
Mixture Uniform Distribution Modeling and Asymmetric Mix Distillation
for Class Incremental Learning

Sunyuan Qiang1, Jiayi Hou2, Jun Wan1,3,4∗, Yanyan Liang1*, Zhen Lei3,4, Du Zhang1

1 Macau University of Science and Technology
2 Lafayette College

3 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
4 School of Artificial Intelligence, University of Chinese Academy of Sciences

jun.wan@ia.ac.cn, yyliang@must.edu.mo

Abstract

Exemplar rehearsal-based methods with knowledge distilla-
tion (KD) have been widely used in class incremental learn-
ing (CIL) scenarios. However, they still suffer from perfor-
mance degradation because of severely distribution discrep-
ancy between training and test set caused by the limited stor-
age memory on previous classes. In this paper, we mathemat-
ically model the data distribution and the discrepancy at the
incremental stages with mixture uniform distribution (MUD).
Then, we propose the asymmetric mix distillation method to
uniformly minimize the error of each class from distribu-
tion discrepancy perspective. Specifically, we firstly promote
mixup in CIL scenarios with the incremental mix samplers
and incremental mix factor to calibrate the raw training data
distribution. Next, mix distillation label augmentation is in-
corporated into the data distribution to inherit the knowledge
information from the previous models. Based on the above
augmented data distribution, our trained model effectively al-
leviates the performance degradation and extensive experi-
mental results validate that our method exhibits superior per-
formance on CIL benchmarks.

Introduction
Processing real-world data streams is fundamental for hu-
mans to perceive the world and acquire experience. Al-
though deep neural networks (DNNs) have exhibited signif-
icant improvements in computer vision tasks (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2016), they suffer
from severe performance degradation in processing stream-
ing data. Such a nuisance phenomenon is known as catas-
trophic forgetting (McCloskey and Cohen 1989; Goodfellow
et al. 2014), where the knowledge learned at previous stages
is severely lost when learning future tasks. Therefore, class
incremental learning (CIL) (Rebuffi et al. 2017; Belouadah,
Popescu, and Kanellos 2021) is widely researched to relieve
this problem, where the model learns new classes incremen-
tally.

Owing to promising performances, rehearsal-based ap-
proaches (Rebuffi et al. 2017; Chaudhry et al. 2019) with
knowledge distillation (KD) (Hinton, Vinyals, and Dean
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2015; Li and Hoiem 2016) are widely utilized in the com-
munity. Such methods typically store limited exemplars of
previous stages and train jointly with the samples of the cur-
rent stage. Then, the KD is used to transfer the knowledge
from the previous model to the current one. However, de-
spite incorporating the benefits of KD methods, the insuf-
ficient memory for old classes still leads to the distortions
of the training data distribution, which limits the model per-
formance and can be considered as a major cause of catas-
trophic forgetting. Some recent works (Wu et al. 2019; Zhao
et al. 2020) have also noted this problem, but in-depth anal-
ysis and modeling of distribution discrepancy is lacking.

In this work, we first analyze the above phenomenon by
modeling the mixture uniform marginal data distribution and
KL divergence is employed to measure the mismatch. The
training data distribution deviates significantly from the tar-
get test distribution with growing incremental tasks, which
motivates us to explore a novel data distribution model in
CIL from the discrepancy perspective. Moreover, inspired
by the mixup (Zhang et al. 2018, 2021), recent research com-
munities also applied this training strategy in CIL (Mi et al.
2020; Bang et al. 2021; Zhu et al. 2021; Zhou et al. 2022).
We extend our modeling framework to mixup and find that
discrepancy remains as in Corollary 1 and Fig. 2(b). To this
end, we propose the asymmetric mix distillation method,
which minimizes the objective error on our well-designed
asymmetric Mix-Distill-Aug data distribution model. Such a
data distribution enables us to alleviate the mismatch under
our modeling framework while preventing past knowledge
from being forgotten, as shown in Fig. 2.

The asymmetric Mix-Distill-Aug data model is composed
of three components: incremental mix samplers, incremen-
tal mix distillation, and incremental mix factor. Specifically,
two pairs of data are firstly sampled from incremental mix
samplers respectively to ensure the observation of each data
samples and increase the focus on the rehearsal memory data
samples. Then, the learnt knowledge of the old model is
transferred to the current training stage via incremental mix
distillation. The linear interpolation factors are obtained by
the incremental mix factor procedure, which further slightly
calibrate for mismatches in the distributions. Finally, our
asymmetric Mix-Distill-Aug data model is obtained by lin-
early interpolating two pairs of distillation-based samples
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with the above mix factors as shown in Eq. 6 and Alg. 1.
Extensive experiments on three benchmark datasets, CI-
FAR100, ImageNet100, and CUB200, validate the effective-
ness of our proposed method. In particular, we achieve about
70% and 74% average accuracy on CIFAR100 dataset and
ImageNet100 over 10 stages, respectively. The main contri-
butions of our work are as follows:

• We firstly propose to model the CIL data distribution
with the mixture uniform distribution, then derive a mea-
sure of distribution discrepancy between training and test
data distributions with KL divergence.

• The asymmetric mix distillation is proposed to minimize
the objective error on our well-designed Mix-Distill-Aug
data model, which consists of three components: incre-
mental mix samplers, incremental mix distillation, and
incremental mix factor.

• Extensive experiments on benchmarks showed that our
method outperforms existing methods. We also conduct
ablation experiments with different distribution models
to validate the effectiveness of the modeling framework.

Related Work
Class incremental learning (CIL) (Belouadah, Popescu, and
Kanellos 2021) can be viewed as a branch of continual
learning (CL) (van de Ven and Tolias 2019). Generally,
the CL methods (Lange et al. 2022) can be divided into
three themes: regularization-based methods, parameter iso-
lation methods, and rehearsal methods. (1). Regularization
based methods (Kirkpatrick et al. 2016; Li and Hoiem 2016;
Zenke, Poole, and Ganguli 2017; Aljundi et al. 2018) con-
strained the model by adding an extra regularization term to
prevent forgetting previous knowledge. (2). Parameter iso-
lation methods (Mallya, Davis, and Lazebnik 2018; Hung
et al. 2019) fixed previous model parameters and incremen-
tally allocated additional model parameters to alleviate the
forgetting, which are not suitable for CIL scenario due to
unavailable task IDs. (3). Rehearsal based methods (Rebuffi
et al. 2017; Chaudhry et al. 2019; Shin et al. 2017) retained a
small subset of previous data or synthesize the pseudo sam-
ples with generative models for jointly training.

Among them, the rehearsal based methods with knowl-
edge distillation (KD) (Rebuffi et al. 2017; Castro et al.
2018; Hou et al. 2019; Douillard et al. 2020; Yan, Xie, and
He 2021; Li, Wan, and Yu 2022; Kang, Park, and Han 2022;
Liu, Schiele, and Sun 2021) received great attention with su-
perior performance in CIL. LwF (Li and Hoiem 2016) firstly
introduced the knowledge distillation into continual learn-
ing while (Rebuffi et al. 2017) extended it to rehearsal based
CIL with promising performance. Later, different variants
of distillation loss to keep knowledge from the old model
to the current model were widely used in CIL, such as less-
forget constraint (Hou et al. 2019), pooled outputs distilla-
tion (Douillard et al. 2020), and importance weighted feature
maps distillation (Kang, Park, and Han 2022). Some recent
works (Yan, Xie, and He 2021; Douillard et al. 2022; Wang
et al. 2022) also proposed dynamic architecture based meth-
ods in CIL, which add additional learnable parameters for
learning new classes. However, growing classes can lead to

severe model overhead. Our proposed method is also based
on rehearsal based methods with KD, but we further explore
the discrepancy between training and test data distribution
in CIL and extend the mixup in CIL to propose a novel
method from distribution discrepancy perspective. In the fol-
lowing, we discuss the related work of imbalance problems
and mixup strategy in CIL.

Imbalance in CIL. The performance of DNNs on class
imbalanced datasets has received extensive attention (Dong,
Gong, and Zhu 2019). Recently, many works (Castro et al.
2018; Hou et al. 2019; Wu et al. 2019; Zhao et al. 2020; He,
Wang, and Chen 2021) have found the imbalanced problem
of rehearsal strategy in CIL. An additional fine-tuning stage
with balanced subdataset is added in training process (Castro
et al. 2018). (Hou et al. 2019) introduced the margin ranking
loss to tackle the imbalance. BiC method (Wu et al. 2019)
and weight aligning (WA) (Zhao et al. 2020) are proposed to
correct the final biased classification layer. However, all of
the above works lack the analysis of imbalance mismatches
between training and test data distribution in CIL scenario.

Mixup in CIL. Mixup (Zhang et al. 2018) is a widely
used training strategy in the recent research community to
improve model generalization and robustness (Zhang et al.
2021). In CIL, (Mi et al. 2020) simply applied mixup in
both samples in the current stages and replay exemplars.
(Zhu et al. 2021) proposed class augmentation, which uti-
lizes the mixup to augment the original classes by synthe-
sizing auxiliary virtual classes. (Bang et al. 2021) proposed
to use cutmix (Yun et al. 2019) to alleviate the side effects
caused by class distribution, while in (Zhou et al. 2022),
manifold mixup (Verma et al. 2019) is applied to fuse in-
stance as a virtual new class for few-shot CIL. However, we
find that directly using mixup strategy cannot effectively al-
leviate the problem of data distribution mismatch under our
proposed framework and the performance improvement of
this method is still limited.

Preliminaries
Problem Formulation. In class incremental learning sce-
narios, the training streaming dataset {Dt}Tt=1 consists of Nt

sample pairs at each stage t, {(xt,i, yt,i) |xt,i ∈ Xt, yt,i ∈
Yt}Nt

i=1, where xt,i and yt,i is the ith sample at the tth stage
sampled from data and label space Xt and Yt, respectively.
The label spaces at different stages are disjoint Yi ∩ Yj =
∅, i ̸= j. At stage t, a deep neural network model with pa-
rameter θ is trained using the available Nt samples from
the dataset Dt while the trained model is tested on all seen
classes Y1:t. Due to the absence of datasets D1:t−1 of previ-
ous stages, the model tends to minimize the objective error
of current classes Yt instead of all seen classes Y1:t, lead-
ing to the dilemma of catastrophic forgetting. In this paper,
we adopt the rehearsal strategy in CIL setting (Rebuffi et al.
2017), where a small amount of memory buffer is available
MNmem

t ⊂ {D1,D2, ...,Dt−1} at stage t, and Nmem denotes
the size of the memory buffer.

ERM and VRM. The supervised learning aims to find the
hypothesis f ∈ F that builds the connection between inputs
data x and label y. Given an objective function ℓ : Y ×Y 7→
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R, the expected risk error R(f) =
∫
ℓ(f(x), y)dP (x, y) is

intractable due to the unknown data distribution P (x, y).
The empirical risk error (ERM) (Vapnik 1991) Rerm(f) =
1
n

∑n
i=1 ℓ(f(xi), yi) is introduced to minimize the error on

the empirical data distribution (xi, yi) ∼ Pδ(x, y) to ap-
proximate the expected risk. However, the converged model
obtained by ERM is only reliable under the assumption
that the empirical data distribution Pδ is close to the true
data distribution P . Severely biased prediction occurs when
the true data distribution is poorly approximated. Later,
vicinal risk minimization (VRM) (Chapelle et al. 2000)
Rvrm(f) =

1
m

∑m
i=1 ℓ(f(x̃i), ỹi) is introduced to fit a richer

distribution, which extends the empirical delta distribution
Pδ to the vicinity distribution of data points Pν , where
(x̃i, ỹi) ∼ Pν(x̃, ỹ). One of the widely used strategies is
that (x̃i, ỹi) can be computed by a linear interpolation oper-
ation in mixup (Zhang et al. 2018). Specifically, given train-
ing samples (xi, yi), (xj , yj) randomly sampled from the
empirical data distribution, the mixup based vicinal point
(x̃i,j , ỹi,j) is calculated as follows:

x̃i,j = λ · xi + (1− λ) · xj ,

ỹi,j = λ · yi + (1− λ) · yj ,
(1)

where λ is usually drawn from Beta distribution Beta(α, α).

Data Distribution Modeling
Mathematically, the empirical data distribution Pδt(x, y) is
formed by training samples from training dataset Dt and
memory buffer Mt at stage t in CIL. Then, the marginal
distribution Pδt(y) is formalized as follows:

Pδt(y) =

∫
Pδt(x, y)dx. (2)

In rehearsal-based CIL (Rebuffi et al. 2017), the number of
instances of each class is close in the current dataset Dt and
in memory buffer Mt, respectively. Therefore, one can fur-
ther describe the marginal distribution by a mixture uniform
distribution in Eq. 3. Here, we omit the dirac δ function flags
for simplicity.

Pt(y) =
Nmem

Nmem +Nt
·U(0, |Y1:t−1|]

+
Nt

Nmem +Nt
·U(|Y1:t−1|, |Y1:t|],

(3)

where U denotes the uniform distribution. |Y1:t−1| denotes
the number of classes in previous tasks, while |Y1:t| denotes
the number of all classes observed so far. Nmem and Nt de-
note the total number of samples in memory buffer and cur-
rent new task, respectively. It usually minimizes the objec-
tive function ℓ to penalize the difference between predictions
f(x) and ground truth label y with ERM. On the contrary,
the marginal class distribution of test data is usually bal-
anced and the model is required to have the same preference
for each class. Then, the test distribution can be directly con-
sidered as a uniform distribution, P test

t (y) = U(0, |Y1:t|].
The mismatch with Eq. 3 (P test

t and Pt) often leads to severe
bias in model predictions. To this end, we simply utilize KL

divergence to analytically measure the discrepancy between
above marginal distributions with the mixture uniform dis-
tribution.

In addition to directly perform the ERM on mixture uni-
form data distribution in Eq. 3, knowledge distillation (Hin-
ton, Vinyals, and Dean 2015; Rebuffi et al. 2017; Douillard
et al. 2020) is widely used in CIL to transfer learned knowl-
edge from the old models to the current one. Among them,
we treat the knowledge learned from logits as a label func-
tion, augmenting the original data samples into Distill-Aug
samples.

x̂ = x,

ŷ =
[
σ(fθt−1

(x̂))Y1:t−1 ; yYt
]
,

(4)

where fθt−1
denotes the learned model at stage t− 1. (x, y)

are sampled from empirical training distribution Pt(x, y),
[ · ; · ] denotes the concatenate operation, and activation func-
tion σ(·) converts the predicted logits to the probability. The
new virtual label ŷ of each data sample x̂ is composed of
the distilled label from the old model and the ground truth
label in the corresponding label space. To analyze the in-
sufficiency in marginal data distribution of knowledge dis-
tillation, we treat the distilled labels ŷ as inherited from the
original labels y and raise the following definition.

Definition 1 (Distill-Aug). The virtual sample pair (x̂, ŷ)
generated by Eq. 4 is defined as a distilled augmented
(Distill-Aug) sample, which is a robust sample of original
class y in model’s feature learning.

The Distill-Aug definition provides us with a way to ana-
lyze the data distribution independently of knowledge distil-
lation in CIL. As the Distill-Aug samples belong to the orig-
inal labels, we can derive that the class marginal distribution
Pt-distill follows the same distribution in Eq. 3, causing the
discrepancy between the training and test distributions re-
mains. Thus, minimizing the error on Distill-Aug data model
Pt-distill still focuses on the current classes Yt instead of all
seen classes Y1:t.

Asymmetric Mix Distillation
In this section, we introduce the proposed asymmetric mix
distillation, which minimizes the risk error on the asymmet-
ric Mix-Distill-Aug data distribution model. Three key com-
ponents, incremental mix samplers, incremental mix distil-
lation, and incremental mix factor are used to construct the
data model. In the following, we describe each component
in detail and the complete training procedure is summarized
in Alg. 1.

Incremental Mix Samplers
The incremental mix samplers include two sampling strate-
gies for later performing mixup linear interpolation opera-
tions and distillation label augmentation over two pairs of
samples. We propose incremental reverse sampler and com-
bine instance sampler to form the final incremental mix sam-
plers, which both focus on the rehearsal memory data and
ensure that each sample is observed over training. Instance

9500



Sampler: As shown in Eq. 3, the coefficient of the data distri-
bution model is determined by the memory buffer size Nmem
and sample size of current task Nt, which can be viewed as
a common sampling method called instance sampler (Kang
et al. 2020). We simplify the Eq. 3 with probability coeffi-
cient p = Nmem/(Nmem + Nt) to obtain our instance sam-
pler based data model Pt. The instance sampler commonly
traverses the entire dataset once to ensure that each sample
is observed. Incremental Reverse Sampler: With the mix-
ture uniform distribution modeling framework, we firstly
formally give the data distribution model determined by q
as follows.

Qt(y) = q ·U(0, |Y1:t−1|]
+ (1− q) ·U(|Y1:t−1|, |Y1:t|].

(5)

We design q to be a quadratic ratio of the number of classes
(|Y1:t−1|)2

(|Y1:t−1|)2+(|Yt|)2
to maintain focus on the rehearsal mem-

ory samples in the increasing incremental stages. In the next
subsection, we discuss the results of our mixed data model
based on the above sampling strategies, and find that such a
model can greatly alleviate the discrepancy between training
and test data distributions.

Incremental Mix Distillation
With Eq. 1 and Eq. 4, we formulate our incremental mix
distillation as follows, where mixed samples are fed into the
old model to obtain knowledge information.

x̃i,j = λ · xi + (1− λ) · xj ,

ỹi,j =
[
σ(ft−1(x̃i,j))

Y1:t−1 ; [λ · yi + (1− λ) · yj ]Yt
]
.
(6)

Inspired by (Xu, Chai, and Yuan 2021), we extend mixup
strategy with Distill-Aug definition and raise the Mix-Distill-
Aug below in order to analyze the marginal data distribution.

Definition 2 (Mix-Distill-Aug). The virtual sample pair
(x̃i,j , ỹi,j) generated by Eq. 6 with mixing factor λ is de-
fined as a Mix-Distill-Aug sample, which is a robust sample
of class yi (class yj) iff λ ≥ 0.5(λ < 0.5) in model’s feature
learning.

Corollary 1. When mixing factor λ ∈ [0, 1] sampled from
a symmetric distribution, the virtual dataset composed of
Mix-Distill-Aug sample pairs (x̃i,j , ỹi,j) in Eq. 6 follows the
same marginal distribution Pt in Eq. 3, where (xi, yi) and
(xj , yj) are both randomly sampled from instance sampler
Pt.

As in Corollary 1, we derive that performing mixup strat-
egy with incremental mix distillation results in the same dis-
tribution Pt. We refer such data model as base Mix-Distill-
Aug model (x̃i,j , ỹi,j) ∼ P̃t-base, and experimentally find
that the performance improvement of the model is limited
in Fig. 2.

Corollary 2. When mixing factor λ ∈ [0, 1] sampled from
a symmetric distribution, the virtual dataset composed of
Mix-Distill-Aug sample pairs (x̃i,j , ỹi,j) in Eq. 6 follows
a new marginal distribution P̃t-sym in Eq. 7, where (xi, yi)

Algorithm 1: Asymmetric Mix Distillation

Input: Training data Dt ∪ Mt = {xi, yi}Nt+Nmem
i=1 ; Incre-

mental mix samplers Pt and Qt; Previous model parameters
θt−1; Stage t, (t > 1).
Output: Model parameters θt;

1: for k steps do
2: Sample minibatch (xi, yi) from Pt in Eq. 3;
3: Sample minibatch (xj , yj) from Qt in Eq. 5;
4: Sample the factors λ from asymmetric P̃λ in Eq. 8;
5: Construct the asymmetric Mix-Distill-Aug data model

(x̃i,j , ỹi,j) ∼ P̃t-asym with (xi, yi), (xj , yj), θt−1, and
λ in Eq. 6;

6: Train θt by minimizing the objective error in Eq. 10;
7: end for

and (xj , yj) are randomly sampled from instance sampler
Pt and incremental reverse sampler Qt, respectively.

P̃t-sym(y) =
p+ q

2
·U(0, |Y1:t−1|]

+
2− p− q

2
·U(|Y1:t−1|, |Y1:t|)],

(7)

where p and q denote the coefficient of distribution Pt and
Qt, respectively. As in Corollary 2, with our proposed incre-
mental mix samplers, the new distribution data model P̃t-sym,
termed symmetric Mix-Distill-Aug model, increases the fo-
cus on rehearsal memory data with the probability coeffi-
cient p+q

2 , alleviating the gap between the training and the
test data distribution. The distance measured by KL diver-
gence over incremental stages is shown in Fig. 2(b), we can
see that the P̃t-sym model greatly reduces the distribution dis-
tance compared to P̃t-base, but a small gap still exists in the
growing incremental stages. In the next subsection, we intro-
duce the incremental mix factor to further slightly calibrate
the data distribution model.

Incremental Mix Factor
As discussed above, small gap still exists in the symmetric
Mix-Distill-Aug model with probability coefficient p+q

2 in
Eq. 7. In Corollary 2, the mixing factors are sampled from
a symmetric distribution Pλ such as beta distribution with
parameter α, Beta(α, α). We propose a novel mixing fac-
tor method, termed incremental mix factor, which the lin-
ear interpolation factors λ are sampled from the asymmetric
distribution P̃λ to calibrate the symmetric data distribution
model under our modeling framework at each stage t. And
the asymmetric mix factors distribution P̃λ is defined as an
extension of the original factor distribution.

P̃λ = m · Pλ(0.5,1) + (1−m) · Pλ(0,0.5), (8)

where Pλ(a,b) maps the original beta sampling results from
[0, 1] to [a, b] with linear function λ̃ = λ · (b−a)+a. There-
fore, we divide the sampling space [0, 1] with [0, 0.5] and
[0.5, 1]. By designing a reasonable probability m, we can
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Dataset CIFAR100 ImageNet100 CUB200

stages 5 10 20 5 10 10 20

iCaRL 67.31±1.26 64.32±1.28 60.19±1.18 72.23 66.78 65.91 56.90
BiC 67.01±1.52 63.98±1.03 60.89±1.60 73.21 64.98 67.12 59.78
WA 69.28±0.74 67.45±1.07 66.31±1.27 73.73 67.41 65.73 58.45

PODNet 64.03±0.79 54.66±0.65 46.49±1.46 75.18 67.75 53.19 45.29
SSIL 63.73±1.29 57.44±1.03 52.02±1.23 71.94 64.05 66.02 58.01
AFC 65.99±1.09 60.42±1.42 54.91±1.12 76.36 69.73 60.71 56.64
Ours 72.08±0.81 70.18±0.38 68.16±0.89 77.24 74.37 71.07 62.66

Table 1: Performance comparison of CIFAR100, ImageNet100, and CUB200 benchmarks. Average accuracies (%) over all
stages are reported. For CIFAR100 benchmarks, we run experiments using three different class orders and report their averages
and standard deviations.

control the preferences for the samplers Pt and Qt accord-
ing to Mix-Distill-Aug definition.
Corollary 3. When mixing factor λ ∈ [0, 1] sampled from
an asymmetric distribution in Eq. 8, the virtual dataset com-
posed of Mix-Distill-Aug sample pairs (x̃i,j , ỹi,j) in Eq. 6
follows a new marginal distribution P̃t-asym in Eq. 9, where
(xi, yi) and (xj , yj) are randomly sampled from instance
sampler Pt and incremental reverse sampler Qt, respec-
tively.

P̃t-asym(y) = pasym ·U(0, |Y1:t−1|]
+ (1− pasym) ·U(|Y1:t−1|, |Y1:t|],

(9)

where pasym = p · m + q · (1 − m). p and q denote the
coefficient of distribution Pt and Qt, respectively. m denotes
the coefficient of asymmetric P̃λ. In this paper, we set m to
be

(
q − |Y1:t−1|

|Y1:t|

)
/(q − p), to build asymmetric Mix-Distill-

Aug data model with zero distribution discrepancy, as shown
in Fig. 2(b).

Summary
In this subsection, we briefly give the summary of our pro-
posed incremental mix distillation method and complete
training procedure. In the first stage t = 1, giving train-
ing data (xi, yi),(xj , yj) ∼ D1, we simply train the model
with parameters θ1 on mixup samples (x̃i,j , ỹi,j) in Eq. 1.
minθ1 ℓ(fθ1(x̃i,j), ỹi,j), where the objective function ℓ is
set to binary cross entropy as in (Rebuffi et al. 2017). In
the following incremental stages t > 1, giving training data
Dt ∪ Mt, we firstly sample data pairs (xi, yi) and (xj , yj)
from the incremental mix samplers Pt and Qt in Eq. 3 and
Eq. 5, respectively. Then, the linear interpolation factor λ is
sampled from asymmetric distribution P̃λ in Eq. 8. With the
previous model fθt−1 , the above data pairs, and the linear in-
terpolation factor, we construct the asymmetric Mix-Distill-
Aug data distribution model (x̃i,j , ỹi,j) with Eq. 6.

min
θt

ℓ(fθt(x̃i,j), ỹi,j). (10)

Similarly, we minimize the error on asymmetric Mix-Distill-
Aug samples with the binary cross entropy in Eq. 10 and the

details are shown in Alg. 1. Our proposed method shows
excellent performance without additional network parame-
ters and training computation. In the inference, we adopt the
NME strategy (Rebuffi et al. 2017) for predictions.

Experiments
In this section, we follow the previous evaluation protocols
in CIL and conduct extensive experiments to validate the ef-
fectiveness of our method.

Datasets and Evaluation Protocols
Datasets We employ CIFAR100 (Krizhevsky and Hinton
2009), ImageNet100 (Deng et al. 2009), and CUB200 (Wah
et al. 2011) for evaluation. CIFAR100 is 32 × 32 color im-
ages datasets containing 50,000 training images and 10,000
testing images with 100 classes. ImageNet100 is a subset
of the ImageNet large dataset, which we selected the same
100 classes according to previous CIL evaluation protocols
(Rebuffi et al. 2017; Douillard et al. 2020). CUB200 is a
dataset containing 200 classes of fine-grained visual birds
with 11,788 images in total.

Protocols For different comparison methods, we keep the
same backbone network for fair comparison. Following the
recent CIL works (Rebuffi et al. 2017), we employ the mod-
ified ResNet32 backbone for CIFAR100 datasets, and the
standard ResNet18 (He et al. 2016) for ImageNet100 and
CUB200 datasets. The specific evaluation settings are de-
scribed below. (1) CIFAR100: We split the 100 classes into
5, 10, and 20 stages with a total memory size of 2,000. (2)
ImageNet100: The 100 classes are split into 5 and 10 stages
with a total memory size of 2,000. (3) CUB200: Following
the (Yu et al. 2020; Zhou, Ye, and Zhan 2021), the backbone
network pretrained on ImageNet is required for CUB200
dataset. We split the 200 classes into 10 and 20 stages and
the memory buffer size is set to 3 images per class.

Comparison Results
We compare our method with various models, iCaRL (Re-
buffi et al. 2017), BiC (Wu et al. 2019), WA (Zhao et al.
2020), PODNet (Douillard et al. 2020), SSIL (Ahn et al.
2021), and AFC (Kang, Park, and Han 2022). The average
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Figure 1: The visualization results of performance comparison for each stage.
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Figure 2: The visualization results of subfigures all come from 10 steps CIFAR100 dataset evaluation experiment. Distill: Distill-
Aug data model; Base: base Mix-Distill-Aug data model; Sym: symmetric Mix-Distill-Aug data model; Asym: asymmetric Mix-
Distill-Aug data model. (a) The accuracy over 10 stage. (b) Discrepancy between training and test distribution measured by KL
divergence. (c) The average accuracy of all stages. (d) The accuracy of last stage.

accuracies (Rebuffi et al. 2017) over all stages are reported
for quantitative evaluation. The implementation details of
our method are added to the supplementary material.

Table 1 and Fig 1 summarizes the comparison results of
different benchmarks. For CIFAR100 benchmarks, we run
experiments using three different class orders and report
their averages and standard deviations. The experimental re-
sults show that our method surpasses all previous models on
average accuracies and per-step accuracy. Particularly, we
achieve 2.8% and 1.85 % improvement with 5 stages and 20
steps in both short and long increment stages, respectively.
In the setting of CIFAR100 of 10 steps, we surpass the state-
of-the-art method from 67.45% to 70.18% (+2.73%), which
proves the effectiveness of our method. In the supplementary
material, we also evaluate on another common protocol with
base training stage (Douillard et al. 2020) and achieve com-
petitive results. As for the ImageNet100 benchmarks, we can
see that our method achieve about 77.24% and 74.37% in 5
stages and 10 stages protocols, which outperforms the other
methods. We also add comparative results for top 5 average
accuracy (Rebuffi et al. 2017) in the supplementary mate-
rial. For CUB200 benchmarks, due to the extreme scarcity
of rehearsal memory, m is directly set to 0.5 in this case to
prevent repeated memory samples from dominating. We can
see that our method still outperforms other methods. In the
protocols of 200 classes with 10 classes per step (20 stages),

we improve from 59.78% to 62.66% (+2.88%), which fur-
ther validates the effectiveness of our method.

Ablation Study
In this subsection, we conduct exhaustive ablation study to
validate our proposed data model. We also discuss the per-
formance by varying samplers with different discrepancy
measured by KL divergence. Moreover, we study the effect
of different asymmetric mixing factor distributions.

Data Distribution Models. Table 2 and Fig. 2 summa-
rizes the results of ablation experiments on data distribution
models with CIFAR100 10 stages benchmark. We use the
basic knowledge distillation label augmentation data model
Distill-Aug in Definition 1 as the baseline model. The base
Mix-Distill-Aug data model in Corollary 1 improves the av-
erage accuracy from 66.31% to 68.71% and last accuracy
from 49.02% to 49.81%, respectively, which shows that mix
distillation is an effective strategy with mixup. However, as
shown in Fig. 2(b), the distribution discrepancy of such data
model still increases significantly as the classes accumulate
in the incremental stages, and the improvement of last accu-
racy is limited compared with the average accuracy. As for
the symmetric Mix-Distill-Aug data model in Corollary 2,
it significantly improves the last accuracy by 4.88%. The
distribution distance curve is also greatly reduced compared
with the above two models. We reduce the distribution gap
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Figure 3: (a) The accuracy of last stage on CIFAR100 with different Qt samplers. (b) Discrepancy between training and test
distribution measured by KL divergence on CIFAR100 with different Qt samplers. (c) The average accuracy of all stages on
CIFAR100 with different asymmetric mixing factor distribution. (d) The accuracy of last stage on CIFAR100 with different
asymmetric mixing factor distribution.

Models Avg Last ∆

Distill-Aug 66.31 49.02 -
base Mix-Distill-Aug 68.71 49.81 +0.79
sym Mix-Distill-Aug 70.26 53.90 +4.88
asym Mix-Distill-Aug 70.55 54.03 +5.01

Table 2: Performance comparison of CIFAR100 10 stages
benchmark with different data distribution models.

while also increasing the accuracy, showing that a smaller
distribution gap between training and test sets may lead to
higher model accuracy. With the asymmetric mix factor dis-
tribution, the distribution distance is narrowed to zero at all
incremental stages, thereby uniformly minimizing the error
of each class under our MUD modeling framework. Our fi-
nal asymmetric Mix-Distill-Aug data model in Corollary 3
further slightly improves the average and last accuracy to
70.55% and 54.03%, respectively, which validates the ef-
fectiveness of our modeling framework and the proposed
method. From the accuracies over 10 stages in Fig. 2(a), the
models we designed have obvious improvement compared
with the baseline model, and the detail visualization results
of average and last accuracy are shown in Fig. 2(c) and
2(d). Moreover, as shown in Fig. 2, on CIFAR100 10 stages
benchmark, from base to asym data model, the discrepancy
curve measured by KL divergence shifts down gradually,
and both the average accuracy and the last accuracy increase.
We empirically find that such discrepancy may lead to the
degradation of our data model, and the results validate the
effectiveness of the method and modeling framework.

Samplers and Distribution Discrepancy. To assess the
effectiveness of the incremental reverse sampler and further
analyze the modeling framework, we vary the coefficient
q of Qt to build different symmetric Mix-Distill-Aug data
model. Table 3 summarizes the results with different coef-
ficient q settings. Compared with the basic instance sam-
pler, we significantly improve the last accuracy from 49.93%
to 53.90% with incremental reverse sampler, which demon-
strates the effectiveness of our proposed sampler method.
Additionally, as shown in Fig. 3(a) and 3(b), the distribution

Qt q Avg Last

Instance Nmem
Nmem+Nt

68.27 49.93
Bisection 0.5 69.27 51.53

Class-balance |Y1:t−1|
|Y1:t| 69.95 53.35

Incre-reverse (|Y1:t−1|)2

(|Y1:t−1|)2+(|Yt|)2
70.26 53.90

Table 3: Performance comparison of CIFAR100 10 stages
benchmark with different Qt samplers.

distance decreases with varying q from instance sampler to
incremental reverse sampler, and the accuracy also gradually
increases, which again validates the effectiveness of our pro-
posed framework. We argue that under our modeling frame-
work and data model settings, large distribution discrepancy
may lead to model degradation.

Mixing Factor Distribution. Fig. 3(c) and 3(d) visualize
the performance results for different mix factor distributions
P̃λ with varying hyper-parameter α. The sym refers to the
symmetric Mix-Distill-Aug data model with Beta(1, 1) mix
factor distribution. We can see that both average and last ac-
curacy are improved slightly compared with the sym data
model, and we simply choose 0.2 as our method setting. We
also evaluate some other P̃λ distribution settings and pre-
sented in the supplementary material.

Conclusion
In this work, we formulate the marginal class data distribu-
tion with mixture uniform distribution (MUD) and systemat-
ically analyze the distribution discrepancy between training
and test set for class incremental learning scenario. We pro-
pose the asymmetric mix distillation to uniformly minimize
the model error of each class by extending mixup strategy
with three key components. The incremental mix samplers
and the mix factor calibrate the raw data distribution from
distribution discrepancy perspective, and the mix distillation
transfers previous knowledge to the current stage with label
augmentation. Extensive experiments show that our method
obtains superior performance on CIL benchmarks.
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