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ABSTRACT
For the last ten years, face biometric research has been intensively studied by
the computer vision community. Face recognition systems have been used in
mobile, banking, and surveillance systems. For face recognition systems, face
spoofing attack detection is a crucial stage that could cause severe security issues
in government sectors. Although effective methods for face presentation attack
detection have been proposed so far, the problem is still unsolved due to the
difficulty in the design of features and methods that can work for new spoofing
attacks. In addition, existing datasets for studying the problem are relatively
small which hinders the progress in this relevant domain.

In order to attract researchers to this important field and push the bound-
aries of the state of the art on face anti-spoofing detection, we organized the Face
Spoofing Attack Workshop and Competition at CVPR 2019, an event part of
the ChaLearn Looking at People Series. As part of this event, we released the
largest multi-modal face anti-spoofing dataset so far, the CASIA-SURF bench-
mark. The workshop reunited many researchers from around the world and the
challenge attractedmore than 300 teams. Some of the novel methodologies pro-
posed in the context of the challenge achieved state-of-the-art performance. In
this manuscript, we provide a comprehensive review on face anti-spoofing tech-
niques presented in this joint event and point out directions for future research
on the face anti-spoofing field.
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Preface
Biometric face recognition has achieved great success in the last few years, es-
pecially with the great progress in deep learning. Face recognition systems have
been widely used in diverse applications, such as mobile phone unlocking, secu-
rity supervision systems in railway or subway stations, and other access control
systems. However, as promising as face recognition is, there also exist poten-
tial flaws that should be addressed in practice. For instance, user photos can
be easily found in social networks and used to spoof face recognition systems.
These face presentation attacks make authentication systems vulnerable. There-
fore, face anti-spoofing technology is important to protect sensitive data, such
as the user’s face image and privacy in smartphones and similar devices. In this
context, we organized the Chalearn Looking at People on face anti-spoofing
competition, an academic challenge focusing on such important problems and
relying on a new large-scale dataset created for the task, the CASIA-SURF
dataset.

This book presents a comprehensive review of solutions developed by chal-
lenge participants of the face anti-spoofing challenge at CVPR 2019. The mo-
tivation behind organizing such a competition and a brief review of the state
of the art are provided. The dataset associated with the challenge is introduced
and the results of the challenge are analyzed. Finally, research opportunities are
outlined. This book provides in a single source, a compilation that summarizes
the state of the art in this critical subject, and we foresee the book becoming a
reference for researchers and practitioners on face recognition.

We would like to thank all participants in the face anti-spoofing challenge
at CVPR 2019, who provided us the abundant material, especially the top three
winning teams. Also, we would like to thank Morgan & Claypool publishers for
working with us in producing this book.

Jun Wan, Guodong Guo, Sergio Escalera, Hugo Jair Escalante, and Stan Z. Li
July 2020
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C H A P T E R 1

Motivation and
Background

1.1 INTRODUCTION
As an important branch of biometric analysis, face recognition (FR) is being
increasingly used in our daily life for tasks such as phone unlocking, access au-
thentication and control, and face-based payment [Chingovska et al., 2016, Yi
et al., 2014]. Because of its wide applicability and usage, FR systems can be
an attractive target for identity attacks, e.g., unauthorized people trying to get
authenticated via face presentation attacks (PAs), such as a printed face pho-
tograph (print attack), displaying videos on digital devices (replay attack), or
3D masks attack. These PAs make face recognition systems vulnerable, even if
they achieve near-perfect recognition performance [Bhattacharjee et al., 2018].
Therefore, face presentation attack detection (PAD), also commonly known as
face anti-spoofing, is a critical step to ensure that FR systems are safe against
face attacks.

1.1.1 FORMULATION OF THE PROBLEM
In order to counteract PADs, most existing approaches formulate the problem
as either binary classification, one-class classification, or binary classification
with auxiliary supervision.

BinaryClassification. Most of research has relied on on handcrafted fea-
tures (mainly texture-based ones) combined with a binary classifier distinguish-
ing genuine vs. spoof images [Boulkenafet et al., 2017a, de Freitas Pereira et al.,
2013, Komulainen et al., 2013a, Patel et al., 2016b, Yang et al., 2013]. In fact,
recent methods based on deep learning adhere to this formulation, using fea-
tures learned with a convolutional neural network (CNN) and a softmax layer
as classifier.

One-classClassification. Because the two-class formulations are in gen-
eral not robust for real-world scenarios due to the poor generalization perfor-
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mance in the presence of novel attack types [Fatemifar et al., 2019a, Nikisins
et al., 2018], some authors [Arashloo et al., 2017, Fatemifar et al., 2019a,b] have
treated the face anti-spoofing problem as one of anomaly detection, and have ad-
dressed this task with one-class classifiers. Compared to two-class classification
methods, one-class classification can be robust to previously unseen and inno-
vative attacks [Arashloo et al., 2017]. For instance, in Fatemifar et al. [2019a],
the anomaly detectors used for face anti-spoofing include four types: one-class
Support Vector Machine (SVM), one-class sparse representation-based classi-
fier, one-class Mahalanobis distance, and one-class Gaussian mixture model.

Binary Classification with Auxiliary Supervision. Recently, some au-
thors have resorted to auxiliary information for face anti-spoofing. Atoum et al.
[2017] use, for the first time, facial depth maps as supervisory information,
where two-stream CNNs are used to extract features from both local patches
and holistic depth maps. Liu et al. [2018] propose a method by fusing features
from depthmaps and temporal rPPG signals.Then, Shao et al. [2019] use depth
information as auxiliary supervision to learn invariant features between cross do-
mains. These works demonstrate the effectiveness when auxiliary information
are used with binary classification [Atoum et al., 2017, Liu et al., 2018, Shao
et al., 2019].

1.1.2 MOTIVATION
State-of-the-art face PAD algorithms, such as those developed in the context
of the IAPRA Odin project1 [Jourabloo et al., 2018, Liu et al., 2018], have
achieved high recognition rates in the intra-testing evaluation (i.e., training and
testing with the same dataset). However, they generally show low performance
when a cross-testing scenario is considered (i.e., training and testing data come
from different datasets). Therefore, face PAD remains a challenging problem,
mainly due to lack of generalization capabilities of existing methods. The latter
is largely due to the fact that current face anti-spoofing databases do not have
enough subjects (�170), or lack enough samples (�6; 000 video clips) [Zhang
et al., 2019b] compared with image classification [Deng et al., 2009] or face
recognition databases [Yi et al., 2014]. This severely limits the type of methods
that can be used to approach the PAD problem (e.g., deep learning models).
Another missing feature in existing datasets (e.g., Chingovska et al. [2016],

1https://www.iarpa.gov/index.php/research-programs/odin
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Erdogmus and Marcel [2014]) is the availability of multi-modal information.
This sort of extended information may be very helpful for developing more ro-
bust anti-spoofing methods. The above-mentioned problems seriously hinder
novel technology developments in the field.

A detailed comparison of the public face anti-spoofing datasets are shown
in Table 1.1. Clearly, the number of subjects and samples included in most
datasets is limited, also they mostly consider RGB information only. We note
that the MSU-USSA dataset [Patel et al., 2016b] is not shown in Table 1.1.
That is because MSU-USSA includes many objects from other existing PAD
datasets, such as Idiap, CASIA-FASD, and MUS-MFSD. In order to fair com-
parison, we exclude MSU-USSA.

Besides, in order to study the impact that data scarcity has had in the
development of PAD methods, and in general to deal with previous drawbacks,
we released a large-scale multi-modal face anti-spoofing dataset, called CASIA-
SURF [Zhang et al., 2019b]. The data set consists of 1,000 different subjects
and 21; 000 video clips with three modalities (RGB, Depth, IR). Based on this
dataset, we organized the Chalearn LAP multi-modal face anti-spoofing attack
detection challenge collocated with CVPR2019. The goal of this competition was
to boost research progress on the PAD in a scenario where plenty of data and
different modalities are available. Details on the challenge can be found on the
challenge website.2 More than 300 academic research and industrial institutions
worldwide participated in this challenge, and ultimately 13 teams entered at the
final stage.

The success of the challenge and outstanding solutions proposed by par-
ticipants has motivated this compilation that aims at capturing a snapshot
of the progress in face anti spoofing detection methodologies. The contribu-
tions of this volume can be summarized as follows. (1) We describe the design
of the Chalearn LAP multi-modal face anti-spoofing attack detection challenge.
(2) We organized this challenge around the CASIA-SURF dataset [Zhang
et al., 2019b, 2020], proving the suitability of such resource for boosting re-
search in the topic. (3) We report and analyze the solutions developed by par-
ticipants. (4) We point out critical points on the face anti-spoofing detection
task by comparing essential differences between a real face and a fake one from
multiple aspects, discussing future lines of research in the field.

2Reader can apply this dataset via the link: https://sites.google.com/qq.com/face-anti-spoofing/
welcome/challengecvpr2019?authuser=0.
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1.2 BACKGROUND

1.2.1 DATASETS
Most of existing face anti-spoofing resources only consider the RGB
modalitiy including Replay-Attack [Chingovska et al., 2012a] and CASIA-
FASD [Zhang et al., 2012] datasets. The latter being two widely used datasets
in PAD community. Even the recently released SiW [Liu et al., 2018] dataset
is not the exception, despite the fact this dataset was collected with high reso-
lution and image quality. With the widespread application of face recognition
in mobile phones, there are also some RGB datasets recorded by replaying face
video with smartphone or laptop, such as MSU-MFSD [Wen et al., 2015],
Replay-Mobile [Costa-Pazo et al., 2016], andOULU-NPU [Boulkenafet et al.,
2017b].

As attack techniques are changing constantly to adapt to security improve-
ments, new types of presentation attacks (PAs) have emerged including 3D [Er-
dogmus and Marcel, 2014] and silicone masks [Bhattacharjee et al., 2018],
which are more realistic than traditional 2D attacks. Therefore, the drawbacks
of visible cameras are revealed when facing these realistic face masks. Fortu-
nately, some new sensors have been introduced to provide more possibilities for
face PAD methods, such as depth cameras, muti-spectral cameras, and infrared
light cameras. Kim et al. [2009] aim to distinguish between the facial skin and
mask materials by exploiting their reflectance. Kose and Dugelay [2013] pro-
pose a 2D C 3D face mask attacks dataset to study the effects of mask attacks,
but the related dataset is not public. 3DMAD [Erdogmus and Marcel, 2014]
is the first publicly available 3D masks dataset, which is recorded using Mi-
crosoft Kinect sensor and consists of the Depth and RGB modalities. Another
multi-modal face PAD dataset is Msspoof [Chingovska et al., 2016] that con-
tains visible (VIS) and near-infrared (NIR) images of real accesses and printed
spoofing attacks with � 21 objects.

However, these existing datasets in the face PAD community have two
common limitations. On the one hand, they all comprise a limited number of
subjects and samples, resulting in potential risk of over-fitting when face PAD
algorithms are tested on these datasets [Chingovska et al., 2012a, Zhang et al.,
2012]. On the other hand, most of the existing datasets are captured with a visi-
ble camera that only includes the RGBmodality, causing a substantial portion of
2D PAD methods to fail when facing new types of PAs (3D and custom-made
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silicone masks). For the Chalearn LAP multi-modal face anti-spoofing attack
detection challenge we released a novel dataset described in detail in Chapter 2.
This dataset is the largest of its kind and comprises multiple modalities, over-
comming the drawbacks of existing resources.

1.2.2 METHODS
Face anti-spoofing has been studied for decades now and great progress has
been achieved recently in the field. In this section we briefly survey the most
representative methodologies for approaching the problem. We mainly split the
methods into two groups: traditional methods and deep learning-based meth-
ods.

Traditional Methods
Some previous works attempted to detect the evidence of liveness (e.g., eye-
blinking) for detecting spoofing attacks [Bharadwaj et al., 2013, Kollreider et al.,
2008, Pan et al., 2007, Wang et al., 2009]. Other works were based on contex-
tual [Komulainen et al., 2013b, Pan et al., 2011] and motion [De Marsico et al.,
2012, Kim et al., 2013, Wang et al., 2013] information. To improve the robust-
ness to illumination variation, some algorithms have adopted HSV and YCbCr
color spaces [Boulkenafet et al., 2016, 2017a], or worked on the Fourier spec-
trum [Li et al., 2004]. All of these methods have used handcrafted features, such
as LBP [Chingovska et al., 2012b, Maatta et al., 2012, Ojala et al., 2002, Yang
et al., 2013], HoG [Maatta et al., 2012, Schwartz et al., 2011, Yang et al., 2013],
SIFT [Patel et al., 2016b], SURF [Boulkenafet et al., 2017a], DOG [Tan et al.,
2010], and GLCM [Schwartz et al., 2011]. They are fast enough and have rel-
atively satisfactory performance, but they have been evaluated only for in small
publicly available face spoof datasets, hence they may have poor generalization
capabilities.

Information fusion methods have been proposed trying to obtain a more
general and effective countermeasure against a variation of attack types. Tronci
et al. [2011] proposed a linear fusion at a frame and video level. Schwartz
et al. [2011] introduced feature level fusion by using Partial Least Squares
(PLS) regression based on a set of low-level feature descriptors. Some other
works [de Freitas Pereira et al., 2013, Komulainen et al., 2013c] presented an
effective fusion scheme by measuring the level of independence of two anti-
counterfeiting systems. However, these fusion methods focus on score or fea-
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ture level, and not on the modality level (i.e., the information that is combined
comes from the same source), due to the lack of multi-modal datasets.

Deep Learning-Based Methods
Recently, deep learning-based methods have been introduced into the face PAD
community. Some works [Feng et al., 2016, Li et al., 2016, Patel et al., 2016b,
Yang et al., 2014] attempt to learn features by utilizing the convolutional neu-
ral networks (CNN) in an end-to-end manner. Concurrent to the supervision
of using a softmax loss, some other works use auxiliary supervision module in
CNN. Atoum et al. [2017] utilizes the face depth maps as supervisory infor-
mation for the first time for face PAD. Then, Liu et al. [2018] design a novel
CNN-RNN network architecture to leverage two auxiliary information (the
Depth map and rPPG signal) as supervision with the goals of improving gener-
alization. Shao et al. [2019] use depth as auxiliary supervision to learn invariant
features for cross-domain face anti-spoofing. Jourabloo et al. [2018] introduce
a new perspective for solving the face anti-spoofing by inversely decomposing a
spoof face into the live face and the spoof noise pattern. Wang et al. [2020] take
deep spatial gradient and temporal information to assist depth map regression
and Yu et al. [2020] propose a novel frame-level FAS method based on Cen-
tral Difference Convolution (CDC), which is able to capture intrinsic detailed
patterns via aggregating both intensity and gradient information. Despite its
competitive performance, these methodologies exhibit poor generalization ca-
pabilities during a cross-testing evaluation due to the small sample size.

With the goal of providing enough data for deep learning methodologies,
and motivating the development of methods with better generalization capa-
bilities, we released a large data set and organized a challenge around it. The
next chapter introduces the CASIA-SURF data set and the remaining chap-
ters present the results and the solutions developed by participants. As it can be
seen below, novel and very effective methodologies have been developed in the
context of this effort.
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C H A P T E R 2

Multi-Modal Face
Anti-Spoofing Challenge

In this chapter, we first introduce CASIA-SURF the largest multi-modal
dataset for the study of face anti-spoofing. Then, we briefly describe the chal-
lenge organized around this dataset.

2.1 CASIA-SURF DATASET

As previously mentioned in Chapter 1, all of existing datasets for face anti-
spoofing detection involve fewer subjects and most of them consider a single
modality. Although the publicly available datasets have driven the development
of face PAD and continue to be valuable tools for this community, they have
several limitations that hinder the development of face PAD in different ways.
Particularly, there are still challenging problems under specific conditions that
require higher recognition accuracy, e.g., face-based payment or unlocking of
devices.

In order to address current limitations in PAD, we collected a new face
PAD dataset, namely, the CASIA-SURF dataset. To the best our knowledge,
CASIA-SURF is currently the largest face anti-spoofing dataset, containing
1,000 Chinese subjects in 21,000 videos. Another motivation in creating this
dataset, beyond pushing the research on face anti-spoofing, is to explore recent
face spoofing detection models performance when considering large-scale data.
In the proposed dataset, each sample includes one live video clip, and six fake
video clips under different attacks (one variety of attack per fake video clip). In
the different attack styles, areas covering eyes, nose, mouth, or their combina-
tions were cut from printed flat or curved facial images. As a result, six varieties
of attacks were included in the CASIA-SURF dataset. The fake clips for a par-
ticular subject are illustrated in Fig. 2.1. Detailed information of the six attacks
is given below.
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Figure 2.1: Six attack variants considered in the CASIA-SURF dataset.

• Attack 1: One person holds his/her flat face photo where eye regions
are cut from the printed face.

• Attack 2: One person holds his/her curved face photo where eye re-
gions are cut from the printed face.

• Attack 3: One person holds his/her flat face photo where eyes and nose
regions are cut from the printed face.

• Attack 4: One person holds his/her curved face photo where eyes and
nose regions are cut from the printed face.

• Attack 5: One person holds his/her flat face photo where eyes, nose,
and mouth regions are cut from the printed face.

• Attack 6: One person holds his/her curved face photo where eyes, nose,
and mouth regions are cut from the printed face.

2.1.1 ACQUISITION DETAILS
Weused the Intel RealSense SR300 camera to capture the RGB,Depth, and In-
frared (IR) videos simultaneously. In order to obtain the attack faces, we printed
the color pictures of the collectors using A4 paper. During the video recording,
the subjects were required to do some actions, such as turning left or right, mov-
ing up or down, walking in or away from the camera. Moreover, the face angle
of performers were asked to be less than 30ı. Performers stand within the range
of 0.3–1.0 meters from the camera. The diagram of data acquisition procedure is
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Figure 2.2: Illustrative sketch of recordings setups in the CASIA-SURF dataset.

shown in Fig. 2.2, showing how was it recorded the multi-modal data via Intel
RealSence SR300 camera.

Four video streams including RGB, Depth, and IR images were captured
at the same time, plus the RGB-Depth-IR aligned images using RealSense
SDK. RGB, Depth, IR, and aligned images are shown in the first column
of Fig. 2.3. The resolution is 1280 � 720 for RGB images, and 640 � 480 for
Depth, IR and aligned images.

2.1.2 DATA PREPROCESSING
In order to make the dataset more challenging, we removed the complex back-
ground except face areas from original videos. Concretely, as shown in Fig. 2.3,
the face area was obtained through the following steps. Although there is lack
of face detection for Depth and IR face images, we have a RGB-Depth-IR
aligned video clip for each sample. Therefore, we first use Dlib [King, 2009]
to detect faces for every frame of RGB and RGB-Depth-IR aligned videos,
respectively. The detected RGB and aligned faces are shown in the second col-
umn of Fig. 2.3. After face detection, we applied the PRNet [Feng et al., 2018]
algorithm to perform 3D reconstruction and density alignment on the detected
faces. The face area (namely, face reconstruction area) is shown in the third
column of Fig. 2.3. Then, we defined a binary mask based on non-active face
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Figure 2.3: Preprocessing details of the three modalities of the CASIA-SURF
dataset.

reconstruction area from previous step. The binary masks of RGB and RGB-
Depth-IR images are shown in the fourth column of Fig. 2.3. Finally, we ob-
tained face area of RGB image via pointwise product between RGB image and
RGB binary mask. The Depth (or IR) area can be calculated via the pointwise
product between Depth (or IR) image and RGB-Depth-IR binary mask. The
face images of three modalities (RGB, Depth, IR) are shown in the last column
of Fig. 2.3.
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Table 2.1: Statistical information of the proposed CASIA-SURF dataset

Training Validation Test Total

# Objects 300 100 600 1,000

# Videos 6,300 2,100 12,600 21,000

# Original images 1,563,919 501,886 3,109,985 5,175,790

# Sample images 151,635 49,770 302,559 503,964

# Cropped images 148,089 48,789 295,644 492,522

2.1.3 STATISTICS
Table 2.1 presents the main statistics of the CASIA-SURF dataset. From such
a table we can notice the following.

(1) There are 1,000 subjects and each one has a live video clip and 6 fake
video clips. Data contain variability in terms of gender, age, glasses/no glasses,
and indoor environments.

(2) Data are split in three sets: training, validation, and test. The training,
validation, and test sets have 300, 100, and 600 subjects, respectively. Therefore,
we can get 6,300 (2,100 per modality), 2,100 (700 per modality), and 12,600
(4,200 per modality) videos for its corresponding set.

(3) From original videos, there are about 1:5 million, 0:5 million, and 3:1

million frames in total for training, validation, and test sets, respectively. Ow-
ing to the huge amount of data, we select one frame out of every 10 frames and
formed the sampled set with about 151K, 49K, and 302K for training, valida-
tion, and test sets, respectively.

(4) After data prepossessing in Section 2.1.2, by removing non-detected
face poses with extreme lighting conditions, we finally get about 148K, 48K,
and 295K frames for training, validation, and testing sets on the CASIA-SURF
dataset, respectively.

All subjects are from China, and the information of gender statistics is
shown on the left side of Fig. 2.4. This figure shows that the ratio of female is
56:8% while the ratio of male is 43:2%. In addition, we also show age distribu-
tion for the CASIA-SURF dataset on the right side of Fig. 2.4. One can see a
wide distribution of age ranges from 20 to more than 70 years old, while most
of subjects are under 70 years old. On average, the range of Œ20; 30/ ages is dom-
inant, being about 50% of all the subjects. A clear limitation of the dataset is
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Figure 2.4: Statistical gender and age distribution of the CASIA-SURF dataset.

that it is biased in terms of ethnicity, we are working on extending this resource
to include more diversity in this aspect.

2.1.4 EVALUATION PROTOCOL
Cross-testing. The cross-testing protocol uses the training set of CASIA-
SURF to train the deep models, which are then fine-tuned on the target training
dataset (e.g., the training set of SiW [Liu et al., 2018]). Finally, we test the fine-
tuned model on the target test set (e.g., the test set of SiW [Liu et al., 2018]).
The cross-testing protocol aims at simulating performance in real application
scenarios involving high variabilities in appearance and having a limited num-
ber of samples to train the model.

Intra-testing. For the intra-testing protocol, information associated with real
(live) faces and Attacks 4, 5, 6 was used for the training and validation sets.
The training set is used to train the algorithm models while the validation set is
used for model selection. Then, the live faces and Attacks 1, 2, 3 were used as
the test set for final evaluation. This protocol is used for the evaluation of face
anti-spoofing methods under controlled conditions, where training and test set
belong to the CASIA-SURF dataset. The main reason for selecting the different
attack types in the training and test set was to increase the difficulty of face anti-
spoofing detection task. In the experiments section, we will show that there is
still a big room for improvement under the ROC evaluation metric, especially,
how to improve the true positive rate (TPR) at the little value of false positive
rate (FAR), such as FAR D 10�5.
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2.2 CHALLENGE BASED ON THE CASIA-SURF
DATASET

In this section, we briefly describe the organized challenge, including the evalu-
ationmetric and the challenge protocol.We relied on theCASIA-SURFdataset
for the organization of the ChaLearn Face Anti-spoofing Attack Detection Chal-
lenge. Accordingly, the CASIA-SURF data set was processed as follows.

1. The dataset was split in three partitions: training, validation, and testing
sets, with 300, 100, and 600 subjects, respectively. This partitioning cor-
responds to 6,300 (2,100 per modality), 2,100 (700 per modality), and
12,600 (4,200 per modality) videos for the corresponding partitions.

2. For each video, we retained 1 out every 10 frames to reduce its size. This
subsampling strategy results in: 148K, 48K, and 295K frames for training,
validation, and testing subsets, respectively.

3. The background except face areas from original videos was removed to
increase the difficulty of the task.

Evaluation. In this challenge, we selected the recently standardized ISO/IEC
30107-31 metrics: Attack Presentation Classification Error Rate (APCER),
Normal Presentation Classification Error Rate (NPCER), and Average Clas-
sification Error Rate (ACER) as the evaluation metrics. These are defined as
follows:

APCER D FP= .FPC TN/ (2.1)

NPCER D FN= .FN C TP/ (2.2)

ACER D .APCERC NPCER/ =2; (2.3)

where TP, FP, TN, and FN corresponds to true positive, false positive, true
negative, and false negative, respectively. APCER and BPECER are used to
measure the error rate of fake or live samples, respectively. Inspired by face
recognition, the Receiver Operating Characteristic (ROC) curve is introduced
for large-scale face anti-spoofing detection in CASIA-SURF dataset, which can
be used to select a suitable threshold to trade off the false positive rate (FPR)
and true positive rate (TPR) according to the requirements of real applications.
Finally, the value TPR@FPRD 10�4 was the leading evaluation measure for

1https://www.iso.org/obp/ui/iso
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this challenge. APCER, NPCER, and ACER measures were used as additional
evaluation criteria.

Challenge protocol. The challenge was run in the CodaLab2 platform, and
comprised two stages as follows.

Development Phase: (Started: Dec. 22, 2018–Ended: in March 6, 2019).
During this phase participants had access to labeled training data and unlabeled
validation samples. Participants could use training data to develop their models,
and they could submit predictions on the validation partition. Training data
were made available with samples labeled with the genuine and three forms of
attack (4,5,6). Whereas samples in the validation partition were associated with
genuine and three different attacks (1,2,3). For the latter dataset, labels were not
made available to participants. Instead, participants could submit predictions on
the validation partition and receive immediate feedback via the leader board.The
main reason for including different attack types in the training and validation
dataset was to increase the difficulty of FAD challenge.

Final phase: (Started: March 6, 2019–Ended: March 10, 2019). During
this phase, labels for the validation subset were made available to participants,
so that they can have more labeled data for training their models. The unlabeled
testing set was also released, participants had to make predictions for the testing
partition and upload their solutions to the challenge platform. The considered
test set was formed by examples labeled with the genuine label and three attack
types (1,2,3). Participants had the opportunity tomake three submissions for the
final phase, this was done with the goal of assessing stability of their methods.
Note that the CodaLab platform defaults to the result of the last submission.

The final ranking of participants was obtained from the performance of
submissions in the testing sets. To be eligible for prizes, winners had to pub-
licly release their code under a license of their choice and provide a fact sheet
describing their solution.

2.3 DATASET APPLICATION
We cooperated with a startup SurfingTech,3 which helped us to collect the
face anti-spoofing data. This company focuses on data collection, data label-

2https://competitions.codalab.org
3http://surfing.ai/
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ing, as well as it sells collected data with accurate labels. All participants had
a monetary compensation and signed an agreement to make data public for
academic research. If the industry company wants to use it, it has to buy the
source data from SurfingTech. If you interested in this dataset, you can ap-
ply it in the link https://sites.google.com/qq.com/face-anti-spoofing/dataset-
download/casia-surfcvpr2019.
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C H A P T E R 3

Review of Participants’
Methods

This section describes the top-ranked solutions developed in the context of the
ChaLearn Face Anti-spoofing attack detection challenge. Additionally, we also
describe the baseline which we have developed for the competition.

3.1 BASELINE METHOD

We developed a strong baseline method associated with the challenge. Our
aim was to provide a straightforward architecture achieving competitive per-
formance in the CASIA-SURF dataset. In doing this, we approached the face
anti-spoofing problem as a binary classification task (fake vs. real) and con-
ducted experiments using the ResNet-18 [He et al., 2016] classification net-
work. ResNet-18 consists of five convolutional blocks (namely res1, res2, res3,
res4, res5), a global average pooling layer, and a softmax layer, which is a rela-
tively shallow network but has strong classification capabilities.

3.1.1 NAIVE HALFWAY FUSION
As described before, the CASIA-SURF dataset is characterized for beingmulti-
modal (i.e., RGB, Depth, IR) and one of the main problems to solve is how to
fuse the complementary information from the three available modalities. For
the baseline, we use a multi-stream architecture with three subnetworks where
RGB, Depth, and IR data are processed separately by each stream, and then
shared layers are appended at a point to learn joint representations and decisions.
Halfway fusion is one of the commonly used fusion methods, which combines
the subnetworks of different modalities at a later stage, i.e., immediately after
the third convolutional block (res3) via the feature map concatenation (similar
to Fig. 3.1, except no “Squeeze-and-Excitation” fusion). In this way, features
from different modalities can be fused to perform classification. However, direct
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Figure 3.1: Diagram of the proposed method. Each stream uses the ResNet-
18 as the backbone, which has five convolutional blocks (i.e., res1, res2, res3,
res4, res5). The res1, res2, and res3 blocks are proprietary to extract features of
each modal data (i.e., RGB, Depth, IR). Then, these features from different
modalities are fused via the squeeze and excitation fusion module. After that,
the res4 and res5 blocks are shared to learn more discriminatory features from
the fused one. GAP means the global average pooling.

concatenating these features cannot make full use of the characteristics between
different modalities by itself.

3.1.2 SQUEEZE AND EXCITATION FUSION
Since different modalities have different characteristics, the RGB information
has rich visual details, the Depth data are sensitive to the distance between the
image plane and the corresponding face, and the IR data measure the amount
of heat radiated from a face. These three modalities have different advantages
and disadvantages for different ways of attack. Inspired by Hu et al. [2018a],
we proposed the squeeze and excitation fusion method that uses the “Squeeze-
and-Excitation” branch to enhance the representational ability of the different
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modalities’ features by explicitly modeling the interdependencies between their
convolutional channels.

As shown in Fig. 3.1, our squeeze and excitation fusion method has a
three-stream architecture and each subnetwork is feed with the image of differ-
ent modalities. The res1, res2, and res3 blocks are proprietary for each stream to
extract the features of different modalities. After that, these features are fused
via the squeeze and excitation fusion module. This module newly adds a branch
for each modal and the branch is composed of one global average pooling layer
and two consecutive fully connected (FC) layers. The squeeze and excitation fu-
sion module performs modal-dependent feature re-weighting to select the more
informative channel features while suppress less useful ones for each modal, and
then concatenates these re-weighted features to the fused feature. In this way,
we can make full use of the characteristics between different modalities via re-
weighting their features.

3.2 PARTICIPANTS’ METHODS
This section describes the solutions developed by top-ranked partici-
pants [Parkin and Grinchuk, 2019, Shen et al., 2019, Zhang et al., 2019a] of
the ChaLearn face anti-spoofing attack detection challenge.

3.2.1 1ST PLACE (TEAM NAME: VISIONLABS)
Attack Specific Folds. Because attack types at test time can differ from at-
tacks presented in the training set, in order to increase the robustness to new
attacks, Parkin and Grinchuk [2019] splits training data into three folds. Each
fold contains two different attacks, while images of the third attack type are
used for validation. Once trained, one treats three different networks as a single
model by averaging their prediction scores.

Transfer Learning. Many image recognition tasks with limited training
data benefit from CNN pre-training on large-scale image datasets, such as Im-
ageNet [Deng et al., 2009]. Fine tuning network parameters that have been
pre-trained on various source tasks leads to different results on the target task.
In the experiments, Parkin and Grinchuk [2019] use four datasets designed for
face recognition and gender classification (please see Table 3.1), to generate a
useful and promising initialization. They also use multiple backbone ResNet
architectures and losses for initial tasks to increase the variability. Similar to
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Table 3.1: Face datasets and the CNN architecture are used to pre-train the
networks of VisionLabs [Parkin and Grinchuk, 2019]

Backbone Dataset Task

1 ResNet-34 CASIA-Web face [Yi et al., 2014] Face recognition

2 ResNet-34 AFAD-lite [Niu et al., 2016] Gender classifi cation

3 ResNet-50 MSCeleb-1M [Guo et al., 2016] Face recognition

4 ResNet-50 Asian dataset [Zhao et al., 2018] Face recognition

networks trained for attack-specific folds in the last paragraph, authors average
predictions of all the models trained with different initializations.

Model Architecture. The final network architecture is based on the
ResNet-34 and ResNet-50 backbone with SE modules which are illustrated
in Fig. 3.2. Following the method described in our baseline method [Zhang
et al., 2019b], each modality is processed by the first three residual convolu-
tional blocks, then the output features are fused using squeeze and excitation
fusion module and processed by the remaining residual block. Differently from
the baseline method, Parkin and Grinchuk [2019] enrich the model with ad-
ditional aggregation blocks at each feature level. Each aggregation block takes
features from the corresponding residual blocks and from previous aggregation
block, making the model capable of finding inter-modal correlations not only
at a fine level but also at a coarse one. In addition, it trains each model using
two initial random seeds. Given separate networks for attack-specific folds and
different pre-trained models, our final liveness score is obtained by averaging
the outputs of 24 neural network.

Conclusions. The solution proposed by Parkin and Grinchuk [2019]
achieved the top 1 rank at the Chalearn LAP face anti-spoofing challenge.
First, authors have demonstrated that careful selection of a training subset by
the types of spoofing samples better generalizes to unseen attacks. Second,
they have proposed a multi-level feature aggregation module which fully uti-
lizes the feature fusion from different modalities both at coarse and fine levels.
Finally, authors have examined the influence of feature transfer from different
pre-trained models on the target task and showed that using the ensemble of
various face-related tasks as source domains increases the stability and the per-
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Figure 3.2: The proposed architecture (VisionLabs). RGB, IR, and Depth
streams are processed separately using res1, res2, res3 blocks from resnet-34 as
a backbone. The res3 output features are re-weighted and fused via the squeeze
and excitation (SE) block and then fed into res4. In addition, branch features
from res1, res2, res3 are concatenated and processed by corresponding aggre-
gation blocks, each aggregation block also uses information from the previous
one. The resulting features from agg3 are fed into res4 and summed up with
the features from the modality branch. On the diagram: GAP—global average
pooling; ˚ concatenation; C—elementwise addition.

formance of the system. The code and pre-trained models are publicly available
from the github repository at https://github.com/AlexanderParkin/ChaLearn_
liveness_challenge. More information of this method can be found in Parkin
and Grinchuk [2019].

3.2.2 2ND PLACE (TEAM NAME: READSENSE)
The Overall Architecture. In this work, Shen et al. [2019] proposed a multi-
stream CNN architecture called FaceBagNet with Modal Feature Erasing
(MFE) for multi-modal face anti-spoofing detection. The proposed Face-
BagNet consists of two components: (1) patch-based features learning and
(2) multi-stream fusion with MFE. For the patch-based features learning, Shen
et al. [2019] trained a deep neural network by using patches randomly extracted
from face images to learn rich appearance features. For the multi-stream fusion,
features from different modalities are randomly erased during training, which
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Figure 3.3: The proposed architecture (ReadSense). The fusion network is
trained from scratch in which RGB, Depth, and IR face patches are feed into
it at the same time. Image augmentation is applied and modal features from
sub-network are randomly erased during training.

are then fused to perform classification. Figure 3.3 shows the high-level illus-
tration of three streams along with a fusion strategy for combining them.

Patch-basedFeaturesLearning. The spoof-specific discriminative infor-
mation exists in the whole face area. Therefore, Shen et al. [2019] used the
patch-level image to enforce convolution neural network to extract such infor-
mation. The usual patch-based approaches split the full face into several fixed
non-overlapping regions. Then each patch is used to train an independent sub-
network. For each modality, Shen et al. [2019] trained one single CNN on
random patches extracted from the faces. Then authors used a self-designed
ResNext [Xie et al., 2017] network to extract deep features. The network con-
sisted of five group convolutional blocks, a global average pooling layer, and a
softmax layer. Table 3.2 presents the network architecture in terms of its layers,
i.e., size of kernels, number of output feature maps, and number of groups and
strides.

Multi-stream FusionWithMFE. Since the feature distributions of dif-
ferent modalities are different, the proposed model makes efforts to exploit the
interdependencies between different modalities as well. As shown in Fig. 3.3,
it uses a multi-stream architecture with three sub-networks to perform multi-
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Table 3.2: Architecture of the proposed FaceBagNet [Shen et al., 2019]

Patch Size Confi guration

Layer 1 Conv 3 × 3, 32

Layer 2

[Conv 1 × 1, 64

Conv 3 × 3, 64, Group 32, Stride 2

Conv 1 × 1, 128] × 2

Layer 3

[Conv 1 × 1, 128

Conv 3 × 3, 128, Group 32, Stride 2

Conv 1 × 1, 256] × 2

Layer 4

[Conv 1 × 1, 256

Conv 3 × 3, 256, Group 32, Stride 2

Conv 1 × 1, 512] × 2

Layer 5

[Conv 1 × 1, 512

Conv 3 × 3, 512, Group 32, Stride 2

Conv 1 × 1, 1024] × 2

Layer 6
Global average pooling

FC2

modal features fusion. Then authors concatenated feature maps of three sub-
networks after the third convolutional block (res3).

As studied in our baseline method [Zhang et al., 2019b], directly concate-
nating features from each sub-network cannot make full use of the characteris-
tics between different modalities. In order to prevent overfitting and for better
learning the fusion features, Shen et al. [2019] designed a Modal Feature Eras-
ing (MFE) operation on the multi-modal features. For one batch of inputs, the
concatenated feature tensor is computed by three sub networks. During train-
ing, the features from one randomly selected modal sub-network are erased and
the corresponding units inside the erased area are set to zero.The fusion network
is trained from scratch in which RGB, Depth, and IR data are fed separately
into each sub-network at the same time.

Conclusions. Shen et al. [2019] proposed a face anti-spoofing network
based on Bag-of-local-features (named FaceBagNet) to determine whether
the captured multi-modal face images are real. A patch-based feature learning
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method was used to extract discriminative information. Multi-stream fusion
with MFE layer was applied to improve the performance. It demonstrated that
both patch-based feature learning method and multi-stream fusion with MFE
were effective methods for face anti-spoofing. Overall, the proposed solution
was simple but effective and easy to use in practical application scenarios. As
the result, the proposed approach [Shen et al., 2019] obtained the second place
in CVPR 2019 ChaLearn Face Anti-spoofing attack detection challenge.

3.2.3 3RD PLACE (TEAM NAME: FEATHER)
The existing face anti-spoofing networks [Hernandez-Ortega et al., 2018, Li
et al., 2016, Patel et al., 2016a, Wang et al., 2018] have the problems of large
parameters and weak generalization ability. For this reason, Zhang et al. [2019a]
proposed a FeatherNets architecture, because of this network is light as a feather.

The Weakness of GAP for Face Task. Global Average Pooling (GAP)
is employed by a lot of state-of-the-art networks for object recognition task,
such as ResNets [He et al., 2016], DenseNet [Huang et al., 2017b], and some
light-weight networks, like MobilenetV2 [Sandler et al., 2018], and Shuf-
flenet_v2 [Ma et al., 2018], IGCV3 [Sun et al., 2018]. GAP has been proved
on its ability of reducing dimensions and preventing over-fitting for the over-
all structure [Lin et al., 2013]. For the face related tasks, Wu et al. [2018a]
and Deng et al. [2019] have observed that CNNs with GAP layer are less accu-
rate than those without GAP. Meanwhile, MobileFaceNet [Chen et al., 2018]
replaces the GAP with Global Depthwise Convolution (GDConv) layer, and
explains the reason why it is effective through the theory of receptive field [Long
et al., 2014]. The main point of GAP is “equal importance” which is not suitable
for face tasks.

As shown in Fig. 3.4, the last 7 � 7 feature map is denoted as FMap-end,
each cell in FMap-end corresponds to a receptive field at different position. The
center blue cell corresponds to RF1 and the edge red one corresponds to RF2.
As described in Luo et al. [2016], the distribution of impact in a receptive field
distributes as a Gaussian, the center of a receptive field has more impact on the
output than the edge. Therefore, RF1 has larger effective receptive field than
RF2. For the face anti-spoofing task, the network input is 224 � 224 images
which only contain the face region. As in the above analysis, the center unit of
FMap-end is more important than the edge one. GAP is not applicable to this
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Figure 3.4: Depth faces feature embedding CNN structure. In the last 7 � 7
feature map, the receptive field and the edge (RF2) portion of the middle part
(RF1) is different, because their importance is different. DWConv is used in-
stead of the GAP layer to better identify this different importance. At the same
time, the FC layer is removed, which makes the network more portable. This
figure is from Zhang et al. [2019a].

Figure 3.5: Streaming Module. The last blocks’ output is down-sampled by a
depthwise convolution [Chollet, 2017, Howard et al., 2017] with stride larger
than 1 and flattened directly into a 1D vector.

case. One choice is to use FC layer instead of GAP. It would introduce a large
number of parameters to the whole model and increase the risk of over-fitting.

Streaming Module. To treat different units of FMap-end with differ-
ent importance, streaming module is designed which is shown in Fig. 3.5. In
streaming module, a depthwise convolution (DWConv) layer with stride larger
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than 1 is used for down-sampling whose output, is then flattened directly into
an 1D feature vector. The compute process is represented by Equation (3.1):

F Vn.y;x;m/ D
X
i;j

Ki;j;m � FINy.i/;INx.j /;m (3.1)

In Equation (3.1), FV is the flattened feature vector while N D H
0

�W
0

� C

elements (H 0 , W
0 , and C denote the height, width, and channel of DWConv

layer’s output feature maps, respectively). n.y; x; m/, computed as Equation
(3.2), denotes the nth element of FV which corresponds to the .y; x/ unit in
the mth channel of the DWConv layer’s output feature maps:

n.y; x; m/ D m �H
0

�W
0

C y �H
0

C x (3.2)

On the right side of Equation (3.1), K is the depthwise convolution kernel and
F is the FMap-end of size H �W �C (H, W, and C denote the height, width,
and channel of FMap-end, respectively). m denotes the channel index. i,j denote
the spatial position in kernel K, and INy.i/, INx.j / denote the corresponding
position in F. They are computed as Equations (3.3) and (3.4):

INy.i/ D y � S0 C i (3.3)

INx.j / D x � S1 C j (3.4)

S0 is the vertical stride and S1 is the horizontal stride. An FC layer is not added
after flattening feature map, because this will increase more parameters and the
risk of overfitting. Streaming module can be used to replace global average pool-
ing and FC layer in traditional networks.

Network Architecture Details. Besides streaming module, there are
BlockA/B/C, as shown in Fig. 3.6, to compose FeatherNetA/B. The detailed
structure of the primary FeatherNet architecture is shown in Table 3.3. BlockA
is the inverted residual blocks proposed in MobilenetV2 [Sandler et al., 2018].
BlockA is used as our main building block which is shown in Fig. 3.6a. The ex-
pansion factors are the same as in MobilenetV2 [Sandler et al., 2018] for blocks
in our architecture. BlockB is the down-sampling module of FeatherNetB. Av-
erage pooling (AP) has been proved in Inception [Szegedy et al., 2015] to ben-
efit performance, because of its ability of embedding multi-scale information
and aggregating features in different receptive fields. Therefore, average pool-
ing (2 � 2 kernel with stride D 2) is introduced in BlockB (Fig. 3.6b). Besides,
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Figure 3.6: FeatherNets’ main blocks. FeatherNetA includes BlockA and
BlockC. FeatherNetB includes BlockA and BlockB. (BN: BatchNorm; DW-
Conv: depth wise convolution; c:number of input channels.)

in the network ShuffleNet [Ma et al., 2018], the down-sampling module joins
3 � 3 average pooling layer with stride=2 to obtain excellent performance. Li et
al. [Xie et al., 2018] suggested that increasing average pooling layer works well
and impacts the computational cost little. Based on the above analysis, adding
pooling on the secondary branch can learn more diverse features and bring per-
formance gains. BlockC is the down-sampling Module of our network Feath-
erNetA. BlockC is faster and with less complexity than BlockB.

After each down-sampling stage, SE-module [Hu et al., 2018b] is in-
serted with reduce D 8 in both FeatherNetA and FeatherNetB. In addition,
when designing the model, a fast down-sampling strategy [Qin et al., 2018]
is used at the beginning of our network which makes the feature map size de-
crease rapidly and without much parameters. Adopting this strategy can avoid
the problem of weak feature embedding and high processing time caused by
slow down-sampling due to limited computing budget [Duong et al., 2018].
The primary FeatherNet only has 0.35M parameters.

The FeatherNets’ structure is built on BlockA/B/C, as mentioned above,
except for the first layer which is a fully connected. As shown in Table 3.3, the
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Table 3.3: Network Architecture: FeatherNet B. All spatial convolutions use 3
� 3 kernels. The expansion factor t is always applied to the input size, while
c means number of Channel. Meanwhile, every stage SE-module [Hu et al.,
2018b] is inserted with reduce D 8. And FeatherNetA replaces BlockB in the
table with BlockC.

Input Operator t c

2242 × 3 Conv2d,/2 – 32

1122 × 32 BlockB 1 16

562 × 16 BlockB 6 32

282 × 32 BlockA 6 32

282 × 32 BlockB 6 48

142 × 48 5 × BlockA 6 48

142 × 48 BlockB 6 64

72 × 64 2 × BlockA 6 64

72 × 64 Streaming – 1024

size of the input image is 224 � 224. A layer with regular convolutions, instead
of depthwise convolutions, is used at the beginning to keep more features. Reuse
channel compression to reduce 16 while using inverted residuals and linear bot-
tleneck with expansion ratio D 6 to minimize the loss of information due to
down-sampling. Finally, the Streaming module is used without adding an FC
layer, directly flatten the 4 � 4 � 64 feature map into an 1D vector, reducing
the risk of over-fitting caused by the FC layer. After flattening the feature map,
focal loss is used directly for prediction.

Multi-Modal Fusion Method. The main idea for the fusion method is
to use a cascade inference on different modalities: depth images and IR images.
The cascade structure has two stages, shown in Fig. 3.7.

Stage 1: An ensemble classifier, consisting of multiple models, is employed to
generate the predictions. These models are trained on depth data and from sev-
eral checkpoints of different networks, including FeatherNets. If the weighted
average of scores from these models is near 0 or 1, input sample will be classified
as fake or real, respectively. Otherwise, the uncertain samples will go through
the second stage.
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Figure 3.7: Multi-Modal Fusion Strategy: two stages cascaded. Stage 1 is an en-
semble classifier consisting of several depth models. Stage 2 employs IR models
to classify the uncertain samples from Stage 1.

Stage 2: FeatherNetB learned from IR data will be used to classify the uncertain
samples from Stage 1. The fake judgment of IR model is respected as the final
result. For the real judgment, the final scores are decided by both stage 1 and
IR models.

Conclusions. It proposes an extreme light network architecture (Feath-
erNet A/B) with Streaming module, to achieve a good trade-off between per-
formance and computational complexity for multi-modal face anti-spoofing.
Furthermore, a novel fusion classifier with “ensemble C cascade” structure is
proposed for the performance preferred use cases. Meanwhile, CASIA-SURF
dataset [Zhang et al., 2019b] is collected to provide more diverse samples and
more attacks to gain better generalization ability. All these are used to join the
Face Anti-spoofing Attack Detection Challenge@CVPR2019 and get the third
place in this challenge.

3.2.4 OTHER TEAMS
Hahahaha. Their base model is a Resnext [Xie et al., 2017] which was pre-
trained with the ImageNet dataset [Deng et al., 2009]. Then, they fine tune the
network on aligned images with face landmark and use data augmentation to
strengthen the generalization ability.
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Figure 3.8: Provided by GradiantResearch team. General diagram of the Gra-
diantResearch team.

MAC-adv-group. This solution used the Resnet-34 [He et al., 2016] as base
network. To overcome the influence of illumination variation, they convert
RGB image to HSV color space. Then, they sent the features extracted from
the network into an FC layer and a binary classification layer.

ZKBH. Analyzing the training, validation, and test sets, participants assumed
that the eye region is promising to get good performance in an FAD task based
on an observation that the eye region is the common attack area. After several
trials, the input of the final version they submitted adopted quarter face contain-
ing the eye region. Different from prior works that regard the face anti-spoofing
problem as merely a binary (fake vs. real) classification problem, this team con-
structed a regression model for differentiating the real face and the attacks.

VisionMiracle. This solution was based on the modified shufflenet-V2 [Ma
et al., 2018]. The feature-map was divided into two branches after the third
stage, and connected in the fourth stage.

GradiantResearch. The fundamental idea behind this solution was the refor-
mulation of the face presentation attack detection problem (face-PAD) follow-
ing an anomaly detection strategy using deep metric learning. The approach can
be split in four stages (Fig. 3.8).

Stage 1: Use a pre-trained model for face recognition and apply a classification-
like metric learning approach in GRAD-GPAD dataset [Costa-Pazo et al.,
2019] using only RGB images.
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Stage 2: They fine tune the model obtained in Stage 1 with the CASIA-SURF
dataset using metric learning for anomaly detection (semi-hard batch negative
mining with triplet focal loss) adding Depth and IR images to the input volume.
Once the model converged, they trained an SVM classifier using the features of
the last FC layer (128D).

Stage 3: They trained an SVM classifier using the normalized histogram of the
depth image corresponding to the cheek region of the face (256D).

Stage 4: They performed a simple stacking ensemble of both models (Stages 2
and 3) by training a logistic regression model with the scores in the training
split.

Vipl-bpoic. This team focused on improving face anti-spoofing generalization
ability by proposing an end-to-end trainable face anti-spoofing model with at-
tention mechanism. Due to the sample imbalance, they assign the weight of
1:3 according to the number of genuine and spoof faces in Training set. Subse-
quently, they fuse the three modal images including RGB, Depth, and IR into
five channels as the input of ResNet-18 [He et al., 2016] which integrated with
the convolutional block attention module. The center loss [Wen et al., 2016]
and cross-entropy loss are adopted to constrain the learning process in order to
get more discriminative cues of FAD finally.

Massyhnu. This team paid attention to color information fusion and ensemble
learning [Peng et al., 2018a,b].

AI4all. This team used VGG16 [Simonyan and Zisserman, 2014] as the back-
bone for face PAD.

Guillaume. Their method consists in a Multi-Channel convolutional Neu-
ral Network (MC-CNN) taking a face images of different modalities as in-
put. Near-infrared and depth images only have been used in their approach.
The architecture of the proposed MC-CNN is based on the second version of
the LightCNN [Wu et al., 2018b] containing 29 layers. Also, the pretrained
LightCNN model is used as a starting point for their training procedure. The
training consists in the fine-tuning of the low-level convolutional layers of the
network in each modalities, and in learning the final FC layers.
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3.2.5 SUMMARY
For the organized face anti-spoofing challenge@CVPR 2020 workshop, no
team used traditional methods for FAD, such as detecting physiological signs
of life, eye blinking, facial expression changes, and mouth movements. Instead,
all submitted face PAD solutions relied on model-based feature extractors, such
as ResNet [He et al., 2016], VGG16 [Simonyan and Zisserman, 2014], etc.

A summary is provided in Table 3.4. All teams use the deep learning-
based methods with or without pretrained models from other dataset (such as
face dataset used in both VisionLabs and GradiantResearch teams) and only
the Feather Team use the private FAD data. The teames of top three are used at
least two modalities (RGB, Depth, or IR). Interesting, the Hahahaha team only
use the depth modality but also obtained very promising results. The details of
performances among participant teams are summarized in the next chapter.
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C H A P T E R 4

Challenge Results
In this chapter, the results obtained by the thirteen teams that qualified to the fi-
nal phase of the challenge are presented. We first present the performance of the
top three teams [Parkin and Grinchuk, 2019, Shen et al., 2019, Zhang et al.,
2019a]. Then, the effectiveness of proposed algorithms are analyzed and we
point out some limitations of the algorithms proposed by participating teams.
Please note that the evaluation metrics used for the challenge were introduced
in Section 2.1.4.

4.1 EXPERIMENTS

In this section, we present the performance obtained by the top three teams. It
illustrates the detail implementation details, pre-processing strategy and results
on the CASIA-SURF dataset.

4.1.1 1ST PLACE (TEAM NAME: VISIONLABS)
The architecture of VisonLabs has been presented in Section 3.2.1, where three
branches and fusion strategy of RGB, Depth, and IR images are applied. Read-
ers can refer to Section 3.2.1 for more detailed method of VisionLabs. Here,
we only provide the experimental results of VisionLabs.

Implementation Details
All the code was implemented in PyTorch [Paszke et al., 2017] and models were
trained on 4 NVIDIA 1080Ti cards. Single model trains about 3 hours and the
inference takes 8 seconds per 1,000 images. All neural nets were trained using
ADAM [12] with cosine learning rate strategy and optimized for standard cross
entropy loss for two classes. It trained each model for 30 epochs with initial
learning rate at 0.1 with batch size of 128.
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Table 4.1: Results on CASIA-SURF validation subset

Method Initialization Fold TPR@FPR=10-4

[Zhang et al., 2019b] 56.80

ResNet18 Subject 5-fold 60.54

ResNet34 Subject 5-fold 74.55

ResNet34 Attack 3-fold 78.89

ResNet34 ImageNet Attack 3-fold 92.12

ResNet34 CASIA-Webface Attack 3-fold 99.80

A. ResNet34 with MLFA CASIA-Webface Attack 3-fold 99.87

B. ResNet50 with MLFA MSCeleb-1M Attack 3-fold 99.63

C. ResNet50 with MLFA ASIAN dataset Attack 3-fold 99.33

D. ResNet34 with MLFA AFAD-lite Attack 3-fold 98.70

A, B, C, D ensemble Attack 3-fold 100.00

Preprocessing
CASIA-SURF already provides face crops so no detection algorithms were used
to align images. Face crops were resized to 125 � 125 pixels and then center
crop 112 � 112 was taken. At the training stage horizontal flip was applied
with 0.5 probability. Parkin and Grinchuk [2019] also tested different crop and
rotation strategies as well as test-time augmentation, however, this did not result
in significant improvements and no additional augmentation was used in the
final model except the above.

Baseline
Unless mentioned explicitly, results on Chalearn LAP challenge validation set
are reported as obtained from the Codalab evaluation platform. First of all, Vi-
sionLabs reproduced baseline method [Zhang et al., 2019b] with Resnet-18
backbone and trained it using a 5-fold cross-validation strategy. All folds are
split are reported based on the subject identity so images from the same person
belong only to one fold. Then the score is averaged for the five trained nets and
TPR@FPRD 10�4 is reported in Table 4.1. The resulting performance is close
to perfect and similar to the previously reported results in Zhang et al. [2019b],
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which was calculated on the test set. The test set differs from the validation, but
belongs to the same spoofing attack distribution.

Next, Visionlab [Parkin and Grinchuk, 2019] expand the backbone ar-
chitecture to ResNet34 which would improve the score by a large margin. Due
to the GPU limitations, VisionLabs further focus only on ResNet34 and add
Resnet50 only at the final stage.

Attack-Specific Folds
Here, VisionLabs [Parkin and Grinchuk, 2019] compared the 5-fold split strat-
egy based on subject IDs with the strategy based on spoof attack types. Real
examples by subject identity were assigned randomly to the one of the three
folds.

Despite the fact that the new model computes an average of three net-
work outputs while each of these networks was trained on less data compared
to the subject 5-fold learning strategy, the trained model achieves better per-
formance compared to the baseline method (see Table 4.1). VisionLabs [Parkin
and Grinchuk, 2019] explained this by the improved generalization to new at-
tacks due to the training for different types of attacks.

Initialization Matters
In the next experiment, VisionLabs [Parkin and Grinchuk, 2019] initializes
each of the three modality branches of the network with the res1, res2, res3
blocks from the ImageNet pre-trained network.The Fusion SE parts are left un-
changed and the final res4 block is also initialized by the ImageNet pre-trained
weights. Finetuning of this model on the CASIA-SURF dataset gives signif-
icant improvement over networks with random initialization (see Table 4.1).
Moreover, switching pre-training to the face recognition task on the CASIA-
WebFace dataset [Yi et al., 2014] improves results by even a larger margin and
reaches almost perfect TPR of 99:80%.

Multi-Level Feature Aggregation
Here, VisionLabs [Parkin and Grinchuk, 2019] examine the effect of multi-
level feature aggregation (MLFA) described in the model architecture section.
The results are shown in Table 4.1. It initializes aggregation modules with ran-
domweights and train the new architecture following the best learning protocol.
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The ResNet34 network with MLFA blocks has demonstrated error reduction
by the factor 1.5x compared to the network without MFLA blocks.

Ensembling
To improve the stability of the solution, VisionLabs uses four face-related
datasets as an inialization for the final model. It used publicly available networks
with weights trained for face recognition tasks on the CASIA-WebFace [Yi
et al., 2014], MSCeleb-1M [Guo et al., 2016], and private Asian faces [Zhao
et al., 2018]. One also trained a network for gender classification on the
AFADlite [Niu et al., 2016] dataset. Different tasks, losses, and datasets im-
ply different convolutional features and the average prediction of models fine
tuned with such initializations leads to 100.00% TPR@FPRD 10�4.

Such a high score meets the requirements of real-world security applica-
tions, however, it was achieved using a large number of ensembling networks.
In future work, VisionLabs plans to focus on reducing the size of the model and
making it applicable for the real-time execution.

Solution Stability
The consistency and stability of model performance on unseen data is impor-
tant especially when it comes to real-world security applications. During the
validation phase of the challenge seven teams achieved perfect or near perfect
accuracy, however only three solutions managed to hold close level of perfor-
mance on the test set (see Table 4.2), where it showed the smallest drop in
performance compared to the validation results.

It believes that the stability of the VisonLabs solution was caused by the
diversity of networks in the final ensemble in terms of network architectures,
pre-training tasks, and random seeds.

Qualitative Results
In this section, VisionLabs analyzes difficult examples by their proposed
method. It runs four networks (namely A, B, C, and D in Table 4.1) on the
Chalearn LAP challenge validation set and select examples with highest stan-
dard deviation (STD) on the liveness score among all samples. High STD im-
plies conflicting predictions by different models. Figure 4.1 shows examples for
which the networks disagree at most. As can be seen, the model D (which
achieves the lowest TPR among all four models) tends to understate the live-



4.1. EXPERIMENTS 41

Table 4.2: Shrinkage of TPR@FPRD 10e�4 score on validation and test sets of
Chalearn LAP face anti-spoofing challenge

Valid Test

Ours 100.00 99.8739

Team 2 100.00 99.8282

Team 3 100.00 99.8052

Team 4 100.00 98.1441

Team 5 99.9665 93.1550

Team 6 100.00 87.2094

Team 7 99.9665 25.0601

Figure 4.1: Examples of fake and real samples with highest standard deviation
among predicted liveness scores from models A, B, C, and D. This figure is
from Parkin and Grinchuk [2019].

ness score, assigning reals to fakes. But it is helpful in the case of hard fake
examples, when two out of three other networks are wrong. Therefore, using
only three models in the final ensemble would have led to lower score on the
validation set.

Figure 4.2 demonstrates fakes and real samples which were close to the
threshold at FPR D 10e4. While they are distinguishable by human eye, one of
the three modalities for every example looks similar to the normal one from the
opposed class, so models based only on one modality may produce wrong pre-
dictions. Processing RGB, Depth, and IR channels together allows to overcome
this issue.
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Figure 4.2: Examples of fake and real samples from validation subset where
predicted liveness score is close to the threshold at FPR D 10e4. This figure is
from Parkin and Grinchuk [2019].

Table 4.3: The effect of modalities measured on the validation set. All models
were pre-trained on the CASIA-Web face recognition task and fine tuned with
the same learning protocol.

Modality TPR@FPR=10-2 TPR@FPR=10-3 TPR@FPR=10-4

RGB 71.74 22.34 7.85

IR 91.82 72.25 57.41

Depth 100.00 99.77 98.40

RGB+IR+Depth 100.00 100.00 99.87

Multi-Modality
Finally, VisionLabs examines the advantage of multi-modal networks over net-
works trained for each of the three modalities separately. It takes the proposed
architecture with three branches and aggregation blocks, but instead of passing
(RGB, IR, Depth) channels, it trained three models with (RGB, RGB, RGB),
(IR, IR, IR) and (Depth, Depth, Depth) inputs. This allows a fair comparison
with multi-modal network since all these architectures were identical and had
the same number of parameters.

As can be seen from Table 4.3, using only RGB images results in low per-
formance. The corresponding model overfitted to the training set and achieved
only 7:85% TPR at FPR D 10e�4. The IR-based model showed remarkably bet-
ter results, reaching 57:41% TPR at FPR D 10e�4 since IR images contained
less identity details and the dataset size in this case was not so crucial as it was
for the RGB model. The highest score of 98:40% TPR at FPR D 10e�4 was
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achieved by the Depth modality, suggesting the importance of facial shape in-
formation for the anti-spoofing task.

However, the multi-modal network performed much better than the
Depth network alone, reducing false rejection error from 1.6% to 0.13%, and
showing the evidence of the synergetic effect of modality fusion.

4.1.2 2ND PLACE (TEAM NAME: READSENSE)
The overall architecture of ReadSense was shown in Section 3.2.2, where three
branches (each branch per modality) and fusion strategy (namely, random
modality feature learning). Readers can refer to Section 3.2.2 for the detailed
information. Here, we only provide the experiment of ReadSense.

Implementation Details
The full-face images are resized to 112� 112. ReadSense [Shen et al., 2019] uses
random flipping, rotation, resizing, cropping for data augmentation. Patches are
randomly extracted from the 112 � 112 full-face images. All models are trained
on one Titan X(Pascal) GPU with a batch size of 512. It used the Stochas-
tic Gradient Descent (SGD) optimizer with a cyclic cosine annealing learn-
ing rate schedule [Huang et al., 2017a]. The whole training procedure has 250
epochs and takes approximately 3 hours. Weight decay and momentum are set
to 0.0005 and 0.9, respectively. It used PyTorch to training the network.

Results
To evaluate the effectiveness of the proposed model, ReadSense does several
experiments with different configurations on the CASIA-SURF dataset. The
details of comparison experiments are presented as below.

The Effect of Patch Sizes and Modality. In this setting, ReadSense uses
different patch sizes using the same architecture in Fig. 3.3, i.e., 16 � 16, 32 �
32, 48 � 48 and 64 � 64. For fair comparisons, all the models are inferred 36
times with 9 non-overlapping image patches and 4 flipped input. As depicted
in Table 4.4, for single modal input, among the three modalities, the depth data
achieve the best performance of 0.8% (ACER), TPR D 99:3% @FPR D 10e�4.
Specifically, fusing all the three modalities has strong performance across all
patch sizes. It can be concluded that the proposed method by Readsense with
fusion modality achieves the best results.
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Table 4.4: The comparisons on different patch sizes and modalites. All models
are trained on the CASIA-SURF training set and tested on the validation set.

Patch Size Modal ACER TPR@FPR=10E-4

16*16

RGB 4.5 94.9

Depth 2.0 98.0

IR 1.9 96.2

Fusion 1.5 98.4

32*32

RGB 4.2 95.8

Depth 0.8 99.3

IR 1.5 98.1

Fusion 0.0 100.0

48*48

RGB 3.1 96.1

Depth 0.2 99.8

IR 1.2 98.6

Fusion 0.1 99.9

96*96

RGB 13.8 81.2

Depth 5.2 92.8

IR 13.4 81.4

Fusion 1.7 97.9

Fullface

RGB 15.9 78.6

Depth 8.8 88.6

IR 11.3 84.3

Fusion 4.8 93.7

TheEffect ofModal Feature Erasing andTraining strategy. ReadSense
investigates how the random modal feature erasing and training strategy af-
fect model performance for face anti-spoofing. “w.o CLR” denotes that one
uses conventional SGD training with a standard decaying learning rate sched-
ule until convergence instead of using cyclic learning rate. “w.o MFE” denotes
that random modal features erasing are not applied. As shown in Table 4.5, both
the cyclic learning rate and random modal feature erasing strategy are critical for
achieving a high performance. After training the fusion model, it erases features
from one modal and then evaluate the performance. ReadSense evaluates the
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Table 4.5: The comparison on different training strategy. All models are trained
with 32 � 32 size image patches.

Modal ACER TPR@FPR=10E-4

Fusion (w.o. CLR-MFE) 1.60 98.0

Fusion (w.o. MFE) 0.60 98.5

Fusion (w.o. CLR) 0.60 99.2

Fusion 0.00 100.0

Fusion (Erase RGB) 0.51 99.3

Fusion (Erase Depth) 0.49 99.4

Fusion (Erase IR) 0.84 99.3

Fusion 0.00 100.0

performance of the trained fusion model with single modal feature erasing. In
Table 4.5, from the validation score, one can conclude that the complementarity
among different modalities can be learned to obtain better results.

Comparing with other teams in ChaLearn Face Anti-spoofing chal-
lenge. The final submission in this challenge is an ensemble result which com-
bined outputs of three models in different patch sizes (32 � 32, 48 � 48, and 64
� 64) and it ranked the second place in the end. ReadSense is the only team that
did not use the full-face image as model input. The result of FND 1 shows that
the patch-based learning method can effectively prevent the model from mis-
classifying the real face into an attack one by comparing with other top-ranked
teams. As shown in Table 4.6, the results of the top three teams are significantly
better than other teams on testing set. Especially, the TPR@FPRD 10e � 4 val-
ues of the ReadSense team and VisionLabs are relatively close, whereas Vision-
Labs applied plentiful data from other tasks to pretrain the model, and Read-
Sense only used a one-stage and end-to-end training schedule. Consequently,
it also confirms the superiority of our solution.

4.1.3 3RD PLACE (TEAM NAME: FEATHER)
Implementation Detail
DataAugmentation. There are some differences in the images acquired by dif-
ferent devices, even if the same device model is used. As shown in Fig. 4.3, the
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Algorithm 4.1 Data Augmentation Algorithm
1: scaler  a random value in range [1/8, 1/5]
2: off set  a random value in range [100, 200]
3: OutImg 0

4: for y D 0! Height � 1 do
5: for x D 0! W idth � 1 do
6: if InImg.y; x/ > 20 then
7: off  off set

8: else
9: off  0

10: OutImg.y; x/ InImg(y,x) * scaler + off
11: return OutImg

upper line is the depth images of the CASIA-SURF data set. The depth differ-
ence of the face part is small. It is difficult for the eyes to distinguish whether the
face has a contour depth. The second line is the depth images of the MMFD1

dataset whose outline of the faces are clearly showed. In order to reduce the
data difference caused by the device, the depth of the real face images is scaled
in MMFD which can be seen in the third line of Fig. 4.3. The way of data
augmentation is presented in Algorithm 4.1.

Training Strategy. Pytorch [Paszke et al., 2017] is used to implement
the proposed networks. It initializes all convolutions and FC layers with nor-
mal weight distribution [He et al., 2015]. For optimization solver, Stochastic
Gradient Descent (SGD) is adopted with both learning rate beginning at 0.001,
and decaying 0.1 after every 60 epochs, andmomentum setting to 0.9.The Focal
Loss [Lin et al., 2017] is employed with ˛ D 1 and 
 D 3.

Result Analysis
Howuseful isMMFDdataset? A comparative experiment is executed to show
the validity and generalization ability of our data. As shown in Table 4.7,
the ACER of FeatherNetB with MMFD depth data is better than that with
CASIA-SURF [Zhang et al., 2019b], though only 15 subjects are collected.

1This dataset is collected by the Feather Team, which is consisted of 15 subjects with 15,415 real samples
and 28,438 fake samples.
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Figure 4.3: Depth image augmentation. (line 1): CAISA-SURF real depth im-
ages; (line 2):MMFD real depth images; and (line 3): our augmentationmethod
on MMFD. This figure is from Zhang et al. [2019a].

Meanwhile, the experiment shows that the best option is to train the network
with both data. The results of using the FeatherNetB are much better than the
baselines that use multi-modal data fusion, indicating that the proposed net-
work has better adaptability than the third-stream ResNet18 for baseline.

Comparewithother networkperformance.As show in Table 4.8, exper-
iments are executed to compare with other network’s performance. All experi-
mental results are based on depth of CASIA-SURF and MMFD depth images,
and then the performance is verified on the CASIA-SURF verification set. It
can be seen from Table 4.8 that the parameter size is much smaller, only 0.35M,
while the performance on the verification set is the best.



4.1. EXPERIMENTS 49

Table 4.7: Performance of FeatherNetB training by different datasets. The third
Column (from left to right) means the ACER value on the validation set of
CASIA-SURF [Zhang et al., 2019b]. It shows that the generalization ability of
MMFD is stronger than baseline of CASIA-SURF. The performance is better
than the baseline method using multi-modal fusion.

Network Training Dataset ACER in Val

Baseline CASIA-SURF 0.0213

FeatherNetB CASIA-SURF depth 0.00971

FeatherNetB MMFD depth 0.00677

FeatherNetB CASIA-SURF + MMFD depth 0.00168

Table 4.8: Performance in validation dataset. Baseline is a way of fusing three
modalities data (IR, RGB, Depth) through a three-stream network. Only depth
data were used for training in the other networks. FeatherNetA and Feather-
NetB have achieved higher performance with less parameters. Finally, the mod-
els are assembled to reduce ACER to 0.0.

Model ACER
TPR 

@FPR=10–2

TPR 

@FPR=10–3
Params FLOPS

ResNet18 [Zhang 

et al., 2019b]
0.05 0.883 0.272 11.18 M 1800 M

Baseline [Zhang et 

al., 2019b]
0.0213 0.9796 0.9469 – –

FishNet150(our 

impl.)
0.00144 0.9996 0.998330 24.96 M 6452.72 M

MobilenetV2(1)

(our impl.)
0.00228 0.9996 0.9993 2.23 M 306.17 M

Shuffl  eNetV2(1)

(our impl.)
0.00451 1.0 0.98825 1.26 M 148.05

FeatherNetA 0.00261 1.0 0.961590 0.35 M 79.99 M

FeatherNetB 0.00168 1.0 0.997662 0.35 M 83.05 M
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Table 4.9: Ablation experiments with different operations in CNNs

Model FC GAP AP-down ACER

Model 1 O O O 0.00261

Model 2 O O P 0.00168

Model 3 P O O 0.00325

Model 4 P P O 0.00525

Ablation Experiments. A number of ablations are executed to analyze dif-
ferentmodels with different layer combinations, shown in Table 4.9.Themodels
are trained with CASIA-SURF training set and MMFD dataset.

Why AP-down in BlockB? Comparing Model1 andModel2, adding the Av-
erage Pooling branch to the secondary branch (called AP-down), as shown in
block B of Fig. 3.6b, can effectively improve performance with a small number
of parameters.

Why not use FC layer? Comparing Model1 andModel3, an FC layer doesn’t
reduce the error when adding a fully connected layer to the last layer of the
network. Meanwhile, an FC layer is computationally expensive.

Why not use GAP layer? Comparing Model3 and Model4, it shows that
adding global average pooling layer at the end of the network is not suitable
for face anti-spoofing task. They will reduce performance.

Competition Details
The fusion procedure of FEATHER is applied in this competition. Meanwhile,
the proposed FeatherNets with depth data only can provide a higher baseline
alone (around 0.003 ACER). During the fusion procedure, the selected mod-
els are with different statistic features, and can help each other. For example,
one model’s characteristics of low False Negative (FN) are utilized to further
eliminate the fake samples. The detailed procedure is described as below:

Training: The depth data are used to train seven models: FishNet150_1,
FishNet150_2, MobilenetV2, FeatherNetA, FeatherNetB, FeatherNetBForIR,
and ResNet_GC. Meanwhile, FishNet150_1, FishNet150_2 are models from
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Algorithm 4.2 Ensemble Algorithm
1: scoresŒ� 

score_FishNet150_1,
score_FishNet150_2,
score_ MobilenetV2,
score_FeatherNetA,
score_FeatherNetB,
score_ResNet_GC

2: mean_score  mean of scores[]
3: if mean_score > max_threshold jj mean_score < min_threshold

then
4: f inal_score  mean_score

5: else if score_F ishNet150_1 < f ish_threshold then
6: f inal_score  score_F ishNet150_1

7: else if score_FeatherNetBForIR < IR_threshold then
8: f inal_score  score_FeatherNetBForIR

9: else
10: mean_score  

(6 * mean_score + score_FishNet150_1) / 7
11: if mean_score > 0:5 then
12: f inal_score  max of scores[]
13: else
14: f inal_score  min of scores[]

different epoch of FishNet. The IR data are used to train FeatherNetB as Feath-
erNetBforIR.

Inference: The inference scores will go through the “ensembleC cascade”
process. The algorithm is shown as Algorithm 4.2.

Competition Result: The above procedure is used to get the result of
0.0013 (ACER), 0.999 (TPR@FPRD 10e � 2), 0.998 (TPR@FPRD 10e � 3)
and 0.9814 (TPR@FPRD 10e � 4) in the test set and showed excellent perfor-
mance in the Face Anti-spoofing challenge@CVPR2019.
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Figure 4.4: ROC curves of final stage teams on test set.

4.2 SUMMARY

4.2.1 CHALLENGE RESULTS REPORT
In order to evaluate the performance of solutions, it adopted the following met-
rics: APCER, NPCER, ACER, and TPR in the case of FPRD 10�2, 10�3,
10�4, respectively, and the scores retained 6 decimal places for all results. The
scores and ROC curves of participating teams on the testing partitions are
shown in Table 4.10 and Fig. 4.4, respectively. Please note that although it
reports performance for a variety of evaluation measures, the leading metric
was TPR@FPRD 10�4. One can be observed that the best result (VisionLabs)
achieves TPRD 99:9885%, 99.9541%, 99.8739% @FPRD 10�2, 10�3, 10�4,
respectively, and the TP D 17430, FN D 28, FP D 1, TN D 40251, respec-
tively on the test data set. In fact, different application scenarios have different
requirements for each indicator, such as in higher security access control, the FP
is required to be as small as possible, while a small FN value is more important
in the case of troubleshoot suspects. Overall, the results of the first eight teams
are better than the baseline method [Zhang et al., 2019b] when FPR D 10�4

on test data set.
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Table 4.11: Provided by VisionLabs team. The results on the valid and test sets
of the VisionLabs team, different NN modules represent different pre-trained
Resnet [He et al., 2016].

NN1 NN1a NN2 NN3 NN4
TPR

@FPR=10e–4(Val)

TPR

@FPR=10e–4(Test)

P 0.9943 –

P 0.9987 –

P 0.9870 –

P 0.9963 –

P 0.9933 –

P P 0.9963 –

P P P 0.9983 –

P P P 0.9997 –

P P P P 1.0000 –

P P P P 1.0000 0.9988

4.2.2 CHALLENGE RESULTS ANALYSIS
As shown in Table 4.10, the results of the top three teams on test data set are
clearly superior to other teams, revealing that ensemble learning has an excep-
tional advantage in deep learning compared to single model solutions under
the same conditions, such as in Tables 4.11 and 4.4. Simultaneously, analyzing
the stability of the results of all participating teams’ submission from the ROC
curve in Fig. 4.4, the three teams are significantly better than other teams on
testing set (e.g., TPR@FPRD 10�4 values of these three teams are relatively
close and superior to other teams). The team of ReadSense applies the image
patch as input to emphasize the importance of local features in FAD task. The
result of FN D 1 shows that the local feature can effectively prevent the model
from misclassifying the real face into an attack one, shown in the blue box of
Fig. 4.5.

Vipl-bpoic introduces the attention mechanism into FAD task. Different
data modalities can provide different appearance information. The RGB data
have rich details while the Depth data are sensitive to the distance between the
image plane and the corresponding face. The IR data measure the amount of
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Figure 4.5: Mistaken samples of the top three teams on the testing data set,
including FP and FN. Note that the models were trained by us. This figure is
also from our workshop paper [Liu et al., 2019].
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heat radiated from a face. Based on this characteristic, Feather uses a cascaded
architecture with two subnetworks to study CASIA-SURFwith twomodalities,
in which Depth and IR data are learned subsequently by each network. Some
teams consider face landmark (e.g., Hahahaha) into FAD task, and other teams
(e.g., MAC-adv-group, Massyhnu) focus on the color space conversion. Instead
of binary classificationmodel, ZKBH constructs a regressionmodel to supervise
the model to learn effective cues. GradiantResearch reformulates the face-PAD
as an anomaly detection using deep metric learning.

Although these methods have their own advantages, there are still some
shortcomings in the code reproduction stage of the challenge. As described be-
fore, CASIA-SURF is characterized by multi-modal data (i.e., RGB, Depth,
and IR) and the main research point is how to fuse the complementary infor-
mation between these three modalities. However, many teams apply ensemble
learning that is a way of Naive Halfway Fusion [Zhang et al., 2019b], which
cannot make full use of the characteristics between different modalities. In ad-
dition, most of the ensemble methods use greedy manner for model fusion, in-
cluding constantly increase the model if the performance does not decrease on
the valid set in Table 4.11, which inevitably brings additional time consumption
and instability.

In order to demonstrate the shortcomings of the algorithm visually, we
randomly selected six misclassified samples for each of the top three teams on
the test set, of which the FP and FN are three respectively, as shown in Fig. 4.5.
Notably, the fake sample in the red box was simultaneously misclassified into
real face by the top three winners, where the clues were visually seen in the eye
portion of the color modality.

From the misclassification samples of the VisionLabs team in Fig. 4.5,
face pose is the main factor leading to FN samples (marked by a yellow box).
As for the FP samples of ReadSense, the main clues are concentrated in the
eye region (shown in the purple box). However, image patches applied by this
team as the input of network, which is easy to cause misclassification if the
image block does not contain an eye region. Only Depth and IR modal data
sets were used by Feather team, resulting in misclassified samples that can be
recognized by the human eyes easily. As shown in the green box, obvious clues
which attached on the nose and eyes region in the color modal data sets are
discarded by their algorithm.
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On overall analysis, the top three teams have better recognition perfor-
mance than Attack 1, 3, 5 for Attack 2, 4, 6 (performing a bending operation
on the corresponding former) [Zhang et al., 2019b]. Figure 4.5 shows that the
bending operation used by simulating the depth information of the real face is
easily detected by the algorithms. Last but still notable, from the FP samples
of the three teams, the misclassified samples are mainly caused by Attack 1, in-
dicating that the sample with some regions are cut from the printed face can
bring the depth information of the real face, but introducing more cues which
can prove it is fake one.
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C H A P T E R 5

Conclusions and Future
Works

5.1 CONCLUSIONS
Recent advances in deep learning and biometric security, especially for face
recognition systems, motivated us to focus on face anti-spoofing to explore the
latest trends and go beyond traditional methods in computer vision and ma-
chine learning. For this reason, we organized the Chalearn Look at People Face
Anti-spoofing Attack Workshop and Challenge at CVPR 2019.

We first presented the motivations and background of current face anti-
spoofing research, and pointed out the drawbacks of limited data which would
hinder the novel technology developments. Therefore, the largest dataset,
namely CASIA-SURF, is released for face anti-spoofing. Then, based on this
dataset, we organized a multi-modal face anti-spoofing challenge. This chal-
lenge attracted more than 300 teams, and the top-ranked participants in this
challenge nearly obtained perfect performance. Finally, we gave a comprehen-
sive review of multi-modal face anti-spoofing techniques, especially partici-
pants’ methods.

5.2 FUTURE WORK
Besides the data size increase, there are several avenues that can be explored.

• The issue of ethnic bias has proven to affect the performance of face
recognition in previous works, while it still remains to be absent in
face anti-spoofing. A future work can explore the effectiveness of cross-
ethnicity face presentation attack detection.

• 3D attacks are rarely considered as only limited data is released in cur-
rent face anti-spoofing research. Diverse and large-scale datasets are
welcome, such as different ethnicities, larger subjects, and diversity 2D
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and 3D attack types, such as print photo, video-replay, 3D print, and
silica gel.

• The recent techniques that generate photo-realistic, fully synthetic
“fake” facial images (such as deepfake, fakeswap) can be difficult to
distinguish from the real ones. That would raise serious concerns about
the trustworthiness of information in real life. Therefore, it is impor-
tant to devise automatic and reliable methods that detect such types of
manipulations.

For more information on face anti-spoofing recognition, please visit our
office website: https://sites.google.com/qq.com/face-anti-spoofing/welcome.
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