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Abstract— This paper presents a novel discriminative method
for estimating 3D shape from a single image with 3D Morphable
Model (3DMM). Until now, most traditional 3DMM fitting
methods depend on the analysis-by-synthesis framework which
searches for the best parameters by minimizing the difference
between the input image and the model appearance. They are
highly sensitive to initialization and have to rely on the stochas-
tic optimization to handle local minimum problem, which is
usually a time-consuming process. To solve the problem, we find
a different direction to estimate the shape parameters through
learning a regressor instead of minimizing the appearance
difference. Compared with the traditional analysis-by-synthesis
framework, the new discriminative approach makes it possible
to utilize large databases to train a robust fitting model which
can reconstruct shape from image features accurately and
efficiently. We compare our method with two popular 3DMM
fitting algorithms on FRGC database. Experimental results
show that our approach significantly outperforms the state-
of-the-art in terms of efficiency, robustness and accuracy.

I. INTRODUCTION

Since the seminal work of Blanz and Vetter [9], the 3D
Morphable Model (3DMM) has been widely used to estimate
3D shape from image data, with applications ranging from
relighting [39], super-resolution [25] to pose robust face
recognition [10]. Given a single face image under unknown
pose and illumination, the 3D Morphable Model can solve
its 3D shape, texture, pose and illumination parameters
simultaneously following analysis-by-synthesis framework,
where Gauss-Newton optimization is applied to minimize the
difference between the synthetic image and the input image.

The original 3DMM has shown its robustness to com-
plicated pose and illumination conditions and provides a
promising way to face recognition in the wild due to the
explicit pose and illumination recovery [10]. However, the
fitting process of 3DMM is very time-consuming and suffers
from local minimum problem just as other Gauss-Newton
based methods. In the last decade, many researchers have
made their efforts to improve the efficiency and accuracy of
3DMM fitting algorithm. On one hand, [30] extended the
Inverse Compositional Image Alignment (ICIA) to 3DMM
fitting, improving the efficiency by pre-computing the deriva-
tive of the cost function. [38], [2] adopted the spherical har-
monic reflectance model, making the appearance estimation
completely linear. [8], [26], [1] concentrated on estimating
shape with a sparse set of 2D landmarks, providing an
efficient linear method for shape fitting. On the other hand,
[31] presented a Multi-Features Framework (MFF) to handle
the local minimum problem, where a smoother objective
function is constructed by considering contours, textured

edges, specular highlights and pixel intensities jointly, lead-
ing to the state-of-the-art in both robustness and accuracy.
Besides 3DMM, there have proposed some algorithms which
can estimate 3D information from a single image. [23] used
the CCA mapping to transform the image from the pixel
space to the depth space, [22] adopted the shape-from-
shading framework to recover the 3D shape, [21] used the
SIFT-FLOW to estimate the depth image and [11] proposed
a regression method to transfer the expression from video to
3D model.

However, existing methods still have some disadvantages.
For landmark based algorithms [8], [26], [1], since the only
input information is the landmark positions, they heavily
depend on the face alignment algorithm. Unfortunately in
many cases, even though the landmarks look fine on the
image, they are not accurate enough for 3D shape fitting,
especially those on the eyebrow, nose and contour. Thus
directly estimating 3D shape from landmarks is usually
unreliable. Traditional analysis-by-synthesis 3DMM fitting
algorithms [10], [31] are mainly based on explicitly mod-
elling the image formation process and estimating shape
parameters by appearance fitting. It has been shown that
these methods heavily rely on the quality of initialization
and have to adopt the stochastic optimization to avoid local
minimum [2]. As a result, most of them are computationally
expensive and always need more than one minute to fit a
single face image. Besides, most training sets of 3DMM
are very small (100 to 500 samples) due to the difficulty in
collecting complete face scans, thus the appearance model
of 3DMM is always too weak to cover the large variations
of face appearance, especially in the wild. Since the central
problem of analysis-by-synthesis framework is fitting the
model appearance to the input image, the weak expressive
ability of appearance model will lead to non-accurate results.

In this paper, we discuss 3DMM in the context of face
alignment and find a new direction to overcome the prob-
lems described above. Instead of the traditional analysis-
by-synthesis framework, we propose a novel discriminative
3DMM fitting algorithm based on local features and cascade
regression. In section 2, we introduce the 3D Morphable
Model. In section 3 we highlight our motivation by briefly
revisiting face alignment algorithms. Then we propose the
discriminative 3DMM fitting in section 4 and discuss some
implemental details in section 5. In the experiments, we
show that our algorithm outperforms existing 3DMM fitting
methods in both accuracy and efficiency.



II. 3D MORPHABLE MODEL

3D Morphable Model [9] is constructed from a set of 3D
face scans in dense correspondence. Each scan is represented
by a shape-vector S = (x1, y1, z1, ..., xn, yn, zn) and a
texture-vector T = (r1, g1, b1, ..., rn, gn, bn), which contain
the coordinate and the color of each point respectively. The
points are dense enough (n > 10000) to directly represent a
human face. PCA is applied to decorrelate texture and shape
vectors respectively and a 3D face can be described as:

S = s+

m−1∑
i=1

αi · si T = t+

m−1∑
i=1

βi · ti (1)

where m − 1 is the number of eigenvectors, s and t
are the means of shape and texture respectively, si and
ti are the ith eigenvectors, α = (α1, α2, ..., αm−1) and
β = (β1, β2, ..., βm−1) are shape and texture parameters
determining S and T . With the shape and texture model, a
synthetic image can be generated by projecting the 3D face
onto the image plane by weak perspective projection:

s2d = fpr(s+

m−1∑
i=1

αi · si + t3d) (2)

where s2d is the image coordinates after projection, f is the
scale parameter, p is the constant orthographic projection
matrix, r is the rotation matrix and t3d is the translation
vector in 3D space. We represent γ = (f, r, t3d) as the pose
parameters of 3DMM.

In the fitting process, the 3DMM solves the parameters
by minimizing the Euclidean distance between the synthetic
image and the input image:

E =
∑
x,y

‖Iinput(x, y)− Isyn(x, y)‖2 (3)

where Iinput(x, y) is the input image and Isyn(x, y) is
the 3DMM synthetic image. Usually, the stochastic Gauss-
Newton method is adopted to minimize the cost function.

III. MOTIVATION

In general, 3DMM can be seen as a branch of face
alignment which concentrates on fitting a face model to the
input image. Recently, the face alignment in 2D has greatly
advanced and can be readily applied in real applications.
In this section, we discuss 3DMM in the context of face
alignment, seeing how the techniques in 2D could help to fit
the 3DMM.

The central problem of face alignment is minimizing the
difference between the input image and the face model.

P = arg min
P
‖Tr(I)− Tr(M(P ))‖2 (4)

where I is the input image, M(P ) is the face model with
parameters P which can give rise to an observed face
image and Tr is a transformation which is usually a feature
extractor. Based on Equ. (4) explicitly or implicitly, the
optimization can be summarized as an iterative updating
process:

∆Pt = RF (I, Pt−1) Pt = Pt−1 + ∆Pt (5)

where Pt is the model parameters in the current iteration,
F (I, Pt−1) is a feature extraction function depending on the
input image I and the parameters in the last iteration and
R is an updater that maps the features F to the parameter
update ∆Pt. Three modules can be seen from Equ. (5):
the model parameter P represents how to model a human
face; the feature extractor F (I, Pt−1) represents what kind
of information is used for alignment, and the updater R
represents how to use the information.

It is obvious that 3DMM also belongs to the face align-
ment framework, where P is the PCA coefficients of shape
and texture model, F (I, Pt−1) is either the pixel inten-
sity [9], landmark [1] or Multi-Features [31] and R is
constructed from the Jacobian of a cost function like Equ. (3).
It is promising to discuss the achievements of 2D face
alignment in recent years and introduce them into 3DMM
fitting. In the last decade, a number of seminal works have
been proposed to find accurate and robust fitting methods
in 2D alignment. We will briefly review these works on the
three topics of P, F,R and extend their ideas to reinforce
3DMM fitting.

Active Appearance Model (AAM) AAM [13] which is
characterized by its explicit shape and appearance model, has
been widely used to match deformable objects to images in
early years of face alignment. In AAM, the face shape is
defined by a sparse set of landmarks and the appearance
is based on the warped images on the reference frame.
PCA is applied on landmark vectors and shape-free textures
to construct face model just as 3DMM. In fitting process,
AAM searches the best parameters that minimize the distance
between the model instance and the input image by either
the generative fitting [14], [24], [35] which obtains the
updater from the Jacobian of the distance function or the
discriminative fitting [13], [32], [15] which directly learns
a regressor to map the image difference to the parameter
update.

Constrained Local Model (CLM) CLM [17], [16], [33],
[5], [20], [36], [7] represents an object using local image
patches around landmarks. It inherits the PCA shape model
from AAM, but discards the holistic appearance model and
learns landmark detectors instead. During fitting process,
the landmark detectors provide the response maps showing
the distribution of probable landmark locations and then
the shape parameters are estimated by maximizing the sum
of responses of landmarks constrained by a priori. The
fitting methods of CLM are also divided into generative
methods [33], [20], [36] and discriminative methods [5],
while the latter dramatically outstand in both accuracy and
robustness.

Non Parameter Model (NPM) NPM [18], [12], [37]
further removes any explicit PCA constrains on shape and
directly uses landmark coordinates as shape model. Besides,
robust features like HOG and SIFT are adopted to describe
local spatially-coherent observations of landmarks which are
proven to be more robust than image pixel and response
map. Furthermore, the cascade regression [18], [6], where
independent regressors are trained for each iteration, fully



TABLE I
SUMMARY OF AAM, CLM AND NPM IN THE FRAMEWORK OF FACE

ALIGNMENT.

Method Model (P) Feature (F) Updater (R)

AAM PCA shape model
PCA appearance model Image Pixel Generative or

Discriminative

CLM PCA shape model Response Map Generative or
Discriminative

NPM None HOG or SIFT All
Discriminative

utilizes the flexibility of NPM and keeps the robustness at the
same time, making NPM dramatically outperforms any other
models and shows the state-of-the-art in face alignment [37].

Table I summarizes AAM, CLM and NPM in the frame-
work of face alignment. In the evolution of face alignment
from AAM to NPM, the holistic PCA constraints are pro-
gressively removed and more robust features are adopted to
handle complicated variations. With the removal of shape
constraints, discriminative methods show better performance
over generative methods, especially with cascade regression.

These achievements in 2D face alignment can provide
promising clues for 3DMM. Current 3DMM fitting methods
are based on modelling the physical process of forming a
face image and minimizing the difference between the input
image and the model appearance, which obviously belongs
to the generative fitting framework [32]. It has been shown
that this framework heavily relies on the simulation of the
image forming process and the quality of initialization [24].
Besides, the minimization is very slow and easy to get stuck
in local minimum [2]. Fortunately, these problems could be
solved by discriminative fitting method which directly learns
a regression based fitting model from a large training set just
as NPM.

However, directly applying discriminative fitting frame-
work has some difficulties. Firstly, unlike the sparse land-
marks in 2D, the shape model of 3DMM is much denser
with tens of thousands of points, which makes the regression
matrix too large to learn. Secondly, there is no database con-
taining visual image and complete face scan pairs, leading
to the lack of training set for discriminative methods.

In the following sections, we will adopt discriminative
methods to fit 3DMM and illustrate how to preprocess
existing databases to construct a training set.

IV. DISCRIMINATIVE 3DMM FITTING

In this section, we show how to use the discriminative
method instead of the analysis-by-synthesis framework to
estimate shape parameters.

A. Derivation of Discriminative 3DMM Fitting

As in [37], we start from the traditional fitting process.
Given an image I , we want to estimate its 3D shape by
minimizing the difference between the synthetic and the
input image. However in many cases, the optimization will
converge to a local minimum far from the global one [31].

Thus we project both the input and the synthetic images
into a new space with a transformation Tr, where the cost
function is smoother.

P = arg min
P
‖f(P )‖2 f(P ) = Tr(I)−Tr(G(P )) (6)

where P is the model parameters, G(P ) is the synthesis
process that can generate an image from 3DMM and Tr
is an unknown transformation. For simplicity, we assume
Tr(G(·)) is differentiable and use Gauss-Newton method to
optimize Equ. (6).

From an initial estimate P0, we apply Taylor expansion to
f(P ) and minimize the cost function by equally optimizing
the following function over ∆P .

arg min
∆P

f(P0 + ∆P )T f(P0 + ∆P ) (7a)

f(P0 + ∆P ) = f(P0) + Jf∆P (7b)

where Jf is the Jacobian of f . Taking the derivation of
Equ. (7a) over ∆P and setting it to zero, we get an update
to P0.

∆P0 = −(JTf Jf )−1JTf f(P0)

= −(JTf Jf )−1JTf (Tr(I)− Tr(G(P0)))
(8)

It is unlikely that the optimization can converge at a single
iteration, thus Equ. (8) is iterated by several times.

∆Pt = −((JTf Jf )−1JTf )|P=Pt−1
(Tr(I)− Tr(G(Pt−1)))

(9a)
Pt = Pt−1 + ∆Pt (9b)

While in fact, we do not know the form of Tr and can
not get the difference in the Tr space. Note that (Tr(I) −
Tr(G(Pt−1))) depends on the image I and model param-
eters Pt−1, if we can extract features with F (I, Pt−1) that
implicitly reflects the “goodness” of current fitting and learn
a linear regressor A to map the features to the difference
in Tr space, we can rewrite (Tr(I) − Tr(G(Pt−1))) as
AF (I, Pt−1). Then Equ. (9a) becomes:

∆Pt = −((JTf Jf )−1JTf A)|P=Pt−1
F (I, Pt−1)

= RtF (I, Pt−1)
(10)

Note that we merge A into the updater Rt to directly
map features to parameter update. According to the Super-
vised Descent Method (SDM) [37], we can get a list of
R = (R1, . . . , RT ) through learning instead of numerical
approximation. During the testing process, the regressor list
will give a sequence of descent directions so that the P0 will
converge to the ground truth.

Pt = Pt−1 +RtF (I, Pt−1) (11)

How to determine Equ. (11) is the central problem of
discriminative 3DMM fitting. This function depends on the
model parameters P , regressor R, and features extractor
F (I, P ).

Even though the appearance model of 3DMM is weak, the
shape model can describe most of the real-world data due to
the relative small variations of face shapes [22]. Besides, the



performance of CLM and NPM has shown that it is robust
to directly estimate shape information without appearance
fitting. Thus we discard the appearance model of 3DMM
and only consider the shape PCA coefficients α and the weak
perspective projection pose parameters γ in Equ. (1)(2) and
let P = {α, γ}. In the next two subsections, we provide
details of the feature extractor and the regression function.

B. Feature Extraction

This section illustrates how to extract features. The HOG
features around landmark positions are used as the feature
extractor. We mark a set of landmarks on the 3D model
following the Multi-PIE [19] 68 points mark-up, as shown
in Fig. 1. In each iteration t, with pose and shape parameters

Fig. 1. The landmarks marked on the 3D face model

Pt−1 = {αt−1, γt−1}, the 3D shape is constructed by
Equ. (1) and projected to image plane by Equ. (2). Then the
HOG on the landmark positions are extracted as the features
in the current iteration:

F (I, P ) = HOG(I, [fpr(s+

m−1∑
i=1

αi · si + t3d)]l) (12)

where the f, p, r, t3d, s, α have the same meanings as in
Equ. (1)(2) and the subscript l means only the landmark
points are selected.

C. Learning for Regression

In this section, we describe how to learn the regressor list
R = (R1, . . . , RT ) in Equ. (11) from a training set. Note that
Equ. (11) is in fact the process of cascade regression, thus we
train independent Rt for each iteration. Given a set of face
images {I1, . . . , In}, their initial estimates {P 1

0 , . . . , P
n
0 }

and ground truth parameters {P 1
∗ , . . . , P

n
∗ }, we want to

minimize the expected loss between the predicted update
and the optimal update for all the training samples in each
iteration:

arg min
Rt

n∑
i=1

‖(P i∗ − P it−1)−RtF (Ii, P it−1)‖2 (13)

Writing Equ. (13) as matrix formation, we get:

arg min
Rt∥∥∥∥∥∥∥∥

 P 1
∗
...
Pn∗


T

−

 P 1
t−1
...

Pnt−1


T

−Rt

 F (I1, P 1
t−1)

...
F (In, Pnt−1)


T
∥∥∥∥∥∥∥∥

2

(14a)

= arg min
Rt

‖∆Pt −RtFt−1)‖2

(14b)
where ∆Pt is the optimal parameter update (ground truth

minus current), and Ft−1 is the features extracted with
current parameters for each training sample. Equ. (14b) can
be solved directly by linear method:

Rt = ∆PtF
T
t−1(Ft−1F

T
t−1 + λE)−1 (15)

where E is the identity matrix and λ is the regularization
term that avoids over fitting. Usually after each iteration, Pt
will be closer to P∗ than Pt−1, and with Pt we have a new
training set and can run another iteration with Equ. (15) until
coverage. In our experiments, the algorithm converges in 4
to 5 steps.

V. DATA PRE-PROCESSING

To train a discriminative fitting model, we need a database
with a large collection of visual images and corresponding
3D face shapes. However, unlike face alignment in 2D, the
training set cannot be constructed by hand labelling because
3DMM shape model has tens of thousands of points. While
using face scanners like Cyberware [34] or multiple ABW-
3D [27] to collect complete face scans is so expensive and
troublesome that the number of training samples is limited.
The lack of training set is probably the main reason for the
absence of discriminative fitting method in 3DMM.

A. Depth Image Registration

Compared with collecting complete face scans, only get-
ting depth images is relatively easier and such work has
been done in FRGC [28]. FRGC provides a large database
with thousands of visual and depth image pairs in full
correspondence, as shown in Fig. 2.

Fig. 2. Samples in FRGC, containing the visual images and corresponding
depth images

However, the depth images in FRGC are not “complete”,
they contain much noise, holes and large missing data. Be-
sides, for training purpose the 3D face scan for each sample
should have the same semantical meaning (for example,
the kth point corresponds to the left eye corner in all the



samples). To make the raw data usable, registering a template
to depth images for filling holes, estimating missing patches
and making every scans in full correspondence are necessary.

The optimal non-rigid ICP algorithm [4] can register a
template to any target surface with the same semantic. It
searches for the best deformation for each point by min-
imizing a cost function with 3 terms: the distance term
which minimizes the distances between the template points
and their closest target surface points, the stiffness term
which penalises the differences of the transformations of
neighbouring points, and the landmark term which guides
the initialization and minimizes the distances between cor-
responding landmarks. Although the optimal non-rigid-ICP
has shown its good performance in the construction of BFM
face model [27], it has difficulty in handling large missing
regions, because there are no closest points for the distance
term in these regions and only stiffness constraint alone will
give bad results as in Fig. 3(b).

To deal with large missing patches, we fit a 3DMM to
constrain the template points falling onto the missing regions.
Since the distance term provides a set of correspondences
between template points and target points, a 3DMM can be
fitted with the target point positions by common 3D-3DMM
fitting methods [3]. Note that 3DMM is controlled by PCA
coefficients, the missing regions are automatically estimated.
In the registration process, for the template points having
no closest points on the target surface, we find their closest
points on the fitted 3DMM instead. Thus every point will
have a distance term constraint. Fig. 3(c) shows the results
of the new method, the filling of missing regions is smooth
and looks reasonable.

The registered template can be seen as an approximation
of the complete face scan. Since we have known the position
of every point of 3DMM, we can get the best fitted pose and
shape parameters through:

arg min
(α,γ)

‖Rig − fr(s+

m−1∑
i=1

αi · si + t3d)‖2 (16)

where Rig is the point positions of registered template,
f, r, t3d, s, α, γ have the same meanings as in Equ. (1)(2).
Fig. 4 shows the comparison of depth image, registered
template and best fitted 3DMM. We can see that even though
the best fitted 3DMM loses some details because of the
limited expressive ability of PCA shape model, it is close
to the depth image. In the training process, the best fitted
parameters will be used as the target of regression.

B. Training Data Augmentation

Considering the success of 2D face alignment in recent
years, we use the landmarks detected by SDM [37] to
initialize pose and shape parameters. To achieve better gen-
eralisation ability, we augment the training set by randomly
disturbing the bounding box and running SDM to get multi-
ple groups of landmarks for each sample, as shown in Fig. 5.

It can be seen that the bounding box may affect landmark
detection seriously and the eyebrow and border landmarks

(a)

(b)

Fig. 4. 3D shapes of two subjects. For each subject, left is the depth image,
middle is registered template and right is the best fitted 3DMM shape.

Fig. 5. The augmentation of initialization.

are always not accurate enough. The non-accuracy of initial-
ization is very common in automated 3DMM reconstruction
system and the augmentation is found to be helpful to achieve
the robustness to rough initialization.

VI. EXPERIMENTS

We use the Basel Face Model (BFM) [27] as our 3D
Morphable Model and conduct fitting experiments on the
Spring2004range subset of Face Recognition Grand Chal-
lenge (FRGC) [28] database. The BFM provides a PCA
shape model with 53490 vertices computed from 200 face
scans. It can cover most of face shapes in the real world but
cannot handle expressions. In our experiment, we eliminate
the ear, neck and forehead regions because they are less
important and easily occluded by hair and clothes. The pro-
cessed model has 39226 vertices left. The Spring2004range
has 2114 samples. Each sample consists of a frontal face
image and a depth image with pixels in full correspondence.
The faces with expression are discarded due to the limitation
of BFM, with 1443 samples left.

For each sample in the database, the registration method
in section 5.1 is used to get the target parameters and the
face alignment algorithm is used to localize the landmarks for
initialization. The landmarks are detected automatically using
DPM face detector [40] and SDM face alignment [37], and
most alignment results are accurate except for few samples
(less than 10). As for error measure, we consider the depth
image in FRGC as the ground truth shape of each sample.
In the testing process, we first project the reconstructed 3D
shape to a depth image, and the Root Mean Square Error



(a) (b) (c)

Fig. 3. (a) is the target surface, (b) is the results of optimal non-rigid ICP, (c) is the results of our registering method.

(RMSE) between the reconstructed depth image and the
ground truth is measured as the fitting error. Invalid regions
including holes and missing patches are ignored. Training
and testing are conducted in 10-fold cross-validation without
identity overlapping to measure all the 1443 samples in the
database.

We compare our method with two popular 3DMM fitting
algorithms. The first is the Multi-Features Framework (MF-
F) [31] which considers landmark, contour, textured edge and
pixel intensity jointly to fit a 3DMM. It is the state-of-the-
art of traditional analysis-by-synthesis based methods. The
other is the landmark based fitting method [2] which only
uses landmarks to estimate 3DMM shape. It heavily depends
on the accuracy of landmark but is much more efficient than
MFF. Besides, the method also claims to be the state-of-the-
art on a synthetic database with provided landmarks.

Considering facial component region (including eye, nose
and mouth regions of BFM in [27]) is more important in most
face applications and the cheek area is always occluded by
hair in FRGC, we conduct two experiments by computing
error on full face and facial component area respective-
ly. Fig. 6 shows the Cumulative Error Distribution (CED)
curves of the three methods and Table II shows the mean
error of all 1443 samples. Clearly our method outperforms
both MFF and the landmark based method. Besides, Fig. 8
shows some fitting results of landmark based method, Multi-
Features Framework, and discriminative 3DMM fitting. The
resulting shapes are lightened by a frontal light to highlight
the difference. Note that in the first row the MFF and
landmark based method both fail because the non-accurate
landmarks give a bad initialization. However, our method
still converges to an accurate shape, showing the robustness
to rough initialization. In Fig. 7, we show some fitting results
of real world images. Although without ground truth shapes,
we can see the fitting results are reasonable in visual sense.

In addition to the fitting accuracy, the running time per-
formance of our method is also promising. It takes about 12
mins to train 6500 samples and 0.9s to fit a testing image

on a 3.4GHz Intel Core i7 computer, which is close to the
landmark based method (0.2s) and faster than MMF which
needs about 69.58s to fit an image on 3.0GHz Intel Pentium
IV [29].

Fig. 6. First: fitting accuracy on facial component region. Second: fitting
accuracy on full face.

VII. CONCLUSIONS

We have proposed a novel discriminative 3DMM fitting
algorithm, where the 3D shape is estimated by directly



Fig. 8. Comparison of landmark based method, MFF and our method. First column: visual images and landmarks; Second column: depth images; Third
column: results of landmark based method; Fourth column: results of MFF. Last column: results of ours.

TABLE II
MEAN ERROR OF LANDMARK BASED METHOD, MFF AND OUR METHOD

Region Landmark MultiFeatures Ours
Facial Component 8.0837 7.8820 5.3505

Full Face 9.9956 9.5051 6.8849

regressing image features instead of minimizing a cost func-
tion with Gauss-Newton methods. The resulting method is
highly accurate, robust and efficient. Experimental results on
FRGC suggest that our approach significantly outperforms
the popular landmark based method and the state-of-the-art
Multi-Features Framework.

Despite the outstanding performance of our discriminative
3DMM fitting method, there is still large room for future
improvements. For example, by training the fitting model on
a database containing visual and depth image pairs in the
wild, it may be able to handle more complicated scenarios.
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