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Abstract

In this paper, we propose a new end-to-end network, named
Joint Learning of Attribute and Contextual relations (JLAC),
to solve the task of pedestrian attribute recognition. It in-
cludes two novel modules: Attribute Relation Module (AR-
M) and Contextual Relation Module (CRM). For ARM, we
construct an attribute graph with attribute-specific features
which are learned by the constrained losses, and further use
Graph Convolutional Network (GCN) to explore the correla-
tions among multiple attributes. For CRM, we first propose a
graph projection scheme to project the 2-D feature map into
a set of nodes from different image regions, and then employ
GCN to explore the contextual relations among those region-
s. Since the relation information in the above two modules
is correlated and complementary, we incorporate them into
a unified framework to learn both together. Experiments on
three benchmarks, including PA-100K, RAP, PETA attribute
datasets, demonstrate the effectiveness of the proposed JLAC.

Introduction

Visual analysis of pedestrian attributes, e.g., gender, age and
body shape, has received increasing attention in recent years
(Wang et al. 2017; Sarfraz et al. 2017; Lin et al. 2019;
Liuetal. 2017; Zhao et al. 2018; Xiang et al. 2019), due to its
wide range of potential applications, such as person retrieval
(Feris et al. 2014), person re-identification (Lin et al. 2019;
Zheng et al. 2015) and so on. Although significant efforts
have been devoted to pedestrian attribute recognition, it re-
mains a challenging problem because of low resolution, oc-
clusions and complex variations (e.g., human poses, camera
viewing angles and background) in surveillance scenes.

In the field of pedestrian attribute recognition, dozens of
attributes are often required to be analyzed together, like
gender, age, sunglasses, clothing types and hair style. In
those attributes, some of them are closely related. For ex-
ample, the attribute “’skirt” is often associated with the at-
tribute “female”, and the attribute of clothing types can pro-
vide certain information for judging the age. Observed with
this phenomenon, a reliable solution of enhancing the recog-
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nition performance is to explore the relations among multi-
ple pedestrian attributes. Most previous works (Wang et al.
2017; Sarfraz et al. 2017; Lin et al. 2019; Liu et al. 2018;
Li et al. 2018a) exploit the relations among multiple at-
tributes by only using a simple multi-task learning (MTL)
framework, where the information exchanges among differ-
ent attributes are only allowed in the shared low-level layers.
Since MTL employs the losses followed by the final layers
to guide its learning, the explicit information exchanges and
propagation among different attributes may be insufficient.
Thus, such a framework lacks a thorough and comprehen-
sive representation of the relations among attributes.

Exploration of the contextual relations in different image
regions is also helpful for attribute recognition. A conceiv-
able example is that when recognizing the gender of a pedes-
trian, one tends to focus on multiple regions like the regions
around the head, human body and carrying things, and con-
sider their contextual relations. Although the deep convolu-
tional networks have achieved a great success in pedestrian
attribute recognition, the contextual relations have not been
fully exploited. This is because that the receptive fields of
units in those deep convolutional networks are severely lim-
ited according to the work (Luo et al. 2016), which may fail
to learn the global context and capture the long range depen-
dencies in different regions.

To deal with the above-mentioned problems, we resort
to Graph Convolutional Network (GCN) (Kipf and Welling
2017) which has a strong ability of modeling the dependen-
cies and propagating messages between the concepts on a
graph structure. Specifically, we construct two graph mod-
ules, named attribute relation module (ARM) and contextu-
al relation module (CRM), to discover and capture the at-
tribute and contextual relations, respectively. In these two
modules, the key issue is how to construct the graph struc-
ture. In ARM, we first learn the attribute-specific features
by the constrained losses with each feature corresponding
to an attribute. Then, each learned feature would be treat-
ed as a node in the graph. In CRM, we define the clusters
of regions/pixels as the nodes of the graph. In consideration
of the variations of human poses and camera viewing an-
gles, we let the network learn to cluster the regions by itself
rather than using the predefined regions as in the previous
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Figure 1: An overview of the proposed JLAC.

work (Li et al. 2019b). In those two graphs, messages are
allowed to propagate among their nodes and the GCN layer
is further employed to capture the relations among them. To
synergize the above two modules together, we further for-
mulate a two-branch network by incorporating them in par-
allel, where both of them are learned jointly and concurrent-
ly to fully capture those relations.

The main contributions of our work are as follows: (1)
We propose a novel end-to-end unified framework, which
employs GCN to capture both the attribute and contextual
relations for pedestrian attribute recognition; (2) We present
two novel ways of constructing the graph structures, where
one is to formulate the graph by using the attribute-specific
features learned by the constrained losses, and the other de-
fines the clusters of regions/pixels as the nodes by using a
graph projection scheme. To the best of our knowledge, such
two approaches for graph construction the graph have not
been studied in the literature of pedestrian attribute recogni-
tion; (3) We achieve the new state-of-the-art performance on
three benchmark datasets of pedestrian attribute recognition,
including RAP, PETA and PA-100K datasets.

Related Works

Pedestrian Attribute Recognition: Recently, deep learn-
ing (Simonyan and Zisserman 2015; He et al. 2016; Tan
et al. 2019a) has achieved great successes in pedestrian at-
tribute recognition (Wang et al. 2017; Sarfraz et al. 2017;
Liu et al. 2018; Zhao et al. 2019; Li et al. 2019b; Tan et
al. 2019b; Li et al. 2019a). Previous works mainly solve the
task of pedestrian attribute recognition by formulating at-
tention mechanisms (Liu et al. 2017; Sarafianos, Xu, and
Kakadiaris 2018; Zhao et al. 2019; Tan et al. 2019b), uti-
lizing the pose or body parts information (Liu et al. 2018;
Li et al. 2018a; Zhao et al. 2018), or coping with the im-
balance data problem (Sarafianos, Xu, and Kakadiaris 2018;
Wang et al. 2019). Most previous models (Sarfraz et al.
2017; Lin et al. 2019; Liu et al. 2018; Li et al. 2018a) are
constructed based on the MTL framework, where the rela-
tion exploration among multiple attributes is still not suffi-
cient due to the lack of an explicit information propagation

mechanism among different attributes. Wang et al. (Wang
et al. 2017) propose a sequential recurrent model to explore
the attribute relations. However, this model depends on the
sequential order of attributes and an ensemble of multiple
models is employed for improving the performance. In con-
trast, the graph structure in our work is less dependent on
the attribute orders and explores the relations more fully and
efficiently. On the other hand, Li et al. (Li et al. 2019b) learn
the attribute-attribute relations based on the word embed-
ding of attribute names. However, such learned relations on-
ly reflect the literal meaning instead of image’s content. D-
ifferent from their work, we explore the attribute relations
based on attribute-specific features learned by the network
itself, which contains more abundant information. Further,
the contextual relations from different image regions are al-
so important for pedestrian attribute recognition. Zhao et
al. (Zhao et al. 2018) employ a Long Short-Term Memo-
ry (LSTM) (Hochreiter and Schmidhuber 1997) to capture
the relations among different body parts. Li et al. (Li et al.
2019b) capture the spatial relations by simply dividing the
image into rigid grids. Different with the above works, we
propose a graph projection scheme to project a 2-D feature
map into a set of nodes and then construct an undirected
graph based on them to capture the contextual relations of
different image regions.

Neural Networks with Graphs: Graph Neural Networks
(GNN), which are proposed in the works (Gori, Monfardini,
and Scarselli 2005; Scarselli et al. 2009), are capable of ex-
tending the neural networks to process the data with a graph
structure. After that, various methods based on GNN are
proposed, e.g., Gated Graph Neural Networks (GGNN) (Li
et al. 2016), Graph Attention networks (GATs) (Velivckovic
et al. 2018) and GCN (Kipf and Welling 2017). Our work
may be most related to GCN (Kipf and Welling 2017), which
is originally proposed for semi-supervised learning. In re-
cent years, some researchers have focused on GCN for im-
age classification (Chen et al. 2019), human action recogni-
tion (Yan, Xiong, and Lin 2018), semantic segmentation (Li
and Gupta 2018), pedestrian analysis (Li et al. 2019b;
2019a) and so on. Different from those works, we adop-



t GCN to explore the attribute relations and the contextual
relations among different image regions.

Our Approach

We first introduce the notations and give an overview of our
approach. Then, we present the preliminaries of GCN, and
present the two proposed GCN-based modules, namely AR-
M and CRM. Finally, the employed loss function is given
and explained.

Notations and Overview

In our approach, suppose the training set contains m samples
and is denoted as D = {Z,, {yij}fz_ol}, i=0,...,m—1,
where y;; represents the label for the 4" attribute of image
7;, and § indicates the number of attributes. The pipeline of
the proposed architecture is shown in Fig. 1. The proposed
JLAC is constructed based on a two-branch network with
the backbone of ResNet-50 (He et al. 2016), where the main
body of ResNet-50 is shared except for the last three residual
units. Those two branches are unshared and each branch em-
ploys the last three residual units of ResNet-50 as the main
architecture. For the i'” image Z;, it first passes through the
two-branch ResNet-50 to obtain the high-level features H
and HY, where the superscripts .4 and C refer to ARM and
CRM, respectively. Then, two GCN-based modules, name-
ly ARM and CRM, are designed to exploit the attribute and
contextual relations. Finally, the predictions from those two
modules are fused together to get the final predictions.

A Brief Introduction to GCN

GCN (Kipf and Welling 2017) propagates the messages on
the graph structure and can efficiently learn the relations a-
mong graph nodes. Suppose the graph has n nodes. It takes
the node features Z € R™*?, and the corresponding adja-
cency matrix A € R"™ "™ as inputs, where d denotes the
dimension of input features. Mathematically, a linear graph
convolution is represented as:

Z=D :(A+I)D :ZW (1

In the above equation, D;; = > i (A;; +1;;) where I is
an identity matrix, and W is the filter matrix of the graph
convolution layer to be learned. A 4 I denotes the adjacen-
t matrix with self-connections, and the left part D3 (A +
I)D_% is used to normalize the adjacent matrix (Kipf and
Welling 2017). The non-linear activations like ReLU or sig-
moid can be appended to the convolutional layer to capture

more effective features. For more details, readers can refer
to the work (Kipf and Welling 2017).

Attribute Relation Module

This module is designed to discover and capture the attribute
relations. It first extracts the attribute-specific features with
S fully connected layers based on the high-level features
Hg“ € R° (obtained after Global Average Pooling (GAP)
layer, and ¢ = 2048 denotes the number of feature channel-
s), where each fully connected layer corresponds to a specif-
ic attribute. For convenience, the attribute-specific features

of the j" attribute for the i*" image are denoted as x;; € R?
with d as its dimensionality. In our implementation, the pre-
dicted score of the j" attribute is only generated from x;;,
which ensures its learning is only under the label supervision
of the j*" attribute. The predicted score is mathematically
represented as:
z;;;\‘,cons _ O_(BN((W;‘l,COHS)TXij)) 2)

where w7°“" denotes the parameters of the j* attribute
in the classifier, o is a sigmoid function and BN repre-
sents a batch normalization (BN) (Ioffe and Szegedy 2015)
layer. The BN layer is used to balance the positive and
negative outputs according to the works (Zhao et al. 2018;
2019), which can alleviate the imbalanced data problem. It
first normalizes the predicted vectors with a zero mean and
a unit variance, and then learns to scale its value and add
an appropriate bias to it. Thus, it changes the output dis-
tributions of the positive and negative samples, and makes
the output distribution be adapted to the unbalanced data for
achieving better performance. The predicted scores are then
used to compute the constrained losses which will be intro-
duced in the Section of The Loss Function.

Given the attribute-specific features X; € RS*? which is
a matrix form of {x;; }f;ol, we construct a GCN layer by
taking it as the input to explore the relations among multiple
pedestrian attributes, which can be implemented according
to the following formula:

~ _1 _1
X; =D4 (A4 + DDA X, WA (3)

where A is a learnable adjacency matrix (Yan, Xiong, and
Lin 2018). The graph convolution is implemented by per-
forming a convolution with the filter W+ and then multiply-
ing the input features with the normalized adjacent matrix

1 1
DA™ 2 (A4 + I)DA" . The updated nodes are generated
by utilizing the messages from all nodes. In our implemen-
tation, we set W+ as the size of d x 1, and the output of this
GCN layer is an S x 1 matrix with each output correspond-
ing to an attribute. The predicted scores can be generated
by using a BN layer and a sigmoid activation based on X,
which is formulated as:

yi' = o(BN(Xy)) S

Contextual Relation Module

This module aims to explore the contextual relations among
different image regions. Given the input features Hf €
Re*M (obtained before GAP layer, and h,w denote the
height and width of the feature map, respectively), we first
employ a graph projection scheme to project the 2-D feature
map to a set of clusters/nodes, with the number of v pre-
specified. Inspired by NetVLAD (Arandjelovic et al. 2016),
we first adopt a soft-assignment scheme to calculate the
weight for assigning the p™ pixel HY, to the k™ cluster,
which is written as:

T
e _ex((w) HE by

wmp (5)
Ty exp((wE) HS, + b))



where it is achieved by a softmax function, and wg and by,
are the trainable parameters for the kM cluster. After that,
given v learnable anchor points {ck}z;(l), we aggregate the
features for the k" node by using the weighted average of
the residuals between input features HZC and the anchor point
ci, which can be represented as:

~ 1 k C
7. 3 ok (HS, - o 6
Vi TS ok, 2y ol ) ©

Then, the aggregated features v;;, € R€ are further normal-
ized by L2 normalization, which can be written as v;;, =
Vik/||Vik|l5. In this way, different nodes contain features
from different image regions. The features of all vertices
{vik}};;é also can be represented as a matrix form V; €
RY*¢ with each row representing a graph node.

To capture the contextual relations among different re-
gions, we consider a graph with v nodes based on the fea-
tures V;. A GCN layer is employed to propagate the mes-
sages among all nodes and update their states according to
the following formula:

~ _1 _1
Vi =D (A +1)D¢ 2V,W¢) 7

where ¢ denotes the ReLLU function, and AC€ is a learnable
adjacent matrix according to the work (Yan, Xiong, and Lin
2018). Then, we concatenate the updated states of all nodes
{\N/ik}}i;é and denote it as v;. The predicted scores are ob-
tained based on the updated states as following:

yi = o(BN((w)"¥1) @®)
where w indicates the parameters of the classifiers.

The Loss Function

The losses employed to guide the whole network training
are three folds. One is the constrained losses of learning the
attribute-specific features {x;; }52—01’ and the other two are
the losses of training ARM and ¢RM modules. In our exper-
iments, all classifiers employ the binary cross-entropy loss
as the loss function. We take the constrained loss for the j**
attribute as an example, which can be written as:

m—1

~A,
> i (yij log(9;;°""*)

1
A,cons __

5 ”
)

1=0
~A,cons
+ (1- yij) log(1 — Yij ))

where p;; is a penalty coefficient used to alleviate the im-
balanced data problem in pedestrian attribute recognition.
Suppose r; represents the ratio of the images with the gt

attribute, and we set p;; = 1/% , if y;; = 1; otherwise
J

pij = ’/%17;7) . To be specific, for a positive example,
pi; becomes larger along with r; decreasing, which shift-
s the bias of the classifier to favor the minority class. The
sum of losses for all attributes can be denoted as £4:°0"% =
> E}A’CO”S. The losses for training ARM and CRM mod-

ules are produced in a similar way, denoted as £ and L,

respectively. The total loss of training the whole network can
be represented as:

L= ML £ 2o LA 4 AL (10)

where A1, A2, A3 are weight parameters for those losses.
Considering that the branch of CRM is trained only under
the supervision of £, we simply set its weight A3 to 1.
However, the branch of ARM is trained under the super-
vision of both LA and £A, and thus the values of the
corresponding loss weights A; and Ao are selected by exper-
iments (see experimental part). Those losses are optimized
jointly and concurrently to fully explore the attribute and
contextual relations for pedestrian attribute recognition. In
the inference stage, the average results of y7* and y¢ are
employed to generate the final predictions, which is denoted
as: y; = L‘;yf.

Experiments

We first introduce the datasets, settings and evaluation met-
rics for experiments. Then, we present the experimental re-
sults and analysis to validate the effectiveness of JLAC.

Datasets and Metrics

We conduct experiments for pedestrian attribute recogni-
tion on three benchmark datasets: PA-100K (Liu et al.
2017), RAP (Li et al. 2018b) and PETA (Deng et al. 2014)
datasets. PA-100K dataset is the largest pedestrian attribute
dataset with 100,000 pedestrian images from various out-
door scenes. It provides the annotations of 26 commonly
used attributes. Following the settings in (Liu et al. 2017),
the dataset is divided into three subsets with 80,000, 10,000
and 10,000 images for training, validation and test, respec-
tively. RAP dataset is the largest pedestrian attribute dataset
of indoor scenes, and it contains 41,585 pedestrian images.
We follow the official protocol provided by Li et al. (Li et al.
2018b) to only select 51 attributes for evaluation. The model
is evaluated with 5 random splits, where 33,268 images are
used for training and 8,317 images for test in each split. The
averaging performance over all splits is used for final evalu-
ation. Moreover, PETA dataset is a widely used dataset for
pedestrian attribute reccognition. It collects 19,000 images
from various outdoor scenes. According to the work (Deng
et al. 2014), 35 binary attributes are selected for evaluation.
The dataset is randomly split into 3 parts, where 9,500 im-
ages are used for training, 1,900 images for validation and
the rest 7,600 images for test.

According to the works (Liu et al. 2017; Li et al. 2018b),
we adopt five criteria to evaluate the model on PA-100K,
PETA and RAP datasets, including a label-based criterion
mean accuracy (mA), and four instance-based criteria accu-
racy (Accu), precision (Prec), Recall and F1. Those metrics
are widely used in pedestrian attribute recognition.

Experimental Settings

In our experiments, we adopt the image with the size of
256 x 128 as input. Before feeding the images to the network,
all images are normalized by subtracting a mean and divide
a standard deviation for each color channel. In the training



Table 1: Ablation studies on PETA, RAP and PA-100K datasets.

Model PETA RAP PA-100K

mA Accu Prec Recall FI | mA Accu Prec Recall FI | mA Accu Prec Recall Fl
PAR 84.81 77.66 85.43 85.85 85.64|80.49 66.00 76.35 81.32 78.76|81.17 77.84 8595 87.19 86.56
PAR + ARM 85.75 79.15 86.12 87.13 86.62|82.86 67.79 76.86 83.48 80.04|82.31 78.48 85.89 88.12 86.99
PAR + CRM 85.63 79.32 86.80 86.65 86.73|83.20 68.63 78.19 83.18 80.61|81.84 78.31 86.48 87.29 86.89
PAR + ARM + CRM 86.03 80.11 87.50 87.09 87.29|83.21 68.85 78.40 83.27 80.77|82.10 79.13 86.91 88.01 87.46
PAR + ARM + CRM + BN |86.96 80.38 87.81 87.09 87.45|83.69 69.15 79.31 82.40 80.82[82.31 79.47 87.45 87.77 87.61
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Figure 2: The results of varying the values of (a) loss weights A; and A2, (b) the feature dimension d of each node in ARM and

(c) the number of nodes v in CRM.

stage, data augmentation is also employed to improve the
performance. We augment the training images with horizon-
tal flipping, random scaling, rotation, translation, cropping,
erasing and adding random gaussian blurs. Note that only
the random horizontal flipping is conducted when evaluating
on PA-100K, because it contains a large number of training
images. To obtain the features with a large size for CRM,
we remove the x% downsampling in the residual uints of
CRM. In this way, the output features HS has the height
h and width w of 16 and 8, respectively. All networks are
first pretrained on the ImageNet (Deng et al. 2009), and then
finetuned on pedestrian attribute datasets. All networks are
optimized by Adam optimizer (Kingma and Ba 2015) with
B1 = 0.9, B2 = 0.999 and € = 1078, The learning rate is
started with 0.0001 and reduced by a factor of 10 when the
number of iterations increases.

Parameter Analysis

In this sub-section, we aim to investigate the effect of vary-
ing the values of some parameters in the proposed JLAC,
including the loss weights A\; and )., the feature dimension
d of each node in ARM and the number of nodes v in CRM.
The experiments are taken on the PETA dataset and mA is
used as the metric for analysis.

Influence of Loss Weights )\, and )\, represent the trade-
off between the losses £4<°"* and £A. Instead of using a
simple grid searching strategy which needs lots of experi-
ments, we first set A\; = 1 and vary the values of A5, and
then set A = 1 and vary the values of A;. By doing so,
we can reduce a lot of efforts. The experimental results are
shown in Fig. 2 (a). We can find the model performs well
when using a slightly large A; and a slightly small A5, where
the well-learned attribute-specific features may facilitate to

Table 2: The comparisons on PETA dataset.

Method [ mA Accu  Prec  Recall F1
CNN+SVM | 76.65 4541 5133 75.14 61.00
ACN 81.15 73.66 84.06 8126 82.64

DeepMar 82.89 75.07 83.68 83.14 8341
HP-net 81.77 76.13 8492 8324 84.07
VeSPA 8345 77773 86.18 84.81 8549

JRL 85.67 - 86.03 8534 8542
Fusion 8297 78.08 86.86 84.68 85.76
VAA 8459 7856 86.79 86.12 86.46
GRL 86.70 - 84.34  88.82 86.51
RA 86.11 - 84.69 88.51 86.56
JLPLS-PAA | 84.88 7946 8742 86.33 86.87

JLAC (ours) [ 86.96 8038 8781 87.09 8745

explore the attribute relations. The model achieves the high-
est performance when \; = 1 and A, = 0.5, which are
adopted in other experiments. Moreover, when we only use
the constrained loss £4:¢°"$ (with Ay = 1 and A = 0) or
the loss £ (with \; = 0 and Ay = 1), the performance of
the model is poor where the attribute relations are hardly to
be captured. This indicates that the attribute relations can be
captured only when both two losses are employed together.
One is to learn the attribute-specific features while the other
is to help the GCN module to learn their relations.

Analysis on Feature Dimension The feature dimension d
of graph nodes in ARM also needs to be studied. The exper-
imental results with different d are shown in Table 2 (b). The
model performs best when d = 32, and it is used in other ex-
periments. When d is too small, each node may hardly retain
sufficient information for later attribute recognition. When d
is too large, it contains much redundant information, which
is also invalid for later learning.



Table 3: The comparisons on RAP dataset.

Method | mA Accu  Prec  Recall Fl1
CNN+SVM | 72.28 31.72 35.75 71.78 47.73
ACN 69.66 62.61 80.12 7226 7598

DeepMar 73.79 6202 7492 7621 75.56
VeSPA 7170 6735 7951  79.67  79.59
HP-net 76.12 6539 7733 7879  78.05

JRL 77.81 - 78.11 7898  78.58
Fusion 7431 6457 7886 7590 7735
LG-Net 78.68 68.00 8036 79.82  80.09
GRL 81.20 - 7770 80.90  79.29
RA 81.16 - 7945 7923  79.34
JLPLS-PAA | 8125 6791 7856 8145 79.98
CoCNN 8142 6837 81.04 80.27 80.65

JLAC (ours) [ 83.69 69.15 7931 82.40  80.82

Table 4: The comparisons on PA-100K dataset.
Method | mA  Accu  Prec  Recall  FI

DeepMar 72770 7039 8224 8042 81.32
HP-net 7421 7219 8297 82.09 82.53
Fusion 7495 73.08 8436 8224 83.29
LG-Net 7696 7555 8699 83.17 85.04

JLPLS-PAA | 81.61 78.89 86.83 87.73 87.27
CoCNN 80.56 7830 89.49 8436 86.85

JLAC (ours) [ 8231 7947 8745 8177 87.61

Effect of the Number of Nodes We also conduct the ex-
periments by varying the number of nodes v in CRM, and
the results are shown in Fig. 2 (c¢). The conclusion is natu-
ral, where both containing too few or too many nodes would
result to poor performance, due to the graph has limited ca-
pacity or contains much redundant information, respectively.
The highest performance is achieved when v is set to 15, and
this value is used in other experiments.

Ablation Studies on Components

In this sub-section, we investigate the performance of three
employed components, including ARM, CRM and the BN
operation in the classifiers. The experiments are conduct-
ed on PETA, RAP and PA-100K datasets. The plain MTL
framework with a shared representation is employed as the
baseline (at this time, none of the relation modules is em-
ployed), and we denote it as Pedestrian Attribute Recogni-
tion (PAR). The experimental results are shown in Table 1.
For ARM, it improves the performance on all three
datasets compared with the baseline, where the mean per-
formance over five criteria is improved by 1.08%, 1.62%,
0.62% on PETA, RAP and PA-100K dataset, respectively.
It shows that the attribute relations are more fully exploited
compared with the plain MTL network. For CRM, it im-
proves the mean performance over five criteria by 1.15%,
2.18% and 0.42% on PETA, RAP and PA-100K dataset-
s, respectively. It demonstrates that exploring the contextu-
al relations helps to extract more effective features. When
both ARM and CRM modules are employed, the mean per-
formance can be further improved on all three datasets,
which shows that the complementary and correlated features
are learned. Moreover, when BN layer is further adopted,

Figure 3: Visualizations of the soft-assignments in CRM.
Except for the first column denoting the original image, each
column indicates a soft-assignment for a graph node.

we find that the mean performance is improved by 0.33%,
0.17% and 0.20% on PETA, RAP and PA-100K datasets re-
spectively. The BN layer inserted to all classifiers is to bal-
ance the positive and negative outputs, which alleviates the
imbalanced data problem in pedestrian attribute recognition.

Comparisons to Prior Arts

To show the effectiveness of the proposed JLAC, we take
the methods of CNN+SVM (Li et al. 2018b), ACN (Su-
dowe, Spitzer, and Leibe 2015), DeepMar (Li, Chen, and
Huang 2015), HP-net (Liu et al. 2017), VeSPA (Sarfraz et
al. 2017), JRL (Wang et al. 2017), Fusion (Li et al. 2018a),
LG-Net (Liu et al. 2018), VAA (Sarafianos, Xu, and Kaka-
diaris 2018), GRL (Zhao et al. 2018), RA (Zhao et al. 2019),
JLPLS-PAA (Tan et al. 2019b) and CoCNN (Han et al.
2019) for comparisons. The comparisons are summarized in
Table 2, Table 3 and Table 4 for PETA, RAP and PA-100K
datasets, respectively. The proposed method JLAC achieves
new state-of-the-art performance on PETA, RAP and PA-
100K datasets, with achieving the mean performance over
five criteria of 85.94%, 79.07% and 84.92%, respectively.
More specifically, taking the PETA dataset as an example,
JLAC outperforms the most recent state-of-the-art methods,
JLPLS-PAA, by 0.95% on the mean performance over five
criteria. It is a promising improvement because the perfor-
mance is averaging on dozens of attributes where the accu-
racies of some attributes are really hard to be improved due
to the low resolution, occlusions, unbalanced data and so on.
Some methods like VeSPA, GRL, Fusion and JLPLS-PAA
exploits the external information for further improving per-
formance, while our JLAC still achieves the best results. For
example, GRL and JLPLS-PAA employ the pedestrian pose
and parsing information, respectively. Some previous meth-
ods may perform well on a single metric, but our method
achieves best on the overall performance. For example, on
RAP and PA-100K datasets, although CoCNN can obtain
higher performance on Prec, its mean performance over the



Table 5: The comparisons of GCN and LSTM.

Module \ ARM \ CRM
with GCN 84.95 85.03
with LSTM 84.65 84.53

given five metrics is lower than ours by 0.73% and 1.01%,
respectively. The promising performance on three datasets
of JLAC clearly shows the superiority of exploring attribute
and contextual relations.

Further Analysis and Discussions

Visualizations of Soft-assignment We select 6 nodes in
the CRM and visualize their soft-assignments on the test
set of PETA dataset. As shown in Fig. 3, different nodes
focus on different image regions. More specifically, from
Fig. 3 (b)-(g), the nodes may focus on head, upper body,
middle body, shoes, accessories and background. The soft-
assignment mechanism works well although there are large
variations like arbitrary human poses, different camera view-
ing angles and so on. Moreover, the last node aggregates the
features from the background, which may help the learning
of later features by separating the extraneous information
from other nodes. The visualizations can qualitatively show
the employed graph projection scheme can really aggregate
the features from some important regions.

GCN vs. LSTM In previous work, there are some work-
s employing LSTM (Hochreiter and Schmidhuber 1997) to
capture the relations of attributes (Wang et al. 2017) or hu-
man body parts (Zhao et al. 2018). However, LSTM depends
on the order of the sequential data. Thus, wang et al. (Wang
et al. 2017) employ an ensemble of models and Zhao et
al. (Zhao et al. 2018) carefully design the order of the in-
puts for achieving promising performance. To verify the ef-
fectiveness of GCN employed in our modules, we conduct
the experiments of replacing the GCN with LSTM in both
ARM and CRM. The comparisons of the mean performance
over five criteria are shown in Table 5. GCN can achieve bet-
ter performance than LSTM on both ARM and CRM, which
demonstrates its effectiveness.

Qualitative Analysis The predictions of two examples on
PA-100K dataset are shown in Fig. 4. The ground truth (GT)
labels and the predictions of PAR and JLAC are denoted by
red, green and blue colors, respectively. In those samples,
JLAC can achieve better results by exploring the attribute
and contextual relations. For example, for the image of the
first row, PAR makes wrong predictions on ”ShortSleeve”
and "Back”, while JLAC can well correct them by exploring
the attribute and contextual relations.

Analysis on Improvements We draw the mean accura-
cy (mA) results on RAP dataset of the proposed JLAC and
the baseline PAR as shown in Fig. 5. From Fig. 5, we find
that JLAC can almost improve the accuracies on all at-
tributes. Some attributes like ”Glasses”, ”Muffler” and ”Ca-
sual Shoes” are hardly inferred directly from the image, and
their large improvements may come from the exploration of
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Figure 4: Examples of the predictions on PA-100K dataset.

The mA results on RAP dataset

Figure 5: The mA results of all attributes on RAP dataset.

attribute relations. Moreover, the improvements on some at-
tributes like ”CarryingbyArm”, “Holding” and “BodyNor-
mal” are also very evident. Those attributes require a consid-
eration from multiple image regions when recognizing them.
Their improvements may owe to the effectiveness of explor-
ing contextual relations.

Conclusion

To improve pedestrian attribute recognition, we have pro-
posed a unified framework, named JLAC, which contains
two novel modules, namely ARM and CRM. The attribute
graph in ARM is constructed based on the attribute-specific
features. The graph in CRM is produced based on a graph
projection scheme by projecting the feature map into a set
of nodes. In both modules, the GCN is further developed to
exploit the relations. The experiments on PETA, RAP and
PA-100K datasets have demonstrated that the JLAC outper-
forms the previous state-of-the-art methods. Moreover, we
also have provided feature visualizations and a comprehen-
sive analysis of JLAC, which can qualitatively demonstrate
its effectiveness.
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