vehicles in model scene. 

After the flow vectors belonging to the trajectory are used 
to train the network, the flow vectors in the next trajectory are 
inputted. One loop of learning is finished when all the flow vec­
tors in the training set have been used once. The learning process 
terminates if the predefined number of iterations is achieved, or 
the change of neuron weights in this loop of learning is less than 
a predefined value 

(5) 

otherwise another loop of learning is implemented. Equation (5) 
is called the stability condition. 

F. Adjusting the Length of Each Internal Net 

For the sake of the convenience of learning, the internal nets 
each have the same number of neurons and the trajectory sam­
ples are normalized to the same length. After learning is fin­
ished, each internal net is adjusted to the original length that 
corresponds to the original trajectory samples that still were not 
normalized to the same length. The adjustment method is intro­
duced in the following. 

For each internal net , we find all trajectory samples 
which best match it. An array is 

used to record the number of padded points for the samples to be 
normalized. For each sample in the sample set , if  points 
are padded during the length normalization, 

. If  , i.e., in the 
sample set , most samples need be padded by points, then 
we truncate points at the latter part of internal net . Thus tra­
jectories of different lengths are modeled. 

V. ANOMALY DETECTION AND BEHAVIOR PREDICTION 

After the learning procedure and based on the weights of neu­
rons, we can judge whether one event is abnormal according to 
the trajectory produced by the observed event, and can predict 
the future trajectory along which the object will move according 
to the observed partial trajectory. 

A. Anomaly Detection 

by a set of flow vectors, 
for each flow vector 

After we represent a trajectory 
in , we find the 

output neuron that best matches it. If the distance between the 
flow vector and the neuron is higher than a threshold , the point 
in the trajectory represented by the flow vector is flagged as 
unusual. If the number of unusual points in a trajectory is higher 
than a predefined value, the event represented by the trajectory 
is marked as abnormal. The threshold is decided as follows: 
for each flow vector in the samples, we find the neuron which 
best matches it and calculate the Euclidean distance between 

. The threshold is 50% of the maximum 
. 

Johnson et al. [7] can only judge whether the whole trajectory 
is abnormal, but cannot detect the parts of trajectory where the 
abnormality occurs. Our algorithm can not only judge whether 
the whole trajectory is abnormal, but also detect whether part of 
the trajectory is abnormal and point out the abnormal part. 

the neuron and 

B. Prediction 

If we only have a partial trajectory , for each flow vector 
in trajectory , we find the neuron that matches it best, 

and record the matched line by an array . If the flow 
vector matches a neuron belonging to line 

. Knowing the array , we can calculate 
the probabilities of the partial trajectory matching neuron 
lines. It is assumed that is the number of flow vectors in 

and is the probability of matching line , and then 
%. represents the probability 

of the object moving along the trajectory represented by line . 
Let be the index for which is the maximum of the 
array . The line is the most likely trajectory along 
which the object will move. 

VI. PROCEDURE AND COMPLEXITY 

The procedure of the algorithm is described in the following: 

Step 1) Build the set of training data 
by coding the 

sample trajectories; Due to the reason described 
in Section II, We normalize to the 
interval . 

Step 2) Initialization. Randomize the initial weights of the 
output neurons, and normalize the input samples to 
the same length, etc. 

Step 3) Train the weights of the neural network using the 
hierarchical self-organizing learning method. 

Step 4) Adjust the lengths of all internal nets. 
Step 5) Apply the distribution patterns learned to anomaly 

detection and behavior prediction 
The running time is mainly spent on learning the distribution 

patterns of trajectories. The quality of the learning result de­
pends on the number of learning steps. The more learning steps, 
the better the results. Generally, the number of iterations is 
( is the number of output neurons) and the number of weights 
that should be updated upon every input is , so the time 
complexity of the self-adaptive process is . 

VII. EXPERIMENTAL RESULTS 

We implemented all algorithms using Visual C++ 6.0 on the 
Windows 2000 platform. The tracking of moving objects is the 



140 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 1, JANUARY 2004 

Fig. 6. Tracking of pedestrian in a campus scene. 

Fig. 7. Two hundred and one sample trajectories in model scene. 

Fig. 8. Two hundred sixty-eight sample trajectories in outdoor campus scene. 

Fig. 9. Result learned with our method in model scene. After 102 iterations 
(14.15 s). 

basis of our work. In most cases, the tracked objects are vehicles 
or pedestrians. Moving objects are tracked in the image plane 
to obtain a series of trajectories and each point on a trajectory 
indicates the centroid of the tracked object. The centroids of the 
object at different time are connected to form the trajectories. 
The following two groups of training data are used in this paper. 

1) The first group of training data is acquired by tracking the 
moving toy vehicles controlled by radio in a traffic model 
scene, as shown in Fig. 5. The moving vehicle tracked 
is labeled with a white ‘+’ sign, whose center is at the 
centroid of the object. 

2) The second group of training data is acquired by tracking 
moving objects in a real outdoor campus such as pedes­
trians, bikes and cars. An example of pedestrian tracking 
is shown in Fig. 6. (Figs. 5 and 6 illustrate how we acquire 
sample trajectories.) 

With continuous tracking, we acquired two sets of training 
trajectories, as shown in Figs. 7 and 8. There are 201 trajectories 
in the model scene as shown in Fig. 7, and 268 trajectories in the 
outdoor campus scene as shown in Fig. 8. 

Fig. 9 shows the distribution of the neurons and the distribu­
tion of the neuron lines in the output layer after the learning fin­
ished. A white line represents an internal network in our neural 
network, and corresponds to a trajectory. Each neuron in the 
output layer is displayed as an arrow, whose centroid represents 
an object position corresponding to the components , and 
whose size and direction represent respectively an object’s mo­
tion velocity corresponding to the components . There 
are 58 lines in total. The network stability condition is 
corresponding to Formula 5. To reach the stability condition, 
102 iterations and 14.15 s running time are needed (all the data 
of running time in this paper are calculated on a Pentium3-933 
computer with 256M RAM). As shown in Fig. 9, there are no 
oscillations and the learned patterns of trajectories are consis­
tent with the sample trajectories, so the results can be treated as 
acceptable. 

Fig. 10 shows the distribution of neurons in the output layer 
in the campus scene at the phase of initialization and after 5, 
10, 20, 50, and 162 iterations. The number of lines is 48. The 
network stability is the same as that used in the first example 
corresponding to Fig. 9. As shown in Fig. 10, with the number 
of iterations increasing the patterns of lines gradually approxi­
mate to the sample trajectories. The comparison between these 
lines and the sample trajectories shows the learned results to be 
plausible. 

In the following, we compare our method with that used in 
[7]. In [7], the movement of objects is described using the po­
sitions and velocities of the objects in the image plane as the 
same as ours. The neural network structure used in [7] has been 
introduced in Section IV-A. Its scale is large and thus affects 
the learning speed and the learning results. In [7], vector quan­
tization is used to train the neural network. Different from the 
Kohonen self-organizing feature map, vector quantization only 
updates the weight of the winning neuron, keeping the weights 
of other neurons unchanged. Fig. 11 is the learning result of the 
method used in [7] for the samples from the model scene when 
the network stability condition is the same as Fig. 9. To reach the 
stability condition, 797 iterations and 39.88 s running time are 
needed. Fig. 12 shows the learning process of the method used in 
[7] for the samples from the campus scene when the network sta­
bility condition is the same as Fig. 10. Comparing Fig. 11 with 
Figs. 9, and 12 with Fig. 10, we find that the method used in [7] 
needs more iterations and more running time than ours to reach 
the same stability condition. In addition, it produces local oscil­
lations in the leaned patterns of trajectories. These oscillations 
lead to unacceptable results while our results are acceptable as 
aforementioned. Table I demonstrates the number of iterations 
and the running time required by the two training algorithms 
for the model scene with different stability conditions. For each 
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Fig. 10. Learning process with our method in campus scene. (a) Random initial weights. (b) After 5 iterations (0.63 s). (c) After 10 iterations (1.32 s). (d) After 
20 iterations (2.65 s). (e) After 50 iterations (7.20 s). (f) After 162 iterations (23.39 s). 

Fig. 11. Result learned with vector quantization (presented in [7]) in model 
scene. After 797 iterations (39.88 s). 

stability condition, the experiment was performed three times 
with different initial weights. From Table I, we can see that our 
method needs fewer iterations and less running time to reach 
the same stability condition than that used in [7]. The reason 
our method is more effective than that use in [7] rests with the 
following two aspects. 

•	 We skip over the second competitive network in [7] whose 
scale is big, resulting in a slow learning speed. 

•	 In [7], vector quantization is used to train the network. In 
experiments we find that when vector quantization is used 
to learn the distribution patterns of trajectories, most neu­
rons are not excited at the early stage of training and shift 
toward the center of samples just according to the weight 
sensitivity determined in the learning process. This slows 
down the speed of the network convergence and greatly 
affects the learning accuracy. 

Fig. 13 is an example of anomaly detection in the model 
scene. The car entered the scene from the left then turned right. 
The trajectory of the car is shown as a series of arrowheads. 
Abnormal points are marked with white “x” signs at the center 
of arrowheads. As shown in (a), (b), and (c), points too close 
to the center of the road are detected. When the car made the 
turn, it moved within the proper region. However, when the car 
began to run down, it ran into the driveway for the reverse direc­
tion. Several abnormal points are, therefore, desirably detected 
as shown in (f), (g), (h). As mentioned in Section V-A, if there 
is more than the certain number of unusual points (e.g., three 

points) in a trajectory, the event represented by the trajectory 
can be marked as abnormal. 

Fig. 14 is an example of anomaly detection in the campus 
scene. In (a) and (b), a pedestrian walked within a normal re­
gion. In (c), the pedestrian entered a parking lot, and then he en­
tered the region (a grassplot) where admission is forbidden [as 
shown in (d), (e)]. After he left the region, he walked in a wrong 
direction [as shown in (f), (g)]. These are correctly marked as 
abnormal. In (h), he moved within the proper route and no anom­
alies were marked. 

Fig. 15 shows an example of prediction in the model scene. 
The car entered the scene from the left and then turned left. In 
(a), there are three predicted trajectories for the car. In (b), the 
probabilities of the car running along these three trajectories are 
changed respectively. In (c), the rightmost trajectory is deleted 
because the probability of the car running along it is very small. 
(When the probability of an object moving along a trajectory is 
less than 15%, the trajectory and its corresponding probability 
are not shown in Figs. 15 and 16.) In (d), the tendency of the 
car to turn left is very clear. The middle trajectory is deleted. 
Another similar example of behavior prediction in the outdoor 
campus scene is demonstrated in Fig. 16. 

In the above text, the hierarchical self-organizing neural net­
work method is compared with the method used in [7] in the 
context of learning trajectory patterns, and then the results of 
anomaly detection and behavior prediction are demonstrated. 
Experimental results show that the hierarchical self-organizing 
neural network model can effectively lean the distribution pat­
terns of motion trajectories, and anomaly detection and behavior 
prediction can both be achieved. The results of trajectory pat­
terns learning, anomaly detection and behavior prediction are 
consistent with one’s visual judgement. This demonstrates the 
acceptable accuracy of the algorithms in learning patterns of tra­
jectories, as well as detecting anomalies and predicting object 
behaviors. 

VIII. CONCLUSION 

In this paper, we argue that event models can be established 
automatically by learning rather than predefined manually, and 
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Fig. 12. Learning process with vector quantization (presented in [7]) in outdoor campus scene. (a) Random initial weights. (b) After 50 iterations (3.81 s). (c) 
After 100 iterations (7.61 s). (d) After 300 iterations (22.86 s). (e) After 500 iterations (34.89 s). (f) After 893 iterations (62.19 s). 

TABLE I

COMPARISON OF THE REQUIRED NUMBER OF ITERATIONS


Fig. 13. Example of anomaly detection in the model scene. 

focus on learning the patterns of trajectories using a self-or­
ganizing approach. The main contributions and results of this 
paper are as follows: 

•	 We propose a new neural network structure for learning 
the patterns of trajectories. Our network structure is much 
simpler and more effective than the existing ones. 

•	 Based on the new network structure, we present a hierar­
chical self-organizing neural network and its application 
to learning the distribution patterns of trajectories. 

•	 We use the learned patterns of trajectories to detect anom­
alies and predict object behaviors. 

•	 Experiments on image sequences taken in a traffic model 
scene and an outdoor campus scene show that our method 
is more effective than that used in [7], as our method needs 
fewer iterations and less running time to reach the same 
stability condition, and produces more acceptable results. 

Future work will involve more robust event detection and pre­
diction based on three-dimensional (3-D) object tracking, for 
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Fig. 14. Example of anomaly detection in the campus scene. 

Fig. 15. Example of prediction in indoor model scene. 

Fig. 16. Example of prediction in the campus scene. 

example, by using 3-D vehicle models, so that accidents such 
as car clash may be predicted accurately. 
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