
Network-based Intrusion Detection Using Adaboost Algorithm

Wei Hu and Weiming Hu
National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences
Email : { w hu , w mhu } @ nlpr. ia. ac . cn

Abstract

Intrusion detection on the internet is a heated research
j e l d in romputer science, where much work has been done
during the past two decades. In this paper; we build D

network-based intrusion detection system using Adaboost,
a prevailing machine learning algorithm. The experiments
demonstrate that our sysrem can achieve an especially low
false positive rate while keeping a preferable detection
rate. and its computational complexity is extremely low,
which ih 11 i y y artructive property in practice.

KEY WORDS
Intrusion detection, Network-based IDS, AdaBoost,
Computational complexity

1 Introduction

With the development of the internet, the information se-
curity threat i s becoming one of the most crucial problems.
Reliable connections, information integrity and privacy are
demanded more intensively nowadays than ever before.

Intrusion detection on the internet is all the while a
heated field in computer science since its initiation by Den-
ning [21 in 1987, in which a grand amount of research has
becn done Generally speaking, intrusion detection systems
(IDS) can be divided into two categories: host-based IDS
and network-based IDS [11. Host-based IDS utilizes var-
ious audit data of the target host machine. It has an ad-
vantage that the information provided by the audit data can
be extremely comprehensive and elaborate. Network-based
IDS makes use of the IP package information collected by
network hardware such as switches and rooters. Although
this kind of information is not so abundant as that of host-
based IDS. network-based IDS has preponderance in detect-
ing so-called “distributed” intrusions among the whole net-
work and lighten the burden on every individual host ma-
chine.

There are generally two distinct approaches in the field
of intrusion detection: misuse detection and anomaly de-
tection [1,101. Misuse detection utilizes attack signatures,

usually taking the form of rules, to detect intrusion. It gains
a high detection rate for those well-known intrusions, but
often fails to detect novel intrusions. Anomaly detection,
however, tries to build up normal profiles, the patterns of
normal behaviors. Any deviant from the normal profiles is
considered as anomalies [Zl]. Because it is difficult to pre-
cisely establish the normal profiles, anomaly detection usu-
ally suffers from a higher false positive rate, the possibility
that a normal behavior i s mistakenly classified as an attack
instance.

There have been plenty of methods in intrusion detec-
tion. A statistical method is proposed in [2], where sev-
eral “metrics” are paid attention to and their statistical nor-
mal profiles are constructed. Enlightened by that, many re-
searchers try to build statistical models of a host system
from various aspects 113, 141. Data mining is also widely
studied and used in intrusion detection [8, 111. It focuses
on extracting so-called “association rules” and “frequent
episodes” from voluminous data, which are a specific kind
of rules to describe the network activities.

Recently, it IS particularly popular to utilize the methods
in machine learning and pattern recognition to detect intru-
sions. For unsupervised learning, SOM has engaged broad
attention [3,9] due to its excellent clustering performance
and easy implementation. In [Zl], a hierarchy framework
of using SOM is proposed, which achieves an eminent de-
tecting result. As to supervised learning, ANN is a cammon
tool [17,24], but SVM gets more favors in virtue of its great
generalization ability [7,25].

While these existing methods can obtain a high detection
rate (DR), they often suffer from a relatively high false pos-
itive rate (FPR), which wastes a great deal of manpower.
Meanwhile, their computational complexities are also op-
pressively high, which limits their applications in practice,
because an IDS would affect the regular tasks of the target
systems if it emploits too much resource.

Adaboost is one of the most prevailing machine learning
algorithms in recent years. Its computational complexity
is generally lower than SOM, ANN and SVM in the case
that the size of the data set is voluminous while the dimen-
sionality is not too high. For this and other advantages, we
employ Adaboost algorithm for our network-based IDS.

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)
0-7695-2415-X/05 $20.00 © 2005 IEEE

This rest of paper is organized as follows. The frame-
work of our IDS is proposed in section 2. In section 3, we
describe how the fatal parts of our IDS work in details. The
classical Adaboost algorithm is introduced and an improve-
ment on it is proposed. The analysis about the computa-
tional complexity of our IDS can be found in section 4. In
section 5, experiment results are provided. At last, we draw
some conclusions in section 6.

Feature extfitction

2 Framework of our IDS

Data labeling

We have constructed a network-based IDS, and its frame-
work (as shown in Figure 1) is made up four modules:

t
[iletecting result I

Figure 1: Framework of our network-based IDS

Feature extraction. For every network connection,
we extract three major groups of features for detect-
ing intrusions: “Basic features of individual TCP con-
nections”, “Content features within a connection sug-
gested by domain knowledge” and “Traffic features
computed using a two-second time window” [23]. The
framework for constructing these features can be found
in [lo].

Data labeling. Because Adaboost is a supervised
learning algorithm, we have to label a set of data for
training. This labeled data set should contain both
normal samples, labeled as “+1”, and attack samples,
labeled as “-1”. So our algorithm is neither “misuse
detection” nor “anomaly detection” mentioned above,
but a kind of “hybrid detection”.

Weak classifiers design. Adaboost requires a group
of weak classifiers designed before hand. “Weak (or
basic)” means that the classifying accuracy of an indi-
vidual classifier is relatively low. In section 3.1, weak
classifiers used in our IDS is described.

2

o Strong classifiers construction. A strong classifier
is constructed using our “improved” Adaboost algo-
rithm. We will show the details of this procedure in
section 3.2 and 3.3.

After training, a strong classifier is obtained. Then a new
network connection represented by the same three groups of
features can be send to the strong classifier and classified as
either “normal” or “attack”, shown in Figure 1 as detecting
result.

3 Methodology

3.1 Weak classifiers design

A group of weak classifiers has to be prepared as inputs of
Adaboost algorithm. They can be linear classifiers, A ” s
or other common classifiers. In our algorithm, we select
“decision stumps” as weak classifiers due to its simpleness.

For every feature f, its value range could be divided into
two nonoverlapping value subsets C,f and CL, and the deci-
sion stump on f takes the form as follow:

+1 x(f) €C,f { -1 x(f) € C L hf (4 =

where x(f) indicates the value of x on feature f. The min-
imal total error rate criterion is used to determine the two
value subsets:

where E? and E- respectively denotes the classifying error
rates of normal samples and attack samples by the decision
stump h f .

hf h f -

3.2 Classical Adaboost algorithm

Adaboost is a stereotype algorithm of boosting, whose
basic idea is to select and combine a group of weak classi-
fiers to form a strong classifier [6]. The classical Adaboost
algorithm is shown in Table 1, where n is the size of the
training set, and F t = {hf) is a set of weak classifiers. It
has been proved that the objective function:

(1)

has an upper bound ITt Zt, and in every loop, 2, achieves
its minimum 2d- by choosing at = 3 l o g (h) . Et

This ensure that the training error of the strong classifier
converges to zero exponentially to the number of rounds [6].

1
n E t r = - I{i : H(xd # YJl

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)
0-7695-2415-X/05 $20.00 © 2005 IEEE

Table 1 : Classical Adaboost algorithm

Given: (XI, yl), . . . , (x,,, gn) where y, E {+l, -1)

Initialize weights: Dl(i) = I/. (i 1- 1,. , . , n)
F o r t = l , ..., T :

weighted error:
1. Choose a weak classifier ht which minimizes the

2. If st = min, E~ > 1/2, set T = t - 1 and stop loop.
3. Chmse an at.
4. Update the weights:

Dt (i) exp(-at Yz ht (xt 1)
zt

Dt+1(4 =

where Zt is a normalization factor assuring Dt+l is
a distribution.

The strong classifier is:

T

~ (x j = s i g n (x a t h t (x))
t = l

3.3 Improved objective function and initialized

The objective function (1) of the classical Adaboost algo-
rithm is not very suitable for the problem we are facing. In
intrusion detection, we have to pay more attention to FPRs,
because a high FPR wastes a great deal of manpower. In our
IDS, we employ an “improved objective function” to adjust
the tradeoff between FPR and DR:

weights

Ewr = Ll{i : ya = +l,H(Xi) = -l}/

where n+ and n- are respectively the number of normal
samples and attack samples in the training set. 7‘ is a scale
factor to punish DRs.

In the theory of Adaboost, the initialized weights
Dl(z) = l/n has a strong relationship with the objective
function (1). So corresponding to our improved objective
function, a kind of “improved initialized weights” is used:

where T is the same as the r in (2) . Here we can find that
T also indicates the importance of the normal samples. The
larger T is, the more weightily normal samples are treated at
the beginning of the algorithm.

4 Computational complexity

Under simple analysis, we can easily calculate that in the
training phase of the Adaboost algorithm, the computational
complexity is only O(nThf) , where M is the number of
decision stumps. As to SOM or ANN, the computational
complexity of the training phase depends on the distribu-
tion of the data set. and in the worst case it is O(n2M2) .
which is higher than Adaboost especially when n is large as
in the data set we used. As to SVM, although there is a pop-
ular accelerating algorithm named SMO, the complexity of
training is also exponential to n in general cases.

For the testing phase, the computational complexity of
Adaboost is O(n’T) , where n’ is the number of the in-
put records. It is also lower than that of hierarchical SOM,
which is O(n‘M2) mentioned in [21], because T is com-
monly in the same quantitative level as 114.

In a word, Adaboost generally possesses lower com-
putational complexity than SOM, ANN and SVM, espe-
cially in the training phase. This property is very attractive
and promising in intrusion detection, because the classifiers
should be retrained in short periods in practice and fast de-
tection helps to activate the following defending measures
in due course.

5 Experiments

5.1 Intrusion Data Set

We utilize the KDD CUP 1999 data set [23] for our ex-
periments. It was originated from MIT’s Lincoln Lab and
developed for IDS evaluations by DARPA [19]. Despite o f
several drawbacks mentioned in [18], it has served as a re-
liable benchmark data set for many researches on network-
based intrusion detection algorithms. In this data set, each
TCP/IP connection has been labeled, and 41 features had
been extracted, some of which are continuous and others
are categorical. So we don’t have to do the task of “Feature
extraction” and “Data labeling” shown in Figure 1, then we
can focus on the effectiveness and efficiency of the core al-
gorithm of our IDS framework.

There are four general types of attacks appeared in the
data set: DOS (denial of service), U2R (user to root), R2L
(remote to local) and PROBE. In each of the four, there are
many low level types of attacks. Detailed descriptions about
the four general types can be found in [15,19]. The number
of samples of various types in the training set and the test set
are listed respectively in Table 2 and Table 3. “NOVEL“ in

3

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)
0-7695-2415-X/05 $20.00 © 2005 IEEE

Attack

250436

Table 3 represents those low level attack types not appeared
in the training set.

5.2 Classical Adaboost algorithm and improved ini-
tialized weights

First, we run the classical Adaboost algonthm, whose re-
sult is shown in Table 4. Then we run i t again with the im-
proved initialized weights in the form of (3), where ar varies
from 0 to 1. The results are provided in Table 5. We can
see that when T is not too small nor too large, that is, from
0.3 to 0.7, the results is generally better than that of the
classical Adaboost algorithm. We set T = 40 in all of our
expenments.

Tahle 4: Result of classical Adaboost algorithm
Training Set Test Set

Table 5: Results with improved initialized weights (all
dec

_. . - _ _
I 0.5 I 0.851 I 98.519 I 2.200 I 90.140 I

5.3 Avoid Overfitting

In our experiments, we notice that the total error rates of
the 23rd and the 3rd decision stumps on the training set are
respectively 1.61% and 4.92%. These too excellent perfor-
mance probably means overfitting. So we exclude these two
decision stumps from H and the results get much improved
as expected, shown in Table 6.

5.4 About the selection of T

From Table 6, we finally make the selection that r = 0.5,
for under this value, we get the best balanced between the
FPR and the DR, respectively 0.665% and 90.477% on the
test set. Intuitively, T = 0.5 means that we pay equal at-
tention to the FPR and the DR, and the normal sample set
and the attack sample set are equally emphasized at the be-
ginning of the algorithm. If we hope to get lower FPRs, we
could moderately increase r. For example, when T = 0.7,
the FPR decreases to 0.307% on the test set, but the DR si-
multaneously decreases to 90.04%. This trend is consistent
with the theoretical analysis very well.

Table 6: Results with improved initlalked weights (with-
out the 23rd, 3rd stumps)

Test Set

4

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)
0-7695-2415-X/05 $20.00 © 2005 IEEE

5.5 Comparison with some other published results

Several recently published experiment results and our re-
sults run on the same data set are listed in Table 7. We can
find that ours are greatly competitive with others in terms
of an especially low FPR while keeping an agreeable DR.
Bagged C5 [4,20] is the winning algorithm of the KDD99,
which a bit outperforms our algorithm in terms of FRP and
DR, but it is much more time-comsuming, as mentioned bc-
low.

- L 1

Bagged C5 [4,20] 0.55

Improved Adaboost 0.31-1.79
RSS-DSS [22] 0.27-3.5

Tablc 7: Results comDarison

91.81

90.04-90.88
89.2-94.4

Methods
Genetic Clustering [16]

SVM rsi 6-10 9 1-98

5.6 Computational Time

We did our experiments on a computer of Pentium IV,
2.6GHZ CPU, 256M RAM, and the whole algorithm is im-
plemented in MATLAB 7. The mean training time IS only
73s, using all of the 494,021 training samples. This is an
empirical substantiation that the computational complex-
ity of our IDS is especially low, While in [12], the least
training time of SOM and improved competitive learning
neural network arc respectively 1057s and 454s only using
101,000 samples for training. Bagged C5 [4,20] outper-
forms our algorithm in terms of FRP and DR, but it took
a bit more than a day on a machine with a two-processor
ultra-sparc2 (2~300Mhz) and 512M main memory. The lat-
est published algorithm RSS-DSS [22] needs 15 minutes to
finish the whole process on a 1 GHz Pentium 111 laptop with
256M RAM,

From the comparison above, we can find that our IDS
has obvious predominance in term of speed, which is a
much preferable property in practice.

6 Conclusion

We have constructed an IDS with Adaboost, a prevailing
machine learning algorithm, and described how each part
of the whole system works in this paper. An improvement
concerning about getting low WRs and balancing the im-
portance of normal samples and attack samples have been
proposed. The experiment results have shown that our IDS
obtains an extremely low false positive rate with a fairish
detection rate. We also have demonstrated that our IDS has

a noticeable advantage in computational complexity com-
pared with some other algorithms.

References

[l] S. Chebrolu, A. Abraham, and J. P. Thomas. Feature de-
duction and ensemble design of intrusion detection systems.
Computers & Security, In Press,Corrected Prwf,Available
online, November 2004.

[2] D. Denning. An intrusion-detcction model. IEEE Trans-
actions on Software Engineering. 13(2):222-232, February
1987.

[3] M. 0. Depren, M. Topallar, E. Anarim, and K. Ciliz.
Network-based anomaly intrusion detection system using
soms. In Proceedings of the IEEE 12th Signal Processing
and Communications Applications Conference, pages 76-
79, April 2004.

[4] C. Elkan. Results of the kdd99 classifier learning contest.
SIGKDD Explorations, 1(2):63-64,2000.

[5] E. Eskin. A. Arnold. M. Prerau, L. Portnoy. and S. Stolfo. A
geometric framework for unsupervised anomaly detection:
Detecting intrusions in unlabeled data. In Applications of
Data Mining in Computer Security, Chapter 4. D. Barbara
and S. Jajodia (editors) Kluwer, 2002.

[6] Y. Freund and R. E. Schapire. A decision-theoretic gen-
eralization of on-line learning and an application to boost-
ing. Compurer and System Sciences, 55(1):119-139, August
1997 *

An intrusion detection
method based on rough set and svm algorithm. In Proceed-
ings of International Conference on Communications, Cir-
cuits and Sysrems, volume 2, pages 1127-1 130, June 2004.

[8] H. Jin, J. Sun, H. Chen, and 2. Han. A fuzzy data mining
based intrusion detection model: Distributed computing sys-
tems. In Pmceedihgs of loth IEEE International Workshop
on Future Trends, pages 191-197, May 2004.

191 H. G. Kayacik, A. Zincir-Heywood, and M. Heywood. On
the capability of an som based intrusion detection system. In
Proceedings of the International Joint Conference on Neural
Networks, volume 3 , pages 1808-1813, July 2003.

A framework for constructing
features and models for intrusion detection systems. ACM
Transactions on Informarion and System Security, 3(4):227
- 261, November 2000.

[I 1 J W. Lee, S. J. Stolfo, and K. iMok. A data mining framework
for building intrusion detection models. In Proceedings of
IEEE Symposium on Security and Privacy, pages 120-132.
May 1999.

[121 J. Z. Lei and A. Chorbani. Network intrusion detection using
an improved competitive learning neural network. In Pro-
ceedings of Second Annual Conference on Communication
Nerworks and Services Research, volume 4, pages 190-197,
May 2004.

[7] P. Hong, I>. Zhang, and T. Wu.

[lo] W. Lee and S. J. Stolfo.

5

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)
0-7695-2415-X/05 $20.00 © 2005 IEEE

[13] J. Li and C. Manikopoulos. Novel statistical network model:
the hyperbolic distribution. In IEE Proceedings on Commu-
nications. volume 151, pages 539-548, December 2004.

[14] 2. W. Li, A. Das, and S. Nandi. Utilizing statistical charac-
teristics of n-grams for intrusion detection. In Proceedings of
International Conference on Cybemorlds, pages 486 - 493,
December 2003.

[I51 R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and
K. Das. The 1999 d q a off-line intrusion detection evalua-
tion. ACM Transactions on Information and System Security,
34(4):579-595, October 2000.

[16] Y. G. Liu, K. F. Chen, X. F. Liao, and W. Zhang. A genetic
clustering method for intrusion detection. Pattern Recogni-
tion, 37(5):927-942, May 2004.

[171 Y.-H. Liu, D.-X. Tian, and A.-M, Wang. Annids: intrusion
detection system based on artificial neural network. In Pro-
ceedings uf International Conference on Machine Learning
and Cybernerics. volume 3, pages 1337-1 342. November
2003.

1181 J. McHugh. Testing intrusion detection systems: A critique
of the 1998 and 1999 darpa intrusion detection system evalu-
ations as perfonned by lincoln laboratory. ACM Transactions
on Information, System and Security, 3(4):262-294, Novem-
ber 2000.

[19] S. Mukkamala, A. H. Sung, and A. Abraham. Intrusion de-
tection using an ensemble of intelligent paradigms. Network
and Computer Applications, 28(2): 167-182, April 2005.

[20] B. Pfahringer. Winning the kdd99 classification cup: Bagged
boosting. SIGKDD Explorations, 1 (2):6566,2000.

I211 S. T. Sarasamma. Q. A. Zhu, and J. Huff. Hierarchical
kohonenen net for anomaly detection in network security.
IEEE Transactions on Systems, Man and Cybernetics, Part

[22] D. Song, M. I, Heywood, and A. N. Zincir-Heywwd. Train-
ing genetic programming on half a million patterns: An ex-
ample from anomaly detection. IEEE Transactioins on Evo-
lutionary Computatioin, 9(3):255-239, June 2005.

[23] S. Stolfo and et al. The third international knowledge discov-
ery and data mining twls competition [online]. Available:
http://kdd.ics .uci.edu/databases/kddCup99/kddCup99.html,
2002.

B, 35(2):302-312, April 2005.

[24] C. Zhang, J. Jiang, and M. Kamel. Intrusion detection using
hierarchical neural networks. Parrern Recognition Larfers, In
Press, Corrected Proof, Available online, November 2004.

1251 Z. Zhang and H. Shen. Online training of svms for real-
time intrusion detection based on improved text categoriza-
tion model. Computer Communications. In Press, Uncor-
rected Proof, Available online, February 2005,

6

Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05)
0-7695-2415-X/05 $20.00 © 2005 IEEE

