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A Survey on Visual Surveillance of
Object Motion and Behaviors
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Abstract—Visual surveillance in dynamic scenes, especially for
humans and vehicles, is currently one of the most active research
topics in computer vision. It has a wide spectrum of promising
applications, including access control in special areas, human
identification at a distance, crowd flux statistics and conges-
tion analysis, detection of anomalous behaviors, and interactive
surveillance using multiple cameras, etc. In general, the processing
framework of visual surveillance in dynamic scenes includes the
following stages: modeling of environments, detection of motion,
classification of moving objects, tracking, understanding and
description of behaviors, human identification, and fusion of
data from multiple cameras. We review recent developments and
general strategies of all these stages. Finally, we analyze possible
research directions, e.g., occlusion handling, a combination of two-
and three-dimensional tracking, a combination of motion analysis
and biometrics, anomaly detection and behavior prediction,
content-based retrieval of surveillance videos, behavior under-
standing and natural language description, fusion of information
from multiple sensors, and remote surveillance.

Index Terms—Behavior understanding and description, fusion
of data from multiple cameras, motion detection, personal identi-
fication, tracking, visual surveillance.

I. INTRODUCTION

AS AN ACTIVE research topic in computer vision, visual
surveillance in dynamic scenes attempts to detect, recog-

nize and track certain objects from image sequences, and more
generally to understand and describe object behaviors. The aim
is to develop intelligent visual surveillance to replace the tradi-
tional passive video surveillance that is proving ineffective as the
number of cameras exceeds the capability of human operators to
monitor them. In short, the goal of visual surveillance is not only
to put cameras in the place of human eyes, but also to accomplish
the entire surveillance task as automatically as possible.

Visual surveillance in dynamic scenes has a wide range of
potential applications, such as a security guard for communi-
ties and important buildings, traffic surveillance in cities and
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expressways, detection of military targets, etc. We focus in this
paper on applications involving the surveillance of people or ve-
hicles, as they are typical of surveillance applications in general,
and include the full range of surveillance methods. Surveillance
applications involving people or vehicles include the following.

1) Access control in special areas. In some security-sensi-
tive locations such as military bases and important gov-
ernmental units, only people with a special identity are
allowed to enter. A biometric feature database including
legal visitors is built beforehand using biometric tech-
niques. When somebody is about to enter, the system
could automatically obtain the visitor’s features, such as
height, facial appearance and walking gait from images
taken in real time, and then decide whether the visitor can
be cleared for entry.

2) Person-specific identification in certain scenes. Per-
sonal identification at a distance by a smart surveillance
system can help the police to catch suspects. The police
may build a biometric feature database of suspects, and
place visual surveillance systems at locations where the
suspects usually appear, e.g., subway stations, casinos,
etc. The systems automatically recognize and judge
whether or not the people in view are suspects. If yes,
alarms are given immediately. Such systems with face
recognition have already been used at public sites, but
the reliability is too low for police requirements.

3) Crowd flux statistics and congestion analysis. Using
techniques for human detection, visual surveillance sys-
tems can automatically compute the flux of people at im-
portant public areas such as stores and travel sites, and
then provide congestion analysis to assist in the manage-
ment of the people. In the same way, visual surveillance
systems can monitor expressways and junctions of the
road network, and further analyze the traffic flow and the
status of road congestion, which are of great importance
for traffic management.

4) Anomaly detection and alarming. In some circum-
stances, it is necessary to analyze the behaviors of people
and vehicles and determine whether these behaviors are
normal or abnormal. For example, visual surveillance
systems set in parking lots and supermarkets could an-
alyze abnormal behaviors indicative of theft. Normally,
there are two ways of giving an alarm. One way is to
automatically make a recorded public announcement
whenever any abnormal behavior is detected. The other
is to contact the police automatically.

5) Interactive surveillance using multiple cameras. For
social security, cooperative surveillance using multiple
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cameras could be used to ensure the security of an entire
community, for example by tracking suspects over a wide
area by using the cooperation of multiple cameras. For
traffic management, interactive surveillance using mul-
tiple cameras can help the traffic police discover, track,
and catch vehicles involved in traffic offences.

It is the broad range of applications that motivates the inter-
ests of researchers worldwide. For example, the IEEE has spon-
sored the IEEE International Workshop on Visual Surveillance
on three occasions, in India (1998), the U.S. (1999), and Ire-
land (2000). In [68] and [1], a special section on visual surveil-
lance was published in June and August of 2000, respectively.
In [78], a special issue on visual analysis of human motion was
published in March 2001. In [69], a special issue on third-gen-
eration surveillance systems was published in October 2001. In
[130], a special issue on understanding visual behavior was pub-
lished in October 2002. Recent developments in human motion
analysis are briefly introduced in our previous paper [75]. It is
noticeable that, after the 9/11 event, visual surveillance has re-
ceived more attention not only from the academic community,
but also from industry and governments.

Visual surveillance has been investigated worldwide under
several large research projects. For example, the Defense
Advanced Research Projection Agency (DARPA) supported
the Visual Surveillance and Monitoring (VSAM) project
[3] in 1997, whose purpose was to develop automatic video
understanding technologies that enable a single human operator
to monitor behaviors over complex areas such as battlefields
and civilian scenes. Furthermore, to enhance protection from
terrorist attacks, the Human Identification at a Distance (HID)
program sponsored by DARPA in 2000 aims to develop a full
range of multimodal surveillance technologies for success-
fully detecting, classifying, and identifying humans at great
distances. The European Union’s Framework V Programme
sponsored Advisor, a core project on visual surveillance in
metrostations.

There have been a number of famous visual surveillance sys-
tems. The real-time visual surveillance system W4 [4] employs
a combination of shape analysis and tracking, and constructs
models of people’s appearances in order to detect and track
groups of people as well as monitor their behaviors even in the
presence of occlusion and in outdoor environments. This system
uses the single camera and grayscale sensor. The VIEWS system
[87] at the University of Reading is a three-dimensional (3-D)
model based vehicle tracking system. The Pfinder system devel-
oped by Wren et al. [8] is used to recover a 3-D description of a
person in a large room. It tracks a single nonoccluded person
in complex scenes, and has been used in many applications.
As a single-person tracking system, TI, developed by Olsen et
al. [9], detects moving objects in indoor scenes using motion
detection, tracks them using first-order prediction, and recog-
nizes behaviors by applying predicates to a graph formed by
linking corresponding objects in successive frames. This system
cannot handle small motions of background objects. The system
at CMU [10] can monitor activities over a large area using mul-
tiple cameras that are connected into a network. It can detect
and track multiple persons and vehicles within cluttered scenes
and monitor their activities over long periods of time. The above

comments on [8]–[10] are derived from [4]. Please see [4] for
more details.

As far as hardware is concerned, companies like Sony and
Intel have designed equipment suitable for visual surveillance,
e.g., active cameras, smart cameras [76], omni-directional cam-
eras [23], [77], etc.

All of the above activities are evidence of a great and growing
interest in visual surveillance in dynamic scenes. The primary
purpose of this paper is to give a general review on the overall
process of a visual surveillance system. Fig. 1 shows the gen-
eral framework of visual surveillance in dynamic scenes. The
prerequisites for effective automatic surveillance using a single
camera include the following stages: modeling of environments,
detection of motion, classification of moving objects, tracking,
understanding and description of behaviors, and human identi-
fication. In order to extend the surveillance area and overcome
occlusion, fusion of data from multiple cameras is needed. This
fusion can involve all the above stages. In this paper we review
recent developments and analyze future open directions in vi-
sual surveillance in dynamic scenes. The main contributions of
this paper are as follows.

• Low-level vision, intermediate-level vision, and
high-level vision are discussed in a clearly organized
hierarchical manner according to the general framework
of visual surveillance. This, we believe, can help readers,
especially newcomers to this area, not only to obtain an
understanding of the state-of-the-art in visual surveil-
lance, but also to appreciate the major components of
a visual surveillance system and their inter-component
links.

• Instead of detailed summaries of individual publications,
our emphasis is on discussing various methods for dif-
ferent tasks involved in a general visual surveillance
system. Each issue is accordingly divided into subpro-
cesses or categories of various methods to examine the
state of the art. Only the principles of each group of
methods are described. The merits and demerits of a
variety of different algorithms, especially for motion
detection and tracking, are summarized.

• We give a detailed review of the state of the art in personal
identification at a distance and fusion of data from mul-
tiple cameras.

• We provide detailed discussions on future research
directions in visual surveillance, e.g., occlusion han-
dling, combination of two-dimensional (2-D) tracking
and 3-D tracking, combination of motion analysis and
biometrics, anomaly detection and behavior prediction,
behavior understanding and nature language description,
content-based retrieval of surveillance videos, fusion of
information from multiple sensors, and remote surveil-
lance.

The remainder of this paper is organized as follows. Section II
reviews the work related to motion detection including mod-
eling of environments, segmentation of motion, classification
of moving objects. Section III discusses tracking of objects, and
Section IV details understanding and description of behaviors.
Sections V and VI cover, respectively, personal identification at
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Fig. 1. General framework of visual surveillance.

a distance and fusion of data from multiple cameras. Section VII
analyzes some possible directions for future research. The last
section summarizes the paper.

II. MOTION DETECTION

Nearly every visual surveillance system starts with motion
detection. Motion detection aims at segmenting regions corre-
sponding to moving objects from the rest of an image. Subse-
quent processes such as tracking and behavior recognition are
greatly dependent on it. The process of motion detection usually
involves environment modeling, motion segmentation, and ob-
ject classification, which intersect each other during processing.

A. Environment Modeling

The active construction and updating of environmental
models are indispensable to visual surveillance. Environmental
models can be classified into 2-D models in the image plane and
3-D models in real world coordinates. Due to their simplicity,
2-D models have more applications.

• For fixed cameras, the key problem is to automatically
recover and update background images from a dynamic
sequence. Unfavorable factors, such as illumination vari-
ance, shadows and shaking branches, bring many difficul-
ties to the acquirement and updating of background im-
ages. There are many algorithms for resolving these prob-
lems including temporal average of an image sequence
[15], [82], adaptive Gaussian estimation [70], and param-
eter estimation based on pixel processes [79], [80], etc.

Ridder et al. [81] model each pixel value with a Kalman
Filter to compensate for illumination variance. Stauffer et
al. [12], [80] present a theoretic framework for recovering
and updating background images based on a process in
which a mixed Gaussian model is used for each pixel value
and online estimation is used to update background images
in order to adapt to illumination variance and disturbance
in backgrounds. Toyama et al. [83] propose the Wallflower
algorithm in which background maintenance and back-
ground subtraction are carried out at three levels: the pixel
level, the region level, and the frame level. Haritaoglu et
al. [4] build a statistical model by representing each pixel
with three values: its minimum and maximum intensity
values, and the maximum intensity difference between
consecutive frames observed during the training period.
These three values are updated periodically. McKenna et
al. [11] use an adaptive background model with color and
gradient information to reduce the influences of shadows
and unreliable color cues.

• For pure translation (PT) cameras, an environment model
can be made by patching up a panorama graph to acquire
a holistic background image [84]. Homography matrices
can be used to describe the transformation relationship
between different images.

• For mobile cameras, motion compensation is needed to
construct temporary background images [85].

Regarding 3-D environmental models [86], current work is still
limited to indoor scenes because of the difficulty of 3-D recon-
structions of outdoor scenes.
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B. Motion Segmentation

Motion segmentation in image sequences aims at detecting
regions corresponding to moving objects such as vehicles and
humans. Detecting moving regions provides a focus of atten-
tion for later processes such as tracking and behavior analysis
because only these regions need be considered in the later pro-
cesses. At present, most segmentation methods use either tem-
poral or spatial information in the image sequence. Several con-
ventional approaches for motion segmentation are outlined in
the following.

1) Background subtraction. Background subtraction is
a popular method for motion segmentation, especially
under those situations with a relatively static background.
It detects moving regions in an image by taking the dif-
ference between the current image and the reference
background image in a pixel-by-pixel fashion. It is
simple, but extremely sensitive to changes in dynamic
scenes derived from lighting and extraneous events etc.
Therefore, it is highly dependent on a good background
model to reduce the influence of these changes [4], [11],
[12], as part of environment modeling.

2) Temporal differencing. Temporal differencing makes
use of the pixel-wise differences between two or three
consecutive frames in an image sequence to extract
moving regions. Temporal differencing is very adaptive
to dynamic environments, but generally does a poor
job of extracting all the relevant pixels, e.g., there may
be holes left inside moving entities. As an example of
this method, Lipton et al. [10] detect moving targets in
real video streams using temporal differencing. After
the absolute difference between the current and the
previous frame is obtained, a threshold function is used
to determine changes. By using a connected component
analysis, the extracted moving sections are clustered into
motion regions. An improved version uses three-frame
instead of two-frame differencing.

3) Optical flow. Optical-flow-based motion segmentation
uses characteristics of flow vectors of moving objects over
time to detect moving regions in an image sequence. For
example, Meyer et al. [13], [21] compute the displacement
vector field to initializeacontourbased trackingalgorithm,
called active rays, for the extraction of articulated objects.
The results are used for gait analysis. Optical-flow-based
methods can be used to detect independently moving
objects even in the presence of camera motion. However,
most flow computation methods are computationally
complex and very sensitive to noise, and cannot be applied
to video streams in real time without specialized hardware.
More detailed discussion of optical flow can be found in
Barron’s work [14].

Of course, besides the basic methods described above, there
are some other approaches for motion segmentation. Using the
extended expectation maximization (EM) algorithm, Friedman
et al. [15] implement a mixed Gaussian classification model for
each pixel. This model classifies the pixel values into three sepa-
rate predetermined distributions corresponding to background,

foreground and shadow. It also updates the mixed component
automatically for each class according to the likelihood of mem-
bership. Hence, slowly moving objects are handled perfectly,
while shadows are eliminated much more effectively. VSAM [3]
has successfully developed a hybrid algorithm for motion seg-
mentation by combining an adaptive background subtraction al-
gorithm with a three-frame differencing technique. This hybrid
algorithm is very fast and surprisingly effective for detecting
moving objects in image sequences. In addition, Stringa [16]
proposes a novel morphological algorithm for detecting motion
in scenes. This algorithm obtains stable segmentation results
even under varying environmental conditions.

C. Object Classification

Different moving regions may correspond to different moving
targets in natural scenes. For instance, the image sequences cap-
tured by surveillance cameras mounted in road traffic scenes
probably include humans, vehicles and other moving objects
such as flying birds and moving clouds, etc. To further track
objects and analyze their behaviors, it is essential to correctly
classify moving objects. Object classification can be considered
as a standard pattern recognition issue. At present, there are two
main categories of approaches for classifying moving objects.

1) Shape-based classification. Different descriptions of
shape information of motion regions such as points,
boxes, silhouettes and blobs are available for classi-
fying moving objects. VASM [3] takes image blob
dispersedness, image blob area, apparent aspect ratio
of the blob bounding box, etc, as key features, and
classifies moving-object blobs into four classes: single
human, vehicles, human groups, and clutter, using a
viewpoint-specific three-layer neural network classifier.
Lipton et al. [10] use the dispersedness and area of image
blobs as classification metrics to classify all moving-ob-
ject blobs into humans, vehicles and clutter. Temporal
consistency constraints are considered so as to make
classification results more precise. Kuno et al. [17] use
simple shape parameters of human silhouette patterns to
separate humans from other moving objects.

2) Motion-based classification. In general, nonrigid articu-
lated human motion shows a periodic property, so this has
been used as a strong cue for classification of moving ob-
jects. Cutler et al. [18] describe a similarity-based tech-
nique to detect and analyze periodic motion. By tracking
an interesting moving object, its self-similarity is com-
puted as it evolves over time. As we know, for periodic
motion, its self-similarity measure is also periodic. There-
fore time-frequency analysis is applied to detect and char-
acterize the periodic motion, and tracking and classifica-
tion of moving objects are implemented using periodicity.
In Lipton’s work [19], residual flow is used to analyze
rigidity and periodicity of moving objects. It is expected
that rigidobjectspresent little residual flow,whereasanon-
rigid moving object such as a human being has a higher av-
erage residual flowandevendisplayaperiodiccomponent.
Based on this useful cue, human motion is distinguished
from motion of other objects, such as vehicles.
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The two common approaches mentioned above, namely
shape-based and motion-based classification, can also be
effectively combined for classification of moving objects. Fur-
thermore, Stauffer [20] proposes a novel method based on a time
co-occurrence matrix to hierarchically classify both objects and
behaviors. It is expected that more precise classification results
can be obtained by using extra features such as color and velocity.

III. OBJECT TRACKING

After motion detection, surveillance systems generally track
moving objects from one frame to another in an image sequence.
The tracking algorithms usually have considerable intersection
with motion detection during processing. Tracking over time
typically involves matching objects in consecutive frames using
features such as points, lines or blobs. Useful mathematical tools
for tracking include the Kalman filter, the Condensation algo-
rithm, the dynamic Bayesian network, the geodesic method,
etc. Tracking methods are divided into four major categories:
region-based tracking, active-contour-based tracking, feature-
based tracking, and model-based tracking. It should be pointed
out that this classification is not absolute in that algorithms from
different categories can be integrated together [169].

A. Region-Based Tracking

Region-based tracking algorithms track objects according to
variations of the image regions corresponding to the moving ob-
jects. For these algorithms, the background image is maintained
dynamically [90], [91], and motion regions are usually detected
by subtracting the background from the current image. Wren et
al. [8] explore the use of small blob features to track a single
human in an indoor environment. In their work, a human body
is considered as a combination of some blobs respectively rep-
resenting various body parts such as head, torso and the four
limbs. Meanwhile, both human body and background scene are
modeled with Gaussian distributions of pixel values. Finally,
the pixels belonging to the human body are assigned to the
different body part’s blobs using the log-likelihood measure.
Therefore, by tracking each small blob, the moving human is
successfully tracked. Recently, McKenna et al. [11] propose
an adaptive background subtraction method in which color and
gradient information are combined to cope with shadows and
unreliable color cues in motion segmentation. Tracking is then
performed at three levels of abstraction: regions, people, and
groups. Each region has a bounding box and regions can merge
and split. A human is composed of one or more regions grouped
together under the condition of geometric structure constraints
on the human body, and a human group consists of one or more
people grouped together. Therefore, using the region tracker and
the individual color appearance model, perfect tracking of mul-
tiple people is achieved, even during occlusion. As far as re-
gion-based vehicle tracking is concerned, there are some typ-
ical systems such as the CMS mobilizer system supported by the
Federal Highway Administration (FHWA), at the Jet Propulsion
Laboratory (JPL) [92], and the PATH system developed by the
Berkeley group [93].

Although they work well in scenes containing only a few
objects (such as highways), region-based tracking algorithms

cannot reliably handle occlusion between objects. Furthermore,
as these algorithms only obtain the tracking results at the region
level and are essentially procedures for motion detection, the
outline or 3-D pose of objects cannot be acquired. (The 3-D pose
of an object consists of the position and orientation of the ob-
ject). Accordingly, these algorithms cannot satisfy the require-
ments for surveillance against a cluttered background or with
multiple moving objects.

B. Active Contour-Based Tracking

Active contour-based tracking algorithms track objects by
representing their outlines as bounding contours and updating
these contours dynamically in successive frames [6], [71], [72],
[74]. These algorithms aim at directly extracting shapes of sub-
jects and provide more effective descriptions of objects than re-
gion-based algorithms. Paragios et al. [30] detect and track mul-
tiple moving objects in image sequences using a geodesic active
contour objective function and a level set formulation scheme.
Peterfreund [31] explores a new active contour model based on
a Kalman filter for tracking nonrigid moving targets such as
people in spatio-velocity space. Isard et al. [32] adopt stochastic
differential equations to describe complex motion models, and
combine this approach with deformable templates to cope with
people tracking. Malik et al. [82], [94] have successfully applied
active contour-based methods to vehicle tracking.

In contrast to region-based tracking algorithms, active con-
tour-based algorithms describe objects more simply and more
effectively and reduce computational complexity. Even under
disturbance or partial occlusion, these algorithms may track ob-
jects continuously. However, the tracking precision is limited
at the contour level. The recovery of the 3-D pose of an object
from its contour on the image plane is a demanding problem. A
further difficulty is that the active contour-based algorithms are
highly sensitive to the initialization of tracking, making it diffi-
cult to start tracking automatically.

C. Feature-Based Tracking

Feature-based tracking algorithms perform recognition and
tracking of objects by extracting elements, clustering them into
higher level features and then matching the features between im-
ages. Feature-based tracking algorithms can further be classified
into three subcategories according to the nature of selected fea-
tures: global feature-based algorithms, local feature-based algo-
rithms, and dependence-graph-based algorithms.

• The features used in global feature-based algorithms in-
clude centroids, perimeters, areas, some orders of quadra-
tures and colors [100], [101], etc. Polana et al. [33] pro-
vide a good example of global feature-based tracking. A
person is bounded with a rectangular box whose centroid
is selected as the feature for tracking. Even when occlu-
sion happens between two persons during tracking, as long
as the velocity of the centroids can be distinguished effec-
tively, tracking is still successful.

• The features used in local feature-based algorithms in-
clude line segments, curve segments, and corner vertices
[98], [99], etc.
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• The features used in dependence-graph-based algorithms
include a variety of distances and geometric relations be-
tween features [97].

Theabovethreemethodscanbecombined.Intherecentworkof
Jang et al. [34], an active template that characterizes regional and
structuralfeaturesofanobjectisbuiltdynamicallybasedonthein-
formation of shape, texture, color, and edge featuresof the region.
UsingmotionestimationbasedonaKalmanfilter,thetrackingofa
nonrigid moving object is successfully performed by minimizing
a feature energy function during the matching process.

In general, as they operate on 2-D image planes, feature-based
tracking algorithms can adapt successfully and rapidly to allow
real-time processing and tracking of multiple objects which are
required in heavy thruway scenes, etc. However, dependence-
graph-based algorithms cannot be used in real-time tracking
because they need time-consuming searching and matching of
graphs. Feature-based tracking algorithms can handle partial oc-
clusion by using information on object motion, local features
and dependence graphs. However, there are several serious de-
ficiencies in feature-based tracking algorithms.

• The recognition rate of objects based on 2-D image fea-
tures is low, because of the nonlinear distortion during
perspective projection and the image variations with the
viewpoint’s movement.

• These algorithms are generally unable to recover 3-D pose
of objects.

• The stability of dealing effectively with occlusion, over-
lapping and interference of unrelated structures is gener-
ally poor.

D. Model-Based Tracking

Model-based tracking algorithms track objects by matching
projected object models, produced with prior knowledge, to
image data. The models are usually constructed off-line with
manual measurement, CAD tools or computer vision techniques.
As model-based rigid object tracking and model-based non-
rigid object tracking are quite different, we review separately
model-based human body tracking (nonrigid object tracking)
and model-based vehicle tracking (rigid object tracking).

1) Model-Based Human Body Tracking: The general
approach for model-based human body tracing is known as
analysis-by-synthesis, and it is used in a predict-match-update
style. Firstly, the pose of the model for the next frame is
predicted according to prior knowledge and tracking history.
Then, the predicted model is synthesized and projected into the
image plane for comparison with the image data. A specific
pose evaluation function is needed to measure the similarity
between the projected model and the image data. According
to different search strategies, this is done either recursively or
using sampling techniques until the correct pose is finally found
and is used to update the model. Pose estimation in the first
frame needs to be handled specially. Generally, model-based
human body tracking involves three main issues:

• construction of human body models;
• representation of prior knowledge of motion models and

motion constraints;
• prediction and search strategies.

Previous work on these three issues is briefly and respectively
reviewed as follows.

a) Human body models: Construction of human body
models is the base of model-based human body tracking
[24]. Generally, the more complex a human body model, the
more accurate the tracking results, but the more expensive the
computation. Traditionally, the geometric structure of human
body can be represented in the following four styles.

• Stick figure. The essence of human motion is typically
contained in the movements of the torso, the head and the
four limbs, so the stick-figure method is to represent the
parts of a human body as sticks and link the sticks with
joints. Karaulova et al. [25] use a stick figure represen-
tation to build a novel hierarchical model of human dy-
namics encoded using hidden Markov models (HMMs),
and realize view-independent tracking of a human body
in monocular image sequences.

• 2-D contour. This kind of human body model is directly
relevant to human body projections in an image plane.
The human body segments are modeled by 2-D ribbons
or blobs. For instance, Ju et al. [26] propose a cardboard
human body model, in which the human limbs are repre-
sented by a set of jointed planar ribbons. The parameter-
ized image motion of these patches is constrained to en-
force the articulated movement of human limbs. Niyogi
et al. [27] use the spatial-temporal pattern in XYT space
to track, analyze and recognize walking figures. They ex-
amine the characteristic braided pattern produced by the
lower limbs of a walking human, the projections of head
movements are then located in the spatio-temporal do-
main, followed by the identification of the joint trajecto-
ries; The contour of a walking figure is outlined by uti-
lizing these joint trajectories, and a more accurate gait
analysis is carried out using the outlined 2-D contour for
the recognition of the specific human.

• Volumetric models. The main disadvantage of 2-D
models is that they require restrictions on the viewing
angle. To overcome this disadvantage, many researchers
use 3-D volumetric models such as elliptical cylin-
ders, cones [102], [103], spheres, super-quadrics [104],
etc. Volumetric models require more parameters than
image-based models and lead to more expensive compu-
tation during the matching process. Rohr [28] makes use
of fourteen elliptical cylinders to model a human body in
3-D volumes. Wachter et al. [29] establish a 3-D body
model using connected elliptical cones.

• Hierarchical model. Plankers et al. [105] present a hi-
erarchical human model for achieving more accurate re-
sults. It includes four levels: skeleton, ellipsoid meatballs
simulating tissues and fats, polygonal surface representing
skin, and shaded rendering.

b) Motion models: Motion models of human limbs and
joints are widely used in tracking. They are effective because the
movements of the limbs are strongly constrained. These motion
models serve as prior knowledge to predict motion parameters
[106], [107], to interpret and recognize human behaviors [108],
or to constrain the estimation of low-level image measurements
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[109]. For instance, Bregler [108] decomposes a human be-
havior into multiple abstractions, and represents the high-level
abstraction by HMMs built from phases of simple movements.
This representation is used for both tracking and recognition.
Zhao et al. [106] learn a highly structured motion model for
ballet dancing under the minimum description length (MDL)
paradigm. This motion model is similar to a finite-state machine
(FSM). The multivariate principal component analysis (MPCA)
is used to train a walking model in Sidenbladh et al.’s work
[109]. Similarly, Ong et al. [110] employ the hierarchical PCA
to learn their motion model which is based on the matrices of
transition probabilities between different subspaces in a global
eigensapce and the matrix of transition probabilities between
global eigenspaces. Ning et al. [7] learn a motion model from
semi-automatically acquired training examples and represent it
using Gaussian distributions.

c) Search strategies: Pose estimation in a high-dimen-
sional body configuration space is intrinsically difficult, so,
search strategies are often carefully designed to reduce the
solution space. Generally, there are four main classes of search
strategies: dynamics, Taylor models, Kalman filtering, and
stochastic sampling. Dynamical strategies use physical forces
applied to each rigid part of the 3-D model of the tracked object.
These forces, as heuristic information, guide the minimization
of the difference between the pose of the 3-D model and
the pose of the real object [102]. The strategy based on the
Taylor models incrementally improves an existing estimation,
using differentials of motion parameters with respect to the
observation to predict better search directions [112]. It at least
finds local minima, but cannot guarantee finding the global
minimum. As a recursive linear estimator, Kalman filtering
can thoroughly deal with the tracking of shape and position
over time in the relatively clutter-free case in which the density
of the motion parameters can be modeled satisfactorily as
Gaussian [29], [114]. To handle clutter that causes the proba-
bility density function for motion parameters to be multimodal
and non-Gaussian, stochastic sampling strategies, such as
Markov Chain Monte Carlo [115], Genetic Algorithms, and
CONDENSATION [116], [117], are designed to represent
simultaneous alternative hypotheses. Among the stochastic
sampling strategies in visual tracking, CONDENSATION is
perhaps the most popular.

2) Model-Based Vehicle Tracking: As to model-based ve-
hicle tracking, 3-D wire-frame vehicle models are mainly used
[95]. The research groups at the University of Reading [87],
[88], the National Laboratory of Pattern Recognition (NLPR)
[111], [174] and the University of Karlsruhe [124]–[126] have
made important contributes to 3-D model-based vehicle local-
ization and tracking.

The research group at the University of Reading adopts
3-D wire-frame vehicle models. Tan et al. [87], [119] propose
the ground-plane constraint (GPC), under which vehicles are
restricted to move on the ground plane. Thus the degrees of
freedom of vehicle pose are reduced to three from six. This
greatly decreases the computational cost of searching for the
optimal pose. Moreover, under the weak perspective assump-
tion, the pose parameters are decomposed into two independent
sets: translation parameters and rotation parameters. Tan et al.

[120] propose a generalized Hough transformation algorithm
based on a single characteristic line segment matching to
estimate vehicle pose. Further, Tan et al. [121] analyze the
one-dimensional (1-D) correlation of image gradients and de-
termine the vehicle pose by voting. As to the refinement of the
vehicle pose, the research group in the University of Reading
have utilized an independent 1-D searching method [121] in
their past work. Recently, Pece et al. [122], [123] introduce a
statistical Newton method for estimating the vehicle pose.

The NLPR group has extended the work of the research group
at the University of Reading. Yang et al. [111] propose a new
3-D model-based vehicle localization algorithm, in which the
edge points in the image are directly used as features, and the
degree of matching between the edge points and the projected
model is measured by a pose evaluation function. Lou et al.
[174] present an algorithm for vehicle tracking based on an
improved extended Kalman filter. In the algorithm, the turn of
the steering wheel and the distance between the front and rear
wheels are taken into account. As there is a direct link between
the behavior of the driver who controls the motion of the ve-
hicle and the assumed dynamic model, the improved extended
Kalman filter outperforms the traditional extended Kalman filter
when the vehicle carries out a complicated maneuver.

The Karlsruhe group [124] uses the 3-D wire-frame vehicle
model. The image features used in the algorithm are edges. The
initial values for the vehicle pose parameters are obtained from
the correspondence between the segments in an image and those
in the projection model. The correspondence is calculated using
viewpoint consistent constraints and some clustering rules. The
maximum a posterior (MAP) estimate of the vehicle position
is obtained using the Levenberg–Marquardt optimization tech-
nique. The algorithm is data-driven and dependent on the ac-
curacy of edge detection. Kollnig et al. [125] also propose an
algorithm based on image gradients, in which virtual gradients
in an image are produced by spreading the Gaussian distribu-
tion around line segments. Under the assumption that the real
gradient at each point in an image is the sum of a virtual gra-
dient and a Gaussian white noise, the pose parameters can be
estimated using the extended Kalman filter (EKF). Furthermore,
Haag et al. [126] integrate Kollnig et al.’s algorithm based on
image gradients with that based on optic flow. The method uses
image gradients evaluated in the neighborhoods of the image
features. However, the optic flow uses global information on
image features, integrated across the whole region of interest
(ROI). So the gradients and the optic flow are complementary
sources of information.

The above reviews model-based human body tracking and
model-based vehicle tracking. Compared with other tracking al-
gorithms, model-based tracking algorithms have the following
main advantages.

• By making use of the prior knowledge of the 3-D contours
or surfaces of objects, the algorithms are intrinsically ro-
bust. The algorithms can obtain better results even under
occlusion (including self-occlusion for humans) or inter-
ference between nearby image motions.

• As far as model-based human body tracking is concerned,
the structure of human body, the constraint of human mo-
tion, and other prior knowledge can be fused.
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• As far as 3-D model-based tracking is concerned, after set-
ting up the geometric correspondence between 2-D image
coordinates and 3-D world coordinates by camera calibra-
tion, the algorithms naturally acquire the 3-D pose of ob-
jects.

• The 3-D model-based tracking algorithms can be applied
even when objects greatly change their orientations during
the motion.

Ineluctably, model-based tracking algorithms have some dis-
advantages such as the necessity of constructing the models,
high computational cost, etc.

IV. UNDERSTANDING AND DESCRIPTION OF BEHAVIORS

After successfully tracking the moving objects from one
frame to another in an image sequence, the problem of un-
derstanding-object behaviors from image sequences follows
naturally. Behavior understanding involves the analysis and
recognition of motion patterns, and the production of high-level
description of actions and interactions.

A. Behavior Understanding

Understanding of behaviors may simply be thought as the
classification of time varying feature data, i.e., matching an
unknown test sequence with a group of labeled reference
sequences representing typical behaviors. It is then obvious
that a fundamental problem of behavior understanding is to
learn the reference behavior sequences from training samples,
and to devise both training and matching methods for coping
effectively with small variations of the feature data within each
class of motion patterns. Some efforts have been made in this
direction [176] and the major existing methods for behavior
understanding are outlined in the following.

a) Dynamic time warping (DTW): DTW is a tem-
plate-based dynamic programming matching technique widely
used in the algorithms for speech recognition. It has the advan-
tage of conceptual simplicity and robust performance, and has
been used recently in the matching of human movement pat-
terns [127], [128]. For instance, Bobick et al. [128] use DTW
to match a test sequence to a deterministic sequence of states
to recognize human gestures. Even if the time scale between a
test sequence and a reference sequence is inconsistent, DTW
can still successfully establish matching as long as the time
ordering constraints hold.

b) Finite-state machine (FSM): The most important fea-
ture of a FSM is its state-transition function. The states are used
to decide which reference sequence matches with the test se-
quence. Wilson et al. [129] analyze the explicit structure of nat-
ural gestures where the structure is implemented by an equiv-
alent of a FSM but with no learning involved. State-machine
representations of behaviors have also been employed in higher
level description. For instance, Bremond et al. [131] use hand-
crafted deterministic automata to recognize airborne surveil-
lance scenarios describing vehicle behaviors in aerial imagery.

c) HMMs: A HMM is a kind of stochastic state machines
[35]. It allows a more sophisticated analysis of data with
spatio-temporal variability. The use of HMMs consists of
two stages: training and classification. In the training stage,

the number of states of a HMM must be specified, and the
corresponding state transition and output probabilities are
optimized in order that the generated symbols can correspond
to the observed image features of the examples within a specific
movement class. In the matching stage, the probability with
which a particular HMM generates the test symbol sequence
corresponding to the observed image features is computed.
HMMs generally outperform DTW for undivided time series
data, and are therefore extensively applied to behavior under-
standing. For instance, Starner et al. [132] propose HMMs for
the recognition of sign language. Oliver et al. [133] propose
and compare two different state-based learning architectures,
namely, HMMs and coupled hidden Markov models (CHMMs)
for modeling people behaviors and interactions such as fol-
lowing and meeting. The CHMMs are shown to work much
more efficiently and accurately than HMMs. Brand et al. [134]
show that, by the use of the entropy of the joint distribution
to learn the HMM, a HMM’s internal state machine can be
made to organize observed behaviors into meaningful states.
This technique has found applications in video monitoring and
annotation, in low bit-rate coding of scene behaviors, and in
anomaly detection.

d) Time-delay neural network (TDNN): TDNN is also an
interesting approach to analyzing time-varying data. In TDNN,
delay units are added to a general static network, and some of
the preceding values in a time-varying sequence are used to pre-
dict the next value. As larger data sets become available, more
emphasis is being placed on neural networks for representing
temporal information. TDNN has been successfully applied to
hand gesture recognition [135] and lip-reading [136].

e) Syntactic techniques [137]: The syntactic approach in
machine vision has been studied mostly in the context of pat-
tern recognition in static images. Recently the grammatical ap-
proach has been used for visual behavior recognition. Brand
[138] uses a simple nonprobabilistic grammar to recognize se-
quences of discrete behaviors. Ivanov et al. [137] describe a
probabilistic syntactic approach to the detection and recogni-
tion of temporally extended behaviors and interactions between
multiple agents. The fundamental idea is to divide the recogni-
tion problem into two levels. The lower level is performed using
standard independent probabilistic temporal behavior detectors,
such as HMMs, to output possible low-level temporal features.
These outputs provide the input stream for a stochastic con-
text-free parser. The grammar and parser provide longer range
temporal constraints, disambiguate uncertain low-level detec-
tion, and allow the inclusion of a priori knowledge about the
structure of temporal behaviors in a given domain.

f) Non-deterministic finite automaton (NFA): Wada et al.
[139] employ NFA as a sequence analyzer, because it is a simple
example satisfying the following properties: instantaneousness
and pure-nondeterminism. They present an approach for multi-
object behavior recognition based on behavior driven selective
attention.

g) Self-organizing neural network: The methods dis-
cussed in (a)–(f) all involve supervised learning. They are
applicable for known scenes where the types of object motions
are already known. The self-organizing neural networks are
suited to behavior understanding when the object motions
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are unrestricted. Johnson et al. [140] describe the movement
of an object in terms of a sequence of flow vectors, each of
which consists of 4 components representing the positions and
velocities of the object in the image plane. A statistical model
of object trajectories is formed with two competitive learning
networks that are connected with leaky neurons. Sumpter et al.
[141] introduce feedback to the second competitive network
in [140] giving a more efficient prediction of object behaviors.
Hu et al. [175] improve the work in [140] by introducing a
new neural network structure that has smaller scale and faster
learning speed, and is thus more effective. Owens et al. [142]
apply the Kohonen self-organizing feature map to find the flow
vector distribution patterns. These patterns are used to deter-
mine whether a point on a trajectory is normal or abnormal.

B. Natural Language Description of Behaviors

In many applications it is important to describe object be-
haviors in natural language suitable for nonspecialist operator
of visual surveillance [22], [147]. For example, Herzog et al.
[143] have developed the VITRA project that uses natural lan-
guage to describe visual scenes. In 1995, MIT [147] convened a
workshop to discuss how to link natural language and computer
vision. Generally, there are two main categories of behavior de-
scription methods: statistical models and formalized reasoning.

a) Statistical models: A representative statistical model
is the Bayesian network model [144], [145]. This model
interprets certain events and behaviors by analysis of time
sequences and statistical modeling. For example, Remagnino
et al. [148] describe interactions between objects using a
two-layer agent-based Bayesian network. These methods rest
on lower-level recognition based on motion concepts, and
do not yet involve high-level concepts, such as events and
scenarios, and the relationships between these concepts. These
concepts need high-level reasoning based on a large amount of
prior knowledge.

b) Formalized reasoning: Formalized reasoning [146]
uses symbol systems to represent behavior patterns, and
reasoning methods such as predication logic to recognize and
classify events. Recently, Kojima et al. [36], [37] propose a
new method for generating natural language descriptions of
human behaviors appearing in real image sequences. First, a
head region of a human is extracted from each image frame,
and the 3-D pose and position of the head are estimated using
a model-based approach. Next, the head motion trajectory
is divided into the segments of monotonous movement. The
conceptual features for each segment, such as degrees of
changes of pose and position and the relative distances from
other objects in the surroundings, are evaluated. Meanwhile, the
most suitable verbs and other syntactic elements are selected.
Finally, the natural language text for interpreting human behav-
iors is generated by machine translation technology. Kollnig
et al. [118] use fuzzy membership functions to associate
verbs with quantitative details obtained by automatic image
sequence analysis for generating natural language descriptions
of a traffic scene. In their scheme, each occurrence is defined
by three predicates: a precondition, monotonicity condition
and post-condition. The most significant disadvantage of

the formalized reasoning methods is that they cannot handle
uncertainty of events [96].

Although there is some progress in description of behaviors,
some key problems remain open, for example how to properly
represent semantic concepts, how to map motion characteristics
to semantic concepts and how to choose efficient representa-
tions to interpret the scene meanings.

V. PERSONAL IDENTIFICATION FOR VISUAL SURVEILLANCE

The problem of “who is now entering the area under surveil-
lance” is of increasing importance for visual surveillance. Such
personal identification can be treated as a special behavior-un-
derstanding problem. Human face and gait are now regarded
as the main biometric features that can be used for personal
identification in visual surveillance systems [2]. In recent years,
great progress in face recognition [46]–[50] has been achieved.
The main steps in the face recognition for visual surveillance
are face detection, face tracking, face feature detection and
face recognition [51]–[55]. Usually, these steps are studied
separately. Therefore, developing an integrated face recognition
system involving all of the above steps is critical for visual
surveillance. As the length of this paper is restricted, we review
here only recent researches on the major existing methods for
gait recognition.

A. Model-Based Methods

In model-based methods, parameters, such as joint tra-
jectories, limb lengths, and angular speeds, are measured
[156]–[162], [180], [181].

Cunado et al. [156], [157] model gait as the movement of
an articulated pendulum and use the dynamic Hough transform
[158] to extract the lines representing the thigh in each frame.
The least squares method is used to smooth the inclination data
of the thigh and to fill the missing points caused by self-occlu-
sion of the legs. Phase-weighted magnitude spectra are used as
gait features for recognition.

Yam et al. [159], [160] propose a new model-based gait
recognition algorithm. Biomechanical models of walking and
running are used to form a type of new anatomical model called
a dynamically coupled oscillator, for the hip motion, and the
structure and motion of the thigh and the lower leg. Temporal
template matching [161] is used to extract the rotation angles of
the thigh and the lower legs. Then gait signatures are obtained
from the lower-order phase-weighted magnitude spectra.

Another recent paper [162] uses dynamic features from tra-
jectories of lower-body joint angles such as the hip and the knee
to recognize individuals. This work first projects the 3-D posi-
tions of markers attached to the body into the walking plane.
Then a simple method is applied to estimate the planar off-
sets between the markers and the underlying skeleton or joints.
Finally, given these offsets, the trajectories of joint angles are
computed.

Tracking and localizing the human body accurately in 3-D
space is still difficult despite the recent work on structure-based
methods. In theory, joint angles are sufficient for recognition of
people by their gait. However, accurately recovering joint angles
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from a walking video is still an unsolved or not well-solved
problem. In addition, the computational cost of the model-based
approaches is quite high.

B. Statistical Methods

Statistical recognition techniques usually characterize the sta-
tistical description of motion image sets, and have been well de-
veloped in automatic gait recognition [60], [163]–[168], [182],
[184].

Murase et al. [163] use a parametric eigenspace representa-
tion to reduce computational cost and to improve the robustness
of gait estimation. Huang et al. [164]–[166] have successfully
extended Murase et al.’s work by adding canonical space anal-
ysis to obtain better discrimination. The eigenspace transforma-
tion (EST) has the advantage of reducing the dimensionality, but
it cannot optimize class discrimination. Therefore, Huang et al.
[165] describe an integrated gait recognition system using EST
and canonical space analysis (CSA).

Shutler et al. [167] develop a velocity-moment-based method
for describing the object motion in image sequences. Similarly,
Lee et al. [60], [168] use the moment features of image regions
to recognize individuals. Assuming that people walk frontal-
parallel toward a fixed camera, the silhouette region is divided
into seven subregions. A set of moment-based region features
is used to recognize people and to predict the gender of an un-
known person by his/her walking appearance.

Statistical methods are relatively robust to noise and change
of time interval in input image sequences. Compared with
model-based approaches, the computational cost of statistical
methods is low.

C. Physical-Parameter-Based Methods

Physical-parameter-based methods make use of geometric
structural properties of a human body to characterize a person’s
gait pattern. The parameters used include height, weight, stride
cadence and length, etc. [56], [170]–[173], [183].

For example, a gait recognition technique using specific be-
havior parameters is recently proposed by Bobick et al. [170],
[171]. This method does not directly analyze the dynamics of
gait patterns, but uses walking activities to recover the static
body parameters of walking such as the vertical distance be-
tween head and feet, the distance between head and pelvis, the
distance between feet and pelvis, and the distance between the
left and right feet. The method is assessed using an expected
confusion metric [172] to predict how well a given feature vector
can identify an individual in a large population.

Some recent work [56], [173] also uses human stature, stride
length and cadence as the input features for parametric gait clas-
sification. Given the calibration parameters of the camera and
the walking plane, the method uses the walking periodicity to
accurately estimate cadence and stride [56].

Physical-parameter-based methods are intuitively under-
standable, and independent of viewing angles because these
parameters usually are recovered in the 3-D space. However,
they depend greatly on the vision techniques used to recover the
required parameters, e.g., body-part labeling, depth compensa-
tion, camera calibration, shadow removal, etc. In addition, the

parameters used for recognition may be not effective enough
across a large population.

D. Spatio-Temporal Motion-Based Methods

For motion recognition based on spatio-temporal analysis, the
action or motion is characterized via the entire 3-D spatio-tem-
poral data volume spanned by the moving person in the image
sequence. These methods generally consider motion as a whole
to characterize its spatio-temporal distributions [27], [58], [59],
[61], [62], [177], [178], [185].

Perhaps the earliest approach to recognizing people is to ob-
tain gait features from the spatio-temporal pattern of a walking
figure [27]. In translation and time (XT) space, the motions of
the head and legs have different patterns. These patterns are first
processed to determine the bounding box of a moving body, and
then fitted to a five-stick model. Gait signatures could be ac-
quired from the velocity-normalized fitted model. Later, Niyogi
et al. [58] extend their own work by using the spatio-temporal
surface to analyze gait. After motion detection, the XYT pattern
(2-D space and 1-D time) is fitted with a smooth spatio-temporal
surface. This surface is represented as a combination of a stan-
dard parametric surface and a difference surface that can be used
to recognize some simple actions.

Using the image self-similarity in XYT, BenAbdelkader et al.
[59], [177] propose a motion-based gait-recognition technique.
The similarity plots (SPs) of the image sequence of a moving
object are projections of its planar dynamics [61]. Hence, these
SPs include much information of gait motion.

Kale et al. [62] propose a HMM-based method for repre-
senting and recognizing gait. First, a set of key frames that occur
during a walk cycle is chosen. The widths of the walking figure’s
binary silhouettes, in such a set of key frames, are chosen as the
input features. Then, a low-dimensional measurement vector is
produced using the Euclidean distance between a given image
and the set of key frames. These measurement vector sequences
are used to train the HMMs.

Spatio-temporal motion-based methods are able to better cap-
ture both spatial and temporal information of gait motion. Their
advantage is low computational complexity and a simple imple-
mentation. However, they are susceptible to noise and to varia-
tions of the timings of movements.

E. Fusion of Gait With Other Biometrics

The fusion of gait information with other biometrics
can further increase recognition robustness and reliability.
Shakhnarovich et al. [64] develop a view-normalized method
for solving the problem of integrated face and gait recognition
from multiple views. For optimal face recognition, they set a
virtual camera to capture the frontal face. For gait recognition,
they set a virtual camera to capture the side-view walking
sequence. Results show that the integrated face and gait
recognition outperforms recognition which only uses a single
mode. In extended work, Shakhnarovich et al. [65] evaluate
the recognition performances of several different probabilistic
combinations for fusing view-normalized face and gait.

Although many researchers have been working on gait recog-
nition, current research of gait recognition is still in its infancy.
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First, most experiments are carried out under constrained cir-
cumstances, e.g., no occlusion happens while objects are usu-
ally moving, the background is simple, etc. Second, existing al-
gorithms are evaluated on small databases. Future work on gait
recognition will focus on handling these two problems.

VI. FUSION OF DATA FROM MULTIPLE CAMERAS

Motion detection, tracking, behavior understanding, and
personal identification at a distance discussed above can be
realized by single camera-based visual surveillance systems.
Multiple camera-based visual surveillance systems can be
extremely helpful because the surveillance area is expanded
and multiple view information can overcome occlusion.
Tracking with a single camera easily generates ambiguity due
to occlusion or depth. This ambiguity may be eliminated from
another view. However, visual surveillance using multicameras
also brings problems such as camera installation (how to cover
the entire scene with the minimum number of cameras), camera
calibration, object matching, automated camera switching, and
data fusion.

A. Installation

The deployment of the cameras has a great influence on the
real-time performance and the cost of the system. Cameras
cannot be employed arbitrarily due to factors such as the
topography of the area. Redundant cameras increase not only
processing time and algorithmic complexity, but also the
installation cost. In contrast, a lack of cameras may cause some
blind angles, which reduce the reliability of a surveillance
system. So the question of how to cover the entire scene with
the minimum number of cameras is important. Pavlidis et al.
[149] provide an optimum algorithm for solving the problem
of multiple-camera installation in parking lots. The basic idea
is to place camera 1 on a certain position at first, then to search
the rest of the space to place the second camera at a point where
there is a 25%–50% overlap region between the fields of view
of camera 1 and camera 2. The other cameras are added one by
one, subject to the constraint that the field of view of each new
camera should have a 25%–50% overlap with the combined
fields of view of all the previous cameras.

B. Calibration

Traditional calibration methods use the 3-D coordinates and
the image coordinates of some known points to compute the pa-
rameters of a camera. Calibration is more complex when mul-
tiple cameras are concerned. Current multiple camera self-cali-
bration methods use temporal information. Stein and Lee et al.
[38], [39] use the motion trajectory and the ground plane con-
straint to determine the projection transformation matrix, and
then such matrix is decomposed to obtain the extrinsic param-
eters of the camera. However, this method is inaccurate, and
cannot be used if there is no ground plane.

C. Object Matching

Object matching among multiple cameras involves finding
the correspondences between the objects in different image

sequences taken by different cameras. There are two popular
methods: one is the geometry-based method that establishes
correspondence according to geometric features transformed to
the same space; and the other is the recognition-based method.
As an example of the geometry-based method, Cai et al. [41],
[42] use features of location, intensity and geometry to match
between images taken by different cameras. As an example
of recognition-based methods, Krumm et al. [57] use color
histograms to match regions. In general, the methods for object
matching need camera calibration. However, some researchers
also develop methods without calibration. For example, Javed
et al. [150] use the spatial relationships between view fields of
cameras to establish the corresponding relationships of images.

D. Switching

When an object moves out of the view field of an active
camera, or the camera cannot give a good view of the moving
object, then the system should switch to another camera that
may give a better view of the object. The key problems are how
to find the better camera and how to minimize the number of
switches during tracking. Cai et al. [41], [42] establish a tracking
confidence for each object. When the tracking confidence is
below a certain threshold, the system begins a global search and
selects the camera with the highest tracking confidence as the
active camera.

E. Data Fusion

Data fusion is important for occlusion handling and contin-
uous tracking. Dockstader et al. [151] use a Bayesian network
to fuse 2-D state vectors acquired from various image sequences
to obtain a 3-D state vector. Collins et al. [152] design an algo-
rithm that obtains an integrated representation of an entire scene
by fusing information from every camera into a 3-D geometric
coordinate system. Kettnaker et al. [43] synthesize the tracking
results of different cameras to obtain an integrated trajectory.

F. Occlusion Handling

In practice, self-occlusion, and occlusions between different
moving objects or between moving objects and the background
are inevitable. Multiple camera systems offer efficient and
promising methods for coping with occlusion. Utsumi et al.
[40] utilize multiple cameras to track people, successfully
resolving the mutual-occlusion and self-occlusion by choosing
the “best” view. Dockstader et al. [151] describe a multiple
camera surveillance system that is used to track partly occluded
people. Tsutsui et al. [153] apply the multiple camera surveil-
lance system to optical flow-based human tracking. When
a static object in one camera occludes an object, the system
predicts the 3-D coordinate position and moving speed of the
occluded object according to information from other cameras.
Mittal et al. [154] resolve human tracking in complex scenes
using multiple cameras. First, using the Bayesian classification
rule, images are segmented according to the human model and
the estimated position of each person. Then, data from multiple
cameras are fused to estimate the positions of the humans on
the ground plane. Finally, a Kalman filter is used for tracking.
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VII. FUTURE DEVELOPMENTS

In Sections II–VI, we have reviewed the state-of-the-art of
visual surveillance for humans and vehicles sorted by a gen-
eral framework of visual surveillance systems. Although a large
amount of work has been done in visual surveillance for humans
and vehicles, many issues are still open and deserve further re-
search, especially in the following areas.

A. Occlusion Handling

Occlusion handing is a major problem in visual surveillance.
Typically, during occlusion, only portions of each object are vis-
ible and often at very low resolution. This problem is gener-
ally intractable, and motion segmentation based on background
subtraction may become unreliable. To reduce ambiguities due
to occlusion, better models need be developed to cope with the
correspondence between features and body parts, and thus elim-
inate correspondence errors that occur during tracking multiple
objects. When objects are occluded by fixed objects such as
buildings and street lamps, some resolution is possible through
motion region analysis and partial matching. However, when
multiple moving objects occlude each other, especially when
their speeds, directions and shapes are very close, their motion
regions coalesce, which makes the location and tracking of ob-
jects particularly difficult. The self-occlusion of a human body
is also a significant and difficult problem. Interesting progress
is being made using statistical methods to predict object pose,
position, and so on, from available image information. Perhaps
the most promising practical method for addressing occlusion
is through the use of multiple cameras.

B. Fusion of 2-D and 3-D Tracking

Two-dimensional tracking is simple and rapid, and it has
shown some early successes in visual surveillance, especially
for low-resolution application areas where the precise posture
reconstruction is not needed, e.g., pedestrian and vehicle
tracking in a traffic surveillance setting. However, the major
drawback of the 2-D approach is its restriction of the camera
angle.

Compared with 2-D approaches, 3-D approaches are more
effective for accurate estimation of position in space, more
effective handling of occlusion, and high-level judgments about
complex object movements such as wandering around, shaking
hands, dancing, and vehicle overtaking. However, applying
3-D tracking requires more parameters and more computation
during the matching process. Also, vision-based 3-D tracking
brings a number of challenges such as the acquisition of object
models, occlusion handling, parameterized object modeling,
etc.

In fact, the combination of 2-D tracking and 3-D tracking
is a significant research direction that few researches have at-
tempted. This combination is expected to fuse the merits of the
2-D tracking algorithms and those of the 3-D tracking algo-
rithms. The main difficulties of this combination are:

• deciding when 2-D tracking should be used and when 3-D
tracking should be used;

• how to initialize pose parameters for 3-D tracking ac-
cording to the results from 2-D tracking, when the tracking
algorithm is switched from 2-D to 3-D.

C. Three-Dimensional Modeling of Humans and Vehicles

We think that it is feasible to build 3-D models for humans and
vehicles. As far as vehicles are concerned, they can be treated as
rigid objects, drawn from only a few classes and with invariable
3-D shapes during normal usage. It is possible to establish 3-D
models of vehicles using CAD tools, etc. A generic and para-
metric model can be established for each class [125], [155]. As
far as human beings are concerned, the shapes of human bodies
are similar, so it is possible to build a uniform parametric model
for human bodies. The parametric models and their applications
in tracking and identification are important research directions
in visual surveillance. 3-D modeling deserves more attention in
future work.

D. Combination of Visual Surveillance and Personal
Identification

As mentioned in Section V, vision-based human identifica-
tion at a distance has become increasingly important. Gait is a
most attractive modality used for this purpose. Generally, future
work on gait recognition will focus on the following directions.

1) Establishing a large common database and a standard
test protocol. The database with an independent sub-
database for the test just like the FERET protocol [113]
is necessary for convincing test. Any realistic database
should include the factors affecting gait perception, e.g.,
clothing, environments, distance, carried objects such as
briefcases [179], and viewing angle. Such a database al-
lows one to explore the limitations of the extracted gait
signatures as well as the confidence estimation associated
with the use of gait to buttress other biometric measures
[66].

2) Combining dynamic features and static features. Gait
includes both individual appearances and the dynamics
of walking. Developing the underlying static parameters
of a human body and the dynamic characteristics of joint
angles is helpful to recognition.

3) Developing multiple biometric feature-based systems
in which gait is a basic biometric feature. A multiple
biometric system either fuses multiple biometric features
or automatically switches among different biometric fea-
tures according to operational conditions. For example, at
a distance, gait can be used for recognition; when an in-
dividual is near to the camera, the face image provides a
powerful cue; at intermediate distances, the information
from both face and gait can be fused to improve the recog-
nition accuracy.

4) Obtaining the view-invariant gait signatures from the
tracked image sequences [67]. To extract and localize ar-
bitrarily articulated shapes, view-invariant gait signatures
from the tracked image sequences need to be obtained in
future recognition systems.
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E. Behavior Understanding

One of the objectives of visual surveillance is to analyze and
interpret individual behaviors and interactions between objects
to decide for example whether people are carrying, depositing or
exchanging objects, whether people are getting on or getting off
a vehicle, or whether a vehicle is overtaking another vehicle, etc.
Recently, related research has still focused on some basic prob-
lems like recognition of standard gestures and simple behaviors.
Some progress has been made in building the statistical models
of human behaviors using machine learning. Behavior recogni-
tion is complex, as the same behavior may have several different
meanings depending upon the scene and task context in which
it is performed. This ambiguity is exacerbated when several ob-
jects are present in a scene [130]. The following problems within
behavior understanding are challenging: statistical learning for
modeling behaviors, context-dependent learning from example
images, real-time performance required by behavior interpreta-
tion, classification and labeling of motion trajectories of tracked
objects, automated learning of the priori knowledge [63] im-
plied in object behaviors, visually mediated interaction, and at-
tention mechanisms.

F. Anomaly Detection and Behavior Prediction

Anomaly detection and behavior prediction are significant in
practice. In applications of visual surveillance, not only should
visual surveillance systems detect anomalies such as traffic ac-
cidents and car theft etc, according to requirements of functions,
but also predict what will happen according to the current situ-
ation and raise an alarm for a predicted abnormal behavior. Im-
plementations are usually based on one or other of the following
two methods.

1) Probability reasoning and prior rules combined
methods. A behavior with small probability, or against
the prior rules would be regarded as an anomaly.

2) Behavior-pattern-based methods. Based on learned
patterns of behaviors, we can detect anomalies and
predict object behaviors. When a detected behavior
does not match the learned patterns, it is classed as an
anomaly. We can predict an object behavior by matching
the observed subbehavior of the object with the learned
patterns. Generally, patterns of behaviors in a scene can
be constructed by supervised or unsupervised learning of
each object’s velocities and trajectories, etc. Supervised
learning is used for known scenes where objects move
in pre-defined ways. For unknown scenes, patterns of
behaviors should be constructed by self-organizing and
self-learning of image sequences. Fernyhough et al. [5]
establish the spatio-temporal region by learning results
of tracking objects in a image sequence, and construct a
qualitative behavior model by qualitative reasoning and
statistical analysis.

G. Content-Based Retrieval of Surveillance Videos

The task in content-based retrieval of surveillance videos
is to retrieve video clips from surveillance video databases

according to video contents, based on automatic image and
video understanding. At present, research on video retrieval
focuses on the low-level perceptively meaningful representa-
tions of pictorial data (such as color, texture, shape, etc) and
simple motion information. These retrieval techniques cannot
accurately and effectively search the videos for sequences
related to specified behaviors. Semantic-based video retrieval
(SBVR) aims to bridge the gap between low-level features and
high-level semantic meanings. Based on automatic interpre-
tation of contents in surveillance videos, SBVR may classify
and further access the surveillance video clips that are related
to specific behaviors, and supply a more high-level, more
intuitive and more humanistic retrieval mode. Semantic-based
retrieval of surveillance videos brings the following difficult
problems: automatic extraction of semantic behavior features,
combination between low-level visual features and behavior
features, hierarchical organization of image and video features,
semantic video indexing, inquire interface, etc.

H. Natural Language Description of Object Behaviors

Describing object behaviors by natural language in accord
with human habits is a challenging research subject. The key
task is to obtain the mapping relationships between object be-
haviors in image sequences and the natural language. These
mapping relationships are related to the following two prob-
lems.

1) Relationships between behaviors and semantic con-
cepts. Each semantic concept of motion describes a class
of behaviors, but each behavior may be related to multiple
semantic concepts. After the mapping has been clearly de-
fined, we could construct the relationship between the re-
sults of low-level image processing and object behaviors.
The key problems include the modeling of semantic con-
cepts of motions, and the automatic learning of semantic
concepts of behaviors.

2) Semantic recognition and natural language descrip-
tion of object behaviors. People usually describe
developments and transformations of objects with con-
cepts at different levels. The higher level concepts require
greater background knowledge. It is a key problem to an-
alyze the behaviors of moving objects using the tracking
results from low-level systems, and further recognize the
more abstract semantic concepts at higher layers. We can
use the corresponding relationships between semantic
concepts and object behaviors, semantic networks with
different layers and reasoning theory to explore this
problem. Natural language is the most convenient and
natural way for humans to communicate each other.
Organizing recognized concepts and further representing
object behaviors in brief and clear natural language
is one of the ultimate goals of visual surveillance. In
addition, the synchronous description, i.e., giving the de-
scription before a behavior finishes (during the behavior
is progressing), is also a challenge. We should design an
incremental description method which is able to predict
object behaviors.
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I. Fusion of Data From Multiple Sensors

It is obvious that future visual surveillance systems will
greatly benefit from the use of multiple cameras [44], [45],
[73]. The cooperation between multiple cameras relies greatly
on fusion of data from each camera. Data fusion is primarily
feature-level based rather than image-level based or deci-
sion-making-level based. It happens in single view tracking,
correspondence of cross-cameras, automatic camera switching
(i.e., best view selection), etc. The main problems involve
how to fuse different types of features, e.g., color, geometric
features, into one group to track and recognize objects, and fur-
ther understand their behaviors; how to fuse features extracted
from different viewpoints to correspond objects; and how to
communicate data about the same object between multiple
cameras.

Besides video, sensors for surveillance include audio,
infrared, ultrasonic, and radar, etc. Each of these sensors has
its own characteristics. Surveillance using multiple different
sensors seems to be a very interesting subject. The main
problem is how to make use of their respective merits and fuse
information from such kinds of sensors.

J. Remote Surveillance

Remote surveillance becomes more and more important for
many promising applications, e.g., military combat, prevention
of forest fires, etc. Video data are acquired from distributed sen-
sors and transmitted to a remote control center. The transmission
process must satisfy the following requirements.

• The upload bandwidth (from sensors to the control center)
should be much wider than the download bandwidth (from
the control center to sensors).

• The security of transmission must be guaranteed. Because
some surveillance data involve privacy, commercial se-
crets and even national security, and nevertheless are trans-
mitted through public networks, information security be-
comes a key problem. This needs the developments of the
techniques such as digital watermarking and encryption
[89].

The demand for remote surveillance and surveillance using
multiple cameras and multiple sensors motivates the combina-
tion of network and visual surveillance, which brings new chal-
lenges in intelligent surveillance.

VIII. CONCLUSIONS

Visual surveillance in dynamic scenes is an active and
important research area, strongly driven by many potential
and promising applications, such as access control in special
areas, person-specific identification in certain scenes, crowd
flux statistics and congestion analysis, and anomaly detection
and alarming, etc.

We have presented an overview of recent developments in
visual surveillance within a general processing framework for
visual surveillance systems. The state-of-the-art of existing
methods in each key issue is described with the focus on the
following tasks: detection, tracking, understanding and descrip-
tion of behaviors, personal identification for visual surveillance,

and interactive surveillance using multiple cameras. As for
the detection of moving objects, it involves environmental
modeling, motion segmentation and object classification.
Three techniques for motion segmentation are addressed:
background subtraction, temporal differencing, and optical
flow. We have discussed four intensively studied approaches
to tracking: region based, active-contour based, feature based,
and model based. We have reviewed several approaches to
behavior understanding, including DTW, FSM, HMMs, and
TDNN. In addition, we examine the state-of-the-art of behavior
description. As to personal identification at a distance, we
have divided gait recognition methods into four classes: mode
based, statistics, physical-parameter based, and spatio-temporal
motion based. As to fusion of data from multiple cameras, we
have reviewed installation, object matching, switching, and
data fusion.

At the end of this survey, we have given some detailed dis-
cussions on future directions, such as occlusion handling, fu-
sion of 2-D tracking and 3-D tracking, 3-D modeling of humans
and vehicles, combination of visual surveillance and personal
identification, anomaly detection and behavior prediction, con-
tent-based retrieval of surveillance videos, natural language de-
scription of object behaviors, fusion of data from multiple sen-
sors, and remote surveillance.
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