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Abstract—Intelligent visual surveillance for road vehicles is a
key component for developing autonomous intelligent
transportation systems, In this paper, a probabilistic model for
prediction of traffic accidents using 3D model based vehicle
tracking is proposed. Sample data including motion
trajectories are first gbtained by 3D model based vehicle
tracking. A fuzzy self-organizing neural network algorithm is
then applied to learn activity patterns from the sample
trajectories. Vehicle activities are finally predicted by locating
and matching each observed partial trajectory with the learned
activity patterns, and the occurrence probmbility of a traffic
accident is determined. Experiments with a model scene show
the effectiveness of the proposed algorithm.

Index Terms—3D model based wehicle tracking, Activity
patterns, Prediction of traffic accidents

1. INTRODUCTION

RAFFIC is of great importance in a modern society. The
Teffcctive management of traffic, especially of road vehicles,

has become an urgent problem to be solved. Traffic
surveillance using monitoring cameras has already been widely
applicd incurrent traffic management. However, current methods
depend on human observation of captured video sequences of
images. This requires a great deal of human work and does not
allow a real time response to abnormal events.

With computer vision and image processing methods,
intelligent 1affic surveillance systems perform localization,
tracking andrecognition of vehicles invideo sequences captured
by road cameras with little or no human intervention, and further
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analyze the activities of vehicles to give semantic descriptions
based on the tracking results. This can facilitate daily traffic
management and allow an immediate response when abnormal
events occur, consequently providing a more advanced and
feasible surveillance scheme.

Traffic accidents are abnormal events in traffic scenes. Fa
reaktime system can predict accidents accurately in advance and
then generate a warning, many traffic accidents may be avoided.
Atthe same time the system canpurposefully record the event as
it devetops. 1f the accident does indeed occur. the responsibifity
for the accident can be judged by the captured video sequences.

Some researchers have studied vision-based traffic anomaly
detection that is based on motion detection [6]. Anomaly
prediction is quite different from anomaly detection in that
anomaly prediction aims at avoiding anomaly occurrence and
anomaly detection is 1o detect an occured anomaly. Anomaly
prediction is more challenging.

Inthis paper. we study the prediction of traffic_accidents using
3D model based vehicle tracking. Our work demonstrates the
feasibility of a vision system to automatically predict traffic
accidents. The main contributions of this paper are as follows:

*  Anovel framework of traffic accident prediction is presented.
« A probability model for predicting traffic accidents is
constructed.

II. RELATED WORK

Visual surveillance for road vehicles generally includes three
steps: motion detection, vehicle tracking, and activity
understanding and description. In the following, we discuss
briefly the state-of-the-art of current algorithms for 3D model
based vehicle tracking, understanding and description of vehicle
activities that are closely related to the work presented in this
paper.

A. 3D Model based Vehicle Tracking

For visual surveillance in traffic scenes. 3D model based
vehicle tracking algorithms have been studied widely.
Researchers at the University ofReading[1, 2} and the University
of Karlsruhe [4, 5] have contributed greatly to 3D modelbased
vehicle localization and tracking.

The main advantages of vehicle localization and tracking
aigorithms based on 3D models are:

*  The introduction of prior knowledge of the 3D contour or
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surfaces of vehicles makes the algorithms robust even under
occlusion or interference between nearby image motions.

*  After setting up the geometric comespondence between 2D
image coordinates and 3D world coordinates by camera
calibration, the algorithms naturzally acquire the 3D pose of
vehicles under the Ground-Plane Constraint.

* The algorithms can be applied in cases where vehicles
greatly change their orientations.

Vehicle localization and tracking algorithms based on 3D
models have some disadvantages such as the requirement for 3D
models, high computational cost, ete.

BU nderstanding and Interpretation of Vehicle Activities

Over the last decade, some efforts have been devoted to
devising methods for vehicle activity understanding and
interpretation {14, 15]. Fraile et af. [7] approximate and classify
vehicle trajectories in a known ground plane. Each trajectory
segment is assigned to one of the four classes: ahead, left, right,
and stop. The trajectories are simplified into stringsconsisting of
4 symbols, and then classifiéd by HMMs (Hidden Markov
Models). Hagg and Nagel [8] employ fuzzy predicate logic
calculus to interpret complex traffic scenarios. However, they
believe that a probabilistic approach would provide a more
suitable method to deal with the intrinsically uncertain and
incomplete nature of the data provided by the images. Neumann
er al. [9] establish a 3D scene description sequence’, which
inciudes the data detected in a traffic scene such as directions,
positions and times of vehicles, etc. Then, they build up a scene
framework by error-driven learning and inverse tracking in a
connected network. Based on this method, Bell and Pau {10
develop an object-oriented logic program system for image
interpretation and apply it to vehicle recognition in real scenes.
Huang et af. [11] use a dynamic network structure in a visual
surveillance system for highways. Remagnino er af. [13] present
an event-based visual surveillance system for monitoring
vehicles and pedestrians that supplies word descriptions for
dvnamic activities in 3D scenes. Jung et al. [13] study
content-based event retrieval using semantic scene interpretation
for automated traffic surveillance. Femyhough er al. [23]
establish the spatio-temporal region by learning the results of
tracking vehicles in video sequences and construct qualitative
event models by qualitative reasoning and statistical analysis.

[II. OVERVIEW OF THE PROPOSED SCHEME

Qur traffic accident surveillance scheme is composed of three
main modules: 3D model based vehicle tracking, leamning of
activity patterns and prediction of traffic accidents (as shown in
Fig. 1}. The module 6r 3D model based vehicle tracking is
implemented by matching the 3D vehicle models constructed in
advance with thecalibratedimage sequences. The outputs of this
module are the 3D trajectories of vehicles and the features of
vehicles such as size. These outputs form the sample data for
learning activity patierns. After obtaining ¢nough sample data,
we can learn the distribution of vehicle activity patterns from the
dara using a fuzzy self-organizing neural network. The activity
patterns can be thought as the classification of vehicles’

activities. b the module for traffic accident prediction, partial

trajectories are matched to the learned activity patterns, and the

occurrence probability of an accident is inferred from a

probabilistic model. Such a probabilistic mode! needs to meet the

following requirements: ’

*  For two moving vehicles, we measure the matching degrees
between the observed partial trajectories and all activity
patterns by locating and matching the two current partial
trajectories in the activity patterns.

*  Using the informationabout current positions of vehicles,we
compute the probability of vehicle collision if the two
vehicles move aleng two trajectories corresponding to two
certain activity patterns.

By analyzing the probability sequence of vehicle collision,

appropriate actions canbe taken tohand potential accidents (e. g.

send a warning to the driver, record the scene, etc).

1 Sampiedata (Vchicle features
and trajectories)

I Learning of activity patterns I

3D model base:
vehicle ‘

tracking /Activity patterns of vehicv

Fig. 1. Qverview ofthe proposedtraffic accident surveillance scheme

Traftic accident prediction j
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Fig. 2. Overview of 3D model based vehicle tracking.

The procedure for 3D model based vehicle tracking is shown in
Fig. 2. The video captured by a calibrated camera is transformed
into an image sequence. For each image. motion detection is
conducted, Regions of interest ROIs} that contain moving
vehicles are detected. Each ROI is handled independently. if a
new moving target is found, the tracking procedure is initialized
by recognizing its vehicle type and assigning a n initia! value to its
pose. After the initialization, the tracking takes place using pose
prediction and pose refinement. Pose prediction is the estimation
ofthe position of the vehicle in the current frame. This pasition is
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the initial value for pose refinement. Pose refinement invelves a
search for the optimal mapping between the projected 3D model
and the 2D image data Readers may refer to our previous paper
[16. 17] for further details.

V, LEARNING ACTIVITY PATTERNS

From the information derived from the 3D model based vehicle
tracking, we can acquire the training data that are used to learn
vehicle activity patterns.

Qur training data are composed of trajectories and features of
moving vehicles. Trajectories are sampled at = fixed rate (once
every Af frames), Given a vehicle o, we represent the world

coordinates of the centroid at the #th sampling as (X, ;). After

T, that is

sampling # times, we obtain a point sequence [,

composed of n pairs of world coordinates:
T, = {00, Y (e, Y ) (5 ¥ el Xy Y (0 Y

We use (&,.0v) (& =x,-X . &=y,-%) w©
represent the velocity of the moving vehicle at time i. The

movement of vehicle o s represented by set J, composed of n

O =USodirfan i}

f, ={x,.y,.8,6). Similar trajectory coding schemes are

flow Vectors: where

used in[3.19-22]. The features of vehicle o such as size and shape

are represented by F, . so the input data become

X, ={F,,0,} . Inthis paper, we only consider the size of the

vehicle, Natyrally, the method can be easily extended to include
more features such as shape, color, texture, etc. Thus the training
data sampled for vehicle o are represented as

X, ={size, i, [ i Foas 1o

We use the neural network structure shown in Fig. 3 to learn
vehicle activity patterns. Whole trajectory curves are used as the
input to the network In this way neurons in the input layer
represent a complete trajectory whereas neurons in the output
layer correspond to a class of trajectories. If there are n sampling
points on a trajectory, the input vector corresponding to this
tryjectory includes the components: ’

(SiZC’,x.,yp&ﬁ,@\’.,xz:yzyaxz:ayzs"'x,,:y.,.-&,,, é’a)

Fig. 3. Neural network structure

We use the fuzzy self-organizing neural network to train the
neural network. Readers may refer to 12] for details. After the
learning is completed, the activity patterns of vehicles can be
represented with the output reurons. If there are X output
neurons, the number of activity-patterns is K. Thus we can geta

set of activity patterns {T.},i=1,2,..K

V1. PREDICTION OF TRAFFIC ACCIDENT§

After the vehicle activity patterns are acquired, we can predict
the future trajectory along which a vehicle will move using the
weights of neurons according to the observed partial trajectory.
According to their body shapes and sizes, we can further predict
whether vehicles will come into collision or not.

Given part of a trajectory {{,),(x,, ¥, ),-.4% .2, )}, we can
acquire a corresponding sub-sample:

X=(S'1'.z€x|:y]3&(7‘3]13x’z3y2=&2:‘5’29'--sxmsyml&m9®m)
The prediction of vehicle motion is obtained by computing the
degree of matching between the partial sequence A" and each
pattern T, in the activity pattern set {I;} . The process to
predict traffic accidents includes the following major steps:

* Locate partial test sequence X ina certain activity pattern
T,.

*  Compute matching degree P(T; | X') between partial test
sequence X and activity patiern T, .

*  Compute the probability of collision between two vehicles.
A, Locating Test Sequence X in Pattern T,

Suppose that the length of the partial test sequence X is ™
and the length of patter trajectory T; is # (m < ). Since the

starting point X{x,,) ) in X may not correspond io the
starting point T,{x,, ¥} in T, . we should find the segment in
to X The

X ={(x, %), (%3, ¥2 ) (%,,, ¥, )} 18 aCI0ally asequence varying

with time. The last point in the test trajectory is very impotant o
the localization task because it denotes the current position of the
vehicle. Thus, we locate the test trajectory in the patterns

referring to the last point A(x,,, 3, ). The points in the test
trajectory X donot contribute equally to the matching between X
and the patterns. We can see that the current point X (x,, ¥, )

pattern I, most similar test  trajectory:

contributes most, the X (x__,,¥,_,} second, ..., and the
starting point X(%,, ;) least. Therefore we introduce a weight
w(j) for each point (X, ¥ ;}:
Ll
w()=e ™ ,j=12..m n

Let Ti =T 05,0 %0 Yo 80 0 X Ve s O B
Xpomts Vismets Opamt s W amy ) - The weighted distance between
X and T, can be defined as:
D, =(s, =sizef’ + i((T.(Xh )= X0 +(T (W ) - XY

al
HI B0 1) = XE)F +TB1 )~ X8I0 @
If the distance between the sub-sequence starting with point
T.(x,,¥,) and partial trajectory X becomes minimum we
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choose T, as the sub-sequence in T, whichisclosest to X .In
other words, when partial trajectory X belongs to pattern 7, , the

sub-sequence starting with point 7, {X,, ¥, } best matches X .

B.D egree of Maiching
Detine the distance between pattern 7, and partial trajectory
X as p= Ain{D,} The degrees of matching between T,

and X'is calculated by: pp | oy . Vo, | (3)

SiD)
1=l
where X is the total number of activity patterns and D is the

distance between X and the sub-sequence in Tl which best

matches X

C.  Prediction of collision
Suppose that the observed partial trajectory of vehicle 4 is X,
and that of vehicle Bis Y. the occurrence probability in which
vehicie 4 and vehicle B will caome into collision can be calculated
by the feilowing items:
1) The probability that partial trajectory X belongs to each
patern P(T, 1 .X):
2} The probability that partial ajectory ¥ belongs to each
patern P(T, | 1)
3) The probability of coliision when partial trajectory .X belongs
10 pattern T, and partial trajectory } belongs to pattern TJ.

ftem 3 can be denoted as a function of T and T/:

SUX THY.T ) = {? . )

where "0" denotes no collision and “1" denotes collision.
Then the occurrence probability B(X, ) of vehicie 4 with

observed trajectory .Vand vehicle 8 with observed trajectory V'

coming into collisionat a later time is computed by:

K &
BN = Y ATIOAT INATLTY ()
=l =l
where X is the size of the pattern set.
The problem here is to decide the value of the

function f((X.T;):(Y, Tj ). For simplicity. we represent a

vehicle witha rectangular box bounding the vehicle projection on
the ground plane. Thus whether the collision would happen or
not ¢can be formutated as whether the two rectangular boxes of
certain sizes would intersect or not at certain time.

In Fig.4, the twosolid lines represent respectively the patterns

T and T,- in the partern set; the solid points are sample points at

equal times in the two corresponding patterns; the arrowheads
show the direction of motion:the two rectangles bonded wiih the
solid lines represent the vehicle projections at the current time:
and the rectangles bounded with the dashed lines represent the
vehicle projections after some time if the two vehicies move along
the two patterns. Suppose that attime ¢, vehicle A is at position

A(x,,¥;) , with direction
of motion (&x,,8¥,) ,

and vehicle B is at
position B (x5, ¥, ), with
direction  of  motion
(&,,8y,) - The length
of the rectangle for

vehicle 4 is L, and the
width of the rectangle is
#.The Iength of the
rectangle for vehicle B is L5,
and the width of the rectangie is ¥ The algorithm for judging
whether vehicles A and B will come into collision is described as
follows:

t = the current time fy;

WHILE(Sample points in patterns 7, and Tj both exist)

!
BEGIN
Compute intersection points between each line segment in one
rectangle and each line segment in another one attime £
IFthere are 1 points of intersection
THEN FOR each point of intersection
BEGIN

Compute distance ¢, between the pointand 4 {x, ¥,) :

Collision?

Fig. 4. Collision Judgment

Compute distance ¢/, between the point and
B (xza y: ) :
IF (d, <L+ 1 2yor (dy <3/ +W2 12)
THEN RETURN collision:
END
t =t + the sampling time:
END

RETURN no coilision:

In fact. itisnotaceurate enough to judge vehicle collision with
Formula (4) when partial trajectories.Vand Ybelong respectively
1o patterns 7, and T}. The probability of collision is mlated to

time ¢ when the collision may happen. and curremt time 1, The
longer the predicted collision time ! is away from current time o,
the tess likely thecollision. On the contrary. the closer time ¢ is to
currenttime . the more likelv the collision. So when the above
geometric conditionof vehicle collision is satisfied. we introduce
an weight function ro Formula (4) which is thus improved in the
following fashion:
0

Ui ) (6)

e lao*

SUX.T (Y. T )=

(r=to )"
where ‘0" stands for no collision. and e ¥ is the
probabilitv of collision. Assume that thedriver’s response time is
A fames. that is to say. if the driver knows the danger /2 trames
ahead. the collisions might be avoided. We consider that the
probability distribution should be changed fast at this time. so
c=h.
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VII. EXPERIMENTS

All the algarithas were implemented using Visual C++ 6.0 on
the Windows 2000 platform Since it is difficult and dangerous to
capture or simulate accidents in real
scencs, we have carried out our
experiments in an indoor model of a
real traftic scene (as shown n Fig.5).
‘The model is of size 2.4m*2.4n1 The
model  includes a crossroads.
parking lots, one-way roads and
multilane roads, etc. Furthermore it
also involves many events such as turning lefl. turning right,
entering and leaving. The model also includes radio- controtled
toy cars. Because the algorithns for vehicle localization and
tracking are based on 3D models. we have also made 3D
wire -frame models for the toy cars.

We have implemented a reaHime 3D model based vehicle
tracking sysiem in the traffic model scene. By driving the toy cars,
we can acquire a scries of trajectories. By leaming these
irajectories, we can obtain the activity patterns that are used to
realize the prediction of car collision. Since all experiments are
based on 3D model bascd tracking. all the data used in the
experiments are ina single world coordinate system In order to
show the experiment results more intuitively, the trajectories in
the following figuresoverlaid in the i 5

Fig. 6 shows 400 trajectorics
acquired by 3D model based
vehicle tracking. The learning
results of activity patterns are
shown in Fig. 7. in which the black
lines  represent the trajeclory
samples and the white ones
denote the learned activity
patterns. The results appear Lo be satisfaciory since there are no
osciltations and the lcarncd patterns are consistent with thé
samples. 1

Twa test instances are shown in
Fig. 8 and Fig. 9 in which the
vehicles are tracked accurately
using 3D wire-frame vehicle models.
The image sequences are sampled
once cvery three frames. The
figure for frame 45 in Fig. 8 isata
larger size in order toshow the projected wire-frame model more
clearly.

Table 1 shows the occurrence probability of collision for test
image sequence 1. The ficst row shows the results of Formula (5)
with Formula @), and the sccond row shows the results with
Formula (%) to which the weight function is introduced. Test
image sequence | shows a casein which two vehicles come close
but do not collide. In Table i, the probability shown in row 1
begins to decrease from frame 33, whereas that shown in row 2
begins to decrease obviously from frame 30. This shows that the
probability with weight analysis is better for prediction than that
without weight anaiysis since the two vehicles do not at last
collide, But it is still very dangerous that the vehicles in the test
sequence approached each otherso closely. Thusat frame 27, the

3 ey

Fig. 5. A model traffic scene

Fig. &. Trajectory samples

Fig. 7. Learned activity patterns

probabilitics in two rows areboth above 70%, which can serve as
a warning indicator.

frame 45
Fig. 8. Image sequence 1 for test

frame 42

frame27 frame 30
Fig. 9. Image sequence 2 for test

frame 24

Table 2 shows the probabilities of vehicle collision in Fig. 9,
where collision actually occurred. The two rows show the
probabilities with and without weight analysis respectively. We
can secthat, just before the collision occurs, the probabilities with
weight analysisobservedin frame s 27 and 30are larger than those
without weight analysis . Sothe possibilities with weight analysis
are also better for prediction than those without weight analysis.

Fig. 10 shows the experimental results for other 7 image
sequences. The solidcurves represent the probability sequences
corresponding b the cases in which collisions happen. The
dash-dot curves correspond to the cases in which collisions do
not happen but the vehicles comeclose to each other, The dotted
curves correspond to the cases in which no danger exists.
Because in the initial frames there is too little information, the
collision probabilities predicted in the initial sampling phase are
instable. In practice, we just ignore the first few frames. We set a
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threshold to discriminate between the normal and dangerous
situations, shown as line b in Fig. 10. When the probability of
collision is above a predefined threshold, collision is predicted.
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Fig. 10. Anmalysis of traffic accidence prediction

VIL

We have presented a probabilitv mode! for traffic accident
prediction. We first obtain sample data including motion
trajectories by 3D model based vehicle tracking. We then
¢siablish a probability mode! for predicting traffic accidents. We
predictthe trajectory along which a vehicle willmove by matching
its current partial trajectory with thelearned activity patterns. and
turther calculate the possibility in which two vehicles will cotlide.
Experiments for traffic accident predictionare performed based on
the 3D model based vehicle tracking svstem. The results
demonstrate the effectiveness of the proposed algorithms,

CONCLUSIONS
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