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Abstract. In this paper, we propose a novel approach based on a single
convolutional neural network (CNN) for age estimation. In our proposed
network architecture, we first model the randomness of aging with the
Gaussian distribution which is used to calculate the Gaussian integral of
an age interval. Then, we present a soft softmax regression function used
in the network. The new function applies the aging modeling to compute
the function loss. Compared with the traditional softmax function, the
new function considers not only the chronological age but also the inter-
val nearby true age. Moreover, owing to the complex of Gaussian integral
in soft softmax function, a look up table is built to accelerate this pro-
cess. All the integrals of age values are calculated offline in advance. We
evaluate our method on two public datasets: MORPH II and Cross-Age
Celebrity Dataset (CACD), and experimental results have shown that
the proposed method has gained superior performances compared to the
state of the art.

1 Introduction

Until today, age estimation is still a very complex pattern classification problem.
We judge a person’s age mainly through the shin sheen, smooth degree, wrinkles
and others, and such appearances are closely linked with various genes, diets,
living and working environment and so on, which make age prediction further
complicated. Initial work on age estimation goes back to 1990s [1], which simply
classifies face images into several age groups based on facial shape features and
skin wrinkle analysis. After this work, age estimation attracts more and more
scholars’ attention. Moreover, in the initial stage of age estimation research, the
available age dataset is extremely limited. Fortunately, with the effort of the
scholars all over the world, many large datasets are available for age estimation,
like FG-NET [2], MORPH II [3], CACD [4], which increases by hundreds of
times compared with datasets in the initial stage of age estimation research and
significantly promote the development of age estimation.
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Aging is a continuous process and the boundaries between adjacent ages are
not obvious. Firstly, each person has different aging speeds and people of the
same age may appear to be slightly older or younger comparing with each other.
For example, two faces come from different people of the same age may look like
in different ages. Secondly, aging is a very slow process and faces at close ages
would look similar. We believe that faces labeled with particular age are also
close those with neighboring ages and even could be labeled with multiple labels
in some way. For instance, Geng et al. [5] treated each face image with a age
label distribution rather than a single label and thus during learning, it judged
each face by considering its real age and adjacent ages. To be more correct, the
label of age is more like to be a set of soft labels rather than a specific evidence,
taking various factors related to aging into account.

Therefore, we propose an age estimation framework for exploring the aging
information based on the CNN framework. The aging model is embedded into
the network to explore more efficient features for age estimation. The main
contributions of our work are summarized below:

– We model the randomness of aging with the Gaussian distribution for the
chronological age. It is used to calculate the Gaussian integral of an age
interval around the true age.

– We propose a new loss function: soft softmax regression function. The new
function applies the aging modeling to compute the loss in the training phase.
Compared with the classic softmax function, the new function considers the
age interval instead of the specific age value.

– Compared with the softmax function, the proposed CNN frameworks with
soft softmax function can alleviate the overfitting problems according to our
experiments.

– Because of the complexity of Gaussian integral, a look up table is built to
accelerate this process.

The rest of the paper is organized as follows. Related works are reviewed in
Section 2. The proposed method is presented in Section 3. Then, experiments
are provided in Section 4 to evaluate our method and compare with the state-of-
the-art methods. Section 5 gives some discussions about the proposed method.
Finally, a conclusion is drawn in Section 6.

2 Related works

Early methods for age estimation just classify facial images into several age
groups according to some hand-crafted features based on facial geometry features
and skin wrinkle analysis [1]. The facial geometry features mainly consist of
geometric relationships that computed by the sizes and distances between some
primary features (e.g. eyes, mouth, nose, etc.). Facial geometry features are used
to distinguish babies, and skin wrinkle feature can distinguish young adults from
senior adults. Few years later, on the basis of the former works, Horng et al. [6]
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locate eyes, mouths and noses in face images via sobel edge operator and region
labeling, then extract geometric and wrinkle features for age estimation.

In recent years, fortunately, automatic human age estimation receives in-
creasing attention and more and more new methods have been proposed a-
long with the development of the facial analysis technology. Geng et al. [7, 8]
proposed AGing pattErn Subspace (AGES) approach to model the aging pat-
tern, which achieves the mean absolute error (MAE) on FG-NET database to
6.22 years. Moreover, many methods were proposed for age estimation based
on manifold learning [9–11]. Those methods firstly learned facial age features
in low-dimensional representation with manifold learning, then defined a regres-
sion function to fit manifold data for further age prediction. For example, Guo et
al. [9] introduced the age manifold learning scheme to extract facial age features,
then proposed locally adjusted robust regressor (LARR) method to predict age
for face images, which improved performance significantly and reduces MAE on
FG-NET to 5.07 years. More recently, local features become very popular for age
estimation, such as Gabor [12], Local Binary Patterns (LBP) [13], Biologically-
Inspired Features (BIF) [14]. After features extracted by those local image de-
scriptors, classification or regression methods would be used for predicting the
age, such as BIF+SVM [14], BIF+SVR [14], BIF+CCA [15].

In the last few years, the CNN has made a lot of progress in age estima-
tion [16–19]. Comparing with traditional methods, CNN learns useful features
autonomously instead of hand-crafted ways. Yi et al. [17] designed 46 parallel
CNNs with multi-scale facial image patches as input for age estimation, which
reduced the MAE to 3.63 years in MORPH II database and achieved the state-
of-the-art performance. The parallel CNNs need pre-partion of facial images into
different parts according to facial landmarks and predefined scales, and each part
would be processed by a separated CNN. Rothe et al. [16] proposed a new method
called Deep EXpectation (DEX) model based on VGG-16 network, which won
the 1st place at the ChaLearn LAP challenge 2015. However, such deep CNN
needs to be pretrained with a large age database and Rothe et al. collected 0.5
million images to do that.

Multi-label learning (MLL) [20] is also a hot topic especially in age estimation
research in recent years. MLL assigns training instances with a set of labels rather
than a single label to solve the problem of label ambiguity. Geng et al. [5, 21]
labeled each facial image with multiple age labels followed a label distribution,
showing the advantages dramatically over the methods with single-label.

In this paper, our work is also inspired by the MLL and CNN. We combine
the advantages of both MLL and CNN, and propose a novel method with aging
information for age estimation.

3 The Proposed Method

In the proposed method, we first model the randomness of aging with Gaussian
distribution. Then, we present a soft softmax function using aging modeling.
Compared with the softmax function, the new function is more efficient for age



4 Z. Tan et al.

estimation. Later, we introduce a simple CNN framework which is similar to
AlexNet [22]. Finally, we present a fast calculation method based on a look up
table to accelerate the processing time for Gaussian integral.

3.1 Modeling the Randomness of Aging

For MLL problem, each image would be allowed to be labeled by multiple la-
bels. Following the works [5, 21], each face image is labeled by an age label
distribution that is a set of possibilities which represent the description degrees
corresponding to each label. One face image x includes some possible discrete
age labels L = {l1, ..., lk} in our aging model. Let P (lc, li) denotes the proba-
bility of the possible label li corresponding to the chronological age lc, where
P (lc, li) ∈ [0 1],

∑k
i=1 P (lc, li) = 1. P (lc, li) is the maximum value when li is

equal to lc.

Fig. 1. (a) the Kronecker function δ(lc, li), lc = li; (b) the integral P (lc, li) of gaussian
distribution (lmin < li < lmax); (c) the integral P (lc, li) of gaussian distribution (li =
lmin); (d) the integral P (lc, li) of gaussian distribution (li = lmax).

There are some works [5, 21] that allow each face image to be labeled by a
Gaussian distribution for age estimation. Following those works, We also model
the aging problem with the Gaussian distribution which is used to calculate the
integral of an age interval. The formal formulation of aging model is given in
Eq. 1.

P (lc, li) =


∫ li+0.5

−∞
1√
2πσ

e−
(x−lc)

2

2σ2 dx if li = lmin∫ li+0.5

li−0.5
1√
2πσ

e−
(x−lc)

2

2σ2 dx if lmin < li < lmax∫∞
li−0.5

1√
2πσ

e−
(x−lc)2

2σ2 dx if li = lmax

(1)
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where li ∈ [lmin lmax] is the discrete age label, lc denotes chronological age, lmin

and lmax is the minimum and maximum age, respectively.
In Fig. 1 (b-d), it shows the calculation of integrals via Eq. 1. Also, we note

that if one face image with a single age label only, it also has a special distribution
with P (lc, li) = δ(lc, li), where δ is the Kronecker function shown in Fig. 1 (a).

3.2 Soft Softmax Regression Function

The traditional softmax regression function usually applied remarkably in the
field of classification with neural networks [22]. There are also some methods [16,
18] for age estimation with the softmax function, which have achieved promising
results. However, age estimation is not a simple classification problem because
aging is a continuous process. Also, face images at close age would look very
similar. On the other hand, each person has different aging speeds because of
many intrinsic and extrinsic factors, in which people with the same age would
have various aging features. Hence, different age classes are related rather than
independent.

From those observations, we believe that the problem of age estimation can
be considered with the aging information as described in Section 3.1. Rothe et
al. [16] calculated the expected value among softmax output probabilities and
their corresponding age as final predicted age, which achieved better results
comparing with the predict age having the maximum probability of the softmax
output. This refinement fuses not only the real age’s information but also other
ages’ in the prediction phase. In this section, we design a soft softmax regression
function to push the network learn from both truth ages and their age intervals
in Eq.1 in the training phase.

For the age estimation, xc ∈ Rd denotes the CNN output features for the
cth sample, and lc ∈ {lmin, ..., lmax} is its corresponding age labels. Here, we set
lmin = 0, lmax = k) for the convenient description. Given a training set includes
m samples S = {(x0, l0), ..., (xc, lc), ..., (xm−1, lm−1)}, c ∈ [0 m − 1], the soft
softmax loss function with the aging model is defined as:

J(θ) = − 1

m

[
m−1∑
c=0

k∑
i=0

P (lc, i)log
eθ

T
i xc∑k

j=0 e
θT
j xc

]
(2)

where θ is the parameter matrix of the soft softmax function; P (lc, li) consid-
ers the probabilities of the specific label lc and its adjacent labels. And when
P (lc, li) = δ(lc, li), the soft softmax function becomes the traditional softmax
function.

Then we can calculate the gradient formula of Eq. 2 as:

▽θvJ(θ) = − 1

m

[
m−1∑
c=0

k∑
i=0

P (lc, li)xc

(
1{v = i} − eθ

T
v xc∑k

j=0 e
θT
j xc

)]
(3)

where ▽θv is the gradient vector of the soft softmax parameters for age v, 1{•}
is indicator function which means 1{v = j} = 1 if and only if v = j.
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Therefore, the optimized parameters θ can be obtained via the SGD algo-
rithm in the proposed method.

3.3 The Network Architecture

Our convolutional neural network is shown in Fig. 2, which is similar to the
AlexNet [22]. The input of the network is RGB facial image with size 224× 224.
The network includes 5 convolutional layers, 3 max pooling layers and a fully
connected layer. The filter size of each layer is also shown in Fig. 2. All the
convolutional layers are followed by Rectified Linear Units (ReLU). The network
are optimized by Stochastic Gradient Descent (SGD).

We train the network with proposed soft softmax loss function with 101 out-
put neurons corresponding to age numbers from 0 to 100. And it is ok when the
dataset lacks of samples corresponding to the output neuron. There are two ways
to predict the age value. For the first way, the predicted value can be obtained
via the maximum probability of the softmax output. When we used this way
to calculate MAE, we call this way as MAE with maximum probability (MP).
For the second way, we can conduct a softmax expected value refinement [16]

to improve the accuracy, and the final predicting age is
∑k

i=0 piyi, where pi is
the predicting probability of the corresponding age yi. We call the second way
as MAE with expected value (EV).

Fig. 2. The network architecture is used in the proposed method.

3.4 Look Up Table for Fast Calculation of Integrals

The integral of Gaussian distribution function among the interval [a, b] is:∫ b

a

f(x;µ, σ)dx =
1√
2πσ

∫ b

a

e−
(x−µ)2

2σ2 dx (4)

where µ is the expected value and σ2 is the variance of the distribution.
The Gaussian integral in Eq. 4 is usually efficiently calculated by error func-

tion erf(x) = 2√
π

∫ x

0
e−t2dt [23] . More specifically, the gaussian intergal can be
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calculated with erf as following:∫ b

a

f(x;µ, σ)dx =
1√
2πσ

∫ b

−∞
e−

(x−µ)2

2σ2 dx− 1√
2πσ

∫ a

−∞
e−

(x−µ)2

2σ2 dx

=
1

2

[
1 + erf

(
b− µ√
2σ

)]
− 1

2

[
1 + erf

(
a− µ√

2σ

)]
=

1

2

[
erf

(
b− µ√
2σ

)
− erf

(
a− µ√

2σ

)] (5)

From Eq. 5, we can see that each integral calculation need to call erf twice.
However, the proposed method needs to calculate integrals both in forward and
backward propagation phases for each age label and each face image, which
would cost a lot of time accumulatively. Therefore, we prepare an integral table
that stores multi-part integrals for each age, thus tedious calculation can be
avoided through this table to find corresponding integrals. The consume time of
two methods will be discussed in Section 5.

4 Experiments

4.1 Datasets

We evaluated the proposed method on MORPH II [3] and CACD [4] datasets,
which are available standard datasets for facial age estimation. Some samples
from both datasets are shown in Fig. 3.

Fig. 3. Face samples from the MORTH II (see the first row) and CACD (see the second
row) datasets.

MORPH II includes about 55,000 face images and age ranges from 16 to 77
years. It provides the personal information, such as age, gender, and ethnicity.
This dataset is more abundant in the age information, but the faces are recorded
under uneven illumination.

CACD is collected from Internet Movie DataBase (IMDB), and it is the
largest public cross-age database. This database includes more than 160 thou-
sands images of 2000 celebrities taken from 2004 to 2013 (10 years in total). The
age ranges from 16 to 62. Compared with MORPH II, CACD has the biggest
total quantity and average number of each subject.
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Fig. 4. It shows face samples from the MORPH II dataset in the first row, and their
corresponding results of face alignment in the second row.

4.2 Experimental Setting

In our experiments, all images are resized into 224×224. We use SGD and mini-
batch size of 64. The learning rate starts from 0.001, and the models are trained
for up to 300000 iterations. We use a weight decay of 0.0005 and a momentum
of 0.9.

We follow the work [17, 24] to split MORPH II into three non-overlapped
subsets S1, S2, S3 randomly. These three subsets are constructed by two rules:
1) Male-Female ratio is equal to three; 2) White-Black ratio is equal to one.
In our experiments, we totally use the same test protocols1 provided by Yi et
al. [17]. That is all experiments are repeated two times: 1) Training set: S1,
testing sets: S2+ S3; 2) Training set: S2, testing sets: S1+ S3.

Only a few works [25] conducted evaluation on the CACD database owing
to its noise. Note that only 200 celebrities of the database are checked and their
noisy images are removed, and images of other celebrities contain much noises.
Thus, these 200 celebrities are used for testing and the others for training in our
experiments.

In our experiments, all images would be processed by a face detector [26] and
non-face images would be removed. After processing, there are 55244 images in
MORPH II and 162941 images in CACD. Then, we use active shape models
(ASM) [27] to detect the facial landmarks and all facial images would be aligned
and cropped via the locations of the eyes center and the upper lip (see Fig. 4).
When evaluating on MORPH II, images for training is about a quarter of testing
images, which is extremely insufficient. Therefore, we augment training images
with flipping, rotating by ±50 and ±100, and adding Gaussian white noises with
variance of 0.001, 0.005, 0.01, 0.015 and 0.02.

To further improve the performance on MORPH II, our network (with the
softmax function) are pretrained on IMDB-WIKI [16]. Note that we don’t con-

1 http://www.cbsr.ia.ac.cn/users/dyi/agr.html
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duct such operation for CACD evaluation because some images from IMDB-
WIKI and CACD are duplicated.

4.3 Parameters Discussion

For aging modeling, the parameter σ controls the shape of Gaussian distribution
at each age. σ is smaller, the Gaussian distribution is sharper and neighboring
ages contribute less to the learning of chronological age in the training stage.
Likewise, the contribution of neighboring ages would increase as σ rises.

To find an appropriate value for σ, we conducted experiments with a variety
of σ on MORPH II and the results are shown in the Table 1. As we can see,
the results is not sensitive to the parameter σ ∈ [0.5, 1.2] and the well-done
performance can be achieved when σ is about to 1. Thus, we set σ to 1 in our
following experiments.

Moreover, we can see that the performance of MAE with EV is better than
MAE with MP used the same value σ in Table 1. The same conclusion will also
be shown in the next section.

Table 1. Results with different σ on the MORPH II dataset (the lower the better).
The top 2 performances are shown in boldface, which are from the average MAE with
MP under training set S1 and S2 respectively. From the best performances, we set
σ = 1 in our experiments.

σ 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

MAE with MP
3.37 3.37 3.33 3.31 3.30 3.27 3.30 3.30

(Train:S1, Test:S2+S3)
MAE with MP

3.06 3.05 3.09 3.04 3.06 3.05 3.07 3.04
(Train:S2, Test:S1+S3)
Average MAE with MP 3.215 3.21 3.21 3.175 3.18 3.16 3.185 3.17

MAE with EV
3.28 3.29 3.26 3.25 3.25 3.24 3.26 3.25

(Train:S1, Test:S2+S3)
MAE with EV

3.01 3.01 3.05 3.01 3.04 3.03 3.05 3.04
(Train:S2, Test:S1+S3)
Average MAE with EV 3.145 3.15 3.155 3.130 3.145 3.135 3.155 3.145

4.4 Comparisons

Results on the MORPH II dataset We conduct our experiments with the
softmax and soft softmax regression function respectively and the results are
shown in Table 2. We can see that the results of the soft softmax function
are superior than the softmax function under MAE with MP or EV. Without
pretrained model, the average MAE is 3.16 with MP and 3.14 with EV.
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Table 2. Results based on the CNN mentioned in Section 3.3 with different objective
functions on the MORPH II dataset (the lower the better). It shows that the best
performances are from the soft softmax function with pretrained model whenever MAE
with MP or EV is used.

Methods Train Set Test Set
MAE Avg. MAE MAE Avg. MAE

with MP with MP with EV with EV

softmax
S1 S2 + S3 3.45

3.28
3.28

3.16
S2 S1 + S3 3.10 3.03

soft softmax
S1 S2 + S3 3.27

3.16
3.24

3.14
S2 S1 + S3 3.05 3.03

pretrained model, S1 S2 + S3 3.34
3.20

3.19
3.08

softmax S2 S1 + S3 3.06 2.97

pretrained model, S1 S2 + S3 3.19
3.06

3.14
3.03

soft softmax S2 S1 + S3 2.93 2.92

Table 3. Comparisons with the state-of-the-art methods on MORPH II under the
same testing protocol (the lower the better).

Methods Train Set Test Set MAE Avg. MAE

Our method
S1 S2 + S3 3.14

3.03
S2 S1 + S3 2.92

Multi-scale S1 S2 + S3 3.72
3.63

CNN [17] S2 S1 + S3 3.54

BIF+KCCA [15]
S1 S2 + S3 4.00

3.98
S2 S1 + S3 3.95

BIF+KPLS [28]
S1 S2 + S3 4.07

4.04
S2 S1 + S3 4.01

BIF+rCCA [15]
S1 S2 + S3 4.43

4.42
S2 S1 + S3 4.40

BIF+PLS [28]
S1 S2 + S3 4.58

4.56
S2 S1 + S3 4.54

CNN [29]
S1 S2 + S3 4.64

4.60
S2 S1 + S3 4.55

BIF+KSVM [15]
S1 S2 + S3 4.89

4.91
S2 S1 + S3 4.92

BIF+LSVM[15]
S1 S2 + S3 5.06

5.09
S2 S1 + S3 5.12

BIF+CCA [15]
S1 S2 + S3 5.39

5.37
S2 S1 + S3 5.35
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To further improve the performance, we also pretrain the model on the
IMDB-WIKI database, and it achieves the best performance with the soft soft-
max function and EV, which the average MAE is 3.03. Compared with the
softmax method, the pretrained model with soft softmax reduce the average
MAE dramatically from 3.20 to 3.06 and from 3.08 to 3.03 with MP and EV
respectively.

As shown in Table 2, the results show that the soft softmax regression func-
tion is superior than the softmax function for age estimation whenever MP, EV
or the pretrained model is used.

Then, we compared our method with the state-of-the-art methods. The com-
parisons are shown in Table 3 under the same testing protocol. We can see that
our method can achieve the best performance with the average MAE of 3.03,
which is reduced 0.6 comparing with the previous best method [17] with the av-
erage MAE of 3.63. Specially, whenever training with S1 and testing with S2+S3
or training with S2 and testing with S1+S3, our method is the best with MAE
of 3.14 and 2.92, respectively.

Results on the CACD dataset The images in this database are taken
in the unconstrained environment, which are more close to the real life. We
conduct the experiments on this database with the softmax and soft softmax
regression function. The experimental results are shown in table 4. The soft
softmax method can achieve better result than the softmax method whenever
using MP or EV. Our method reduces the MAE to 5.22 with MP and 5.19 with
EV. And the proposed method is also better than the DFDNet method [25]
which has achieved 5.57 in MAE.

Table 4. Results based on the CNN mentioned in Section 3.3 with different objective
functions on the CACD dataset (the lower the better).

Methods Train Set Test Set MAE with MP MAE with EV

softmax 1800 celebrities 200 celebrities 5.43 5.28

soft softmax (ours) 1800 celebrities 200 celebrities 5.22 5.19

5 Discussion

5.1 Anti-overfitting Analysis

Fig. 5 (a) shows the loss trend when training on S1 and testing on S2+S3 on the
MORPH II dataset. Compared with the soft softmax regression function, the
training loss decreases sharper used the softmax function after 15000 iterations.
It indicates that the overfitting problem may be more serious when the softmax
function is used.
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Fig. 5. (a) It shows the training and testing loss by iterations; (b) It shows the MAE
trend by iterations.

Moreover, both two loss functions are designed to reducing testing error for
age estimation. Thus, we draw the MAE trends as well, which are shown in Fig. 5
(b). With the softmax function, training MAE are lower while testing MAE are
higher than the soft softmax function. Obviously, the model with the softmax
function is more likely to be overfitted. That is because it has poor performances
compared with the soft softmax function.

Form the above discussions, the soft softmax regression function has the
anti-overfitting characteristic in some way.

5.2 Computational Time Analysis

In this section, we mainly compare the consuming time among two methods
for integrals calculation in the training process, looking up table and Gaussian
integral calculation with the error function [23]. Our comparative experiments
conducted under the same conditions with GTX TITAN X GPU and the re-
sults are shown in Table 5. Compared with online Gaussian integral calculation,
the way of look up table reduce the consuming time by about 18.84%. In the
training process with Gaussian integral calculation with the error function, for
each instance, we need to calculate the interval for each age in the forward and
backward pass phase, and each interval calculation need to call error function
twice, which is very time consuming.

6 Conclusion

In this paper, we proposed a novel approach based on a single CNN for age esti-
mation. First, the randomness of aging is modeled by the Gaussian integral that
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Table 5. Comparison of the execution time between look up table method and direct
Guassian integral.

Methods Look Up Table (Our) Online Gaussian Integral Calculation

Time/10,000 iterations 1702 seconds 2097 seconds

not only considers the chronological age but also includes the age intervals near-
by the truth age. Second, we present a soft softmax regression function instead
of classic softmax function, which is combined with aging model. Moreover, to
further speed up the computation of gaussian integral, we build a look up table
to store pre-compute gaussian integrals. So this way only requires one memory
access from the look up table. Evaluations on two age datasets show that the
proposed method achieves state-of-the-art performances.
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