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A B S T R A C T

Human motion recognition is one of the most important branches of human-centered research activities. In
recent years, motion recognition based on RGB-D data has attracted much attention. Along with the develop-
ment in artificial intelligence, deep learning techniques have gained remarkable success in computer vision. In
particular, convolutional neural networks (CNN) have achieved great success for image-based tasks, and re-
current neural networks (RNN) are renowned for sequence-based problems. Specifically, deep learning methods
based on the CNN and RNN architectures have been adopted for motion recognition using RGB-D data. In this
paper, a detailed overview of recent advances in RGB-D-based motion recognition is presented. The reviewed
methods are broadly categorized into four groups, depending on the modality adopted for recognition: RGB-
based, depth-based, skeleton-based and RGB+D-based. As a survey focused on the application of deep learning
to RGB-D-based motion recognition, we explicitly discuss the advantages and limitations of existing techniques.
Particularly, we highlighted the methods of encoding spatial-temporal-structural information inherent in video
sequence, and discuss potential directions for future research.

1. Introduction

Among the several human-centered research activities (e.g. human
detection, tracking, pose estimation and motion recognition) in com-
puter vision, human motion recognition is particularly important due to
its potential application in video surveillance, human computer inter-
faces, ambient assisted living, human–robot interaction, intelligent
driving, etc. A human motion recognition task can be summarised as
the automatic identification of human behaviours from images or video
sequences. The complexity and duration of the motion involved can be
used as basis for broad categorization into four kinds namely gesture,
action, interaction and group activity. A gesture can be defined as the
basic movement or positioning of the hand, arm, body, or head that
communicates an idea, emotion, etc. “Hand waving” and “nodding” are
some typical examples of gestures. Usually, a gesture has relatively
short duration. An action is considered as a type of motion performed by
a single person during short time period and involves multiple body
parts, in contrast with the few body parts that involved in gesture. An
activity is composed by a sequence of actions. An interaction is a type of
motion performed by two actors; one actor is human while the other
may be human or an object. This implies that the interaction category

will include human–human or human–object interaction. “Hugging
each other” and “playing guitar” are examples of these two kinds of
interaction, respectively. Group activity is the most complex type of
activity, and it may be a combination of gestures, actions and interac-
tions. Necessarily, it involves more than two humans and from zero to
multiple objects. Examples of group activities would include “two
teams playing basketball” and “group meeting”.

Early research on human motion recognition was dominated by the
analysis of still images or videos (Aggarwal and Cai, 1999; Guo and Lai,
2014; Poppe, 2010; Turaga et al., 2008; Wang et al., 2003; Zhu et al.,
2016a). Most of these efforts used color and texture cues in 2D images
for recognition. However, the task remains challenging due to problems
posed by background clutter, partial occlusion, view-point, lighting
changes, execution rate and biometric variation. This challenge remains
even with current deep learning approaches (Asadi-Aghbolaghi et al.,
2017; Herath et al., 2017).

With the recent development of cost-effective RGB-D sensors, such
as Microsoft Kinect ™and Asus Xtion ™, RGB-D-based motion recogni-
tion has attracted much attention. This is largely because the extra
dimension (depth) is insensitive to illumination changes and includes
rich 3D structural information of the scene. Additionally, 3D positions
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of body joints can be estimated from depth maps (Shotton et al., 2011).
As a consequence, several methods based on RGB-D data have been
proposed and the approach has proven to be a promising direction for
human motion analysis (Table 1).

Several survey papers have summarized the research on human
motion recognition using RGB-D data (Aggarwal and Xia, 2014; Chen
et al., 2013; Cheng et al., 2016; Escalera et al., 2016; Han et al., 2017;
Presti and La Cascia, 2016; Ye et al., 2013; Zhang et al., 2016b). Spe-
cifically, Chen et al. (2013) focused on depth sensors, pre-processing of
depth data, depth-based action recognition methods and datasets. In
their work, Ye et al. (2013) presented an overview of approaches using
depth and skeleton modalities for tasks including activity recognition,
head/hand pose estimation, facial feature detection and gesture re-
cognition. The survey presented by Aggarwal and Xia (2014) sum-
marized five categories of representations based on 3D silhouettes,
skeletal joints/body part location, local spatial-temporal features, scene
flow features and local occupancy features. The work of
Cheng et al. (2016) focused on RGB-D-based hand gesture recognition
datasets and summarized corresponding methods from three perspec-
tives: static hand gesture recognition, hand trajectory gesture recogni-
tion and continuous hand gesture recognition. In another effort
Escalera et al. (2016) reviewed the challenges and methods for gesture
recognition using multimodal data. Some of the surveys have focused
on available datasets for RGB-D research. For example, the work of
Zhang et al. (2016b) described available benchmark RGB-D datasets for
action/activity recognition and included 27 single-view datasets, 10
multi-view datasets and 7 multi-person datasets. Other works as
Presti and La Cascia (2016) and Han et al. (2017) mainly reviewed
skeleton-based representation and approaches for action recognition. A
short survey on RGB-D action recognition using deep learning was re-
cently presented in Asadi-Aghbolaghi et al. (2017), analysing RGB and
depth cues in terms of 2DCNN, 3DCNN, and Deep temporal approaches.

All above surveys mainly focused on the analysis of handcrafted
features. Here, we provide a comprehensive review of RGB-D-based
human motion recognition using deep learning approaches. Even while
focusing on deep learning approaches, the nature of the input data is
still important. RGB-D data for human motion analysis comprises three
modalities: RGB, depth and skeleton. The main characteristic of RGB
data is its shape, color and texture which brings the benefits of ex-
tracting interesting points and optical flow. Compared to RGB videos,
the depth modality is insensitive to illumination variations, invariant to
color and texture changes, reliable for estimating body silhouette and
skeleton, and provides rich 3D structural information of the scene.
Differently from RGB and depth, skeleton data containing the positions
of human joints, is a relatively high-level feature for motion recogni-
tion. The different properties of the three modalities have inspired the

various methods found in the literature. For example, optical flow-
based methods with Convolutional Neural Networks (CNN) is very ef-
fective for RGB channel (Duan et al., 2016); depth rank pooling based-
method with CNN is a good choice for depth modality (Wang et al.,
2016c); sequence based method with Recurrent Neural Networks
(RNN) (Liu et al., 2017a) and image-based method with CNN
(Wang et al., 2016e) are effective for skeleton; and scene flow-based
method using CNN are promising for RGB+D channels (Wang et al.,
2017b). These methods are very effective for specific modalities, but
not always the case for all the modalities. Given these observations, this
survey identified four broad categories of methods based on the mod-
ality adopted for human motion recognition. The categories include
RGB-based, depth-based, skeleton-based and RGB+D-based.

In each category, two sub-divisions are further identified, namely
segmented human motion recognition and continuous/online motion
recognition. For segmented motion recognition, the scenario of the
problem can be simply described as classifying a well delineated se-
quence of video frames as one of a set of motion types. This is in con-
trast to continuous/online human motion recognition where there are
no a priori given boundaries of motion execution. The online situation
is compounded by the fact that the video sequence is not recorded and
the algorithm must deal with frames as they are being captured, save
for possibly a small data cache.

During the performance of a specified motion spatial information
which refers to the spatial configuration of human body at an instant of
time (e.g. relative positions of the human body parts) can be identified.
Similarly, there is the temporal information which characterizes the
spatial configuration of the body over time (i.e. the dynamics of the
body). Lastly, the structural information encodes the coordination and
synchronization of body parts over the period in which the action is
being performed. It describes the relationship of the spatial configura-
tions of human body across different time slots.

In reviewing the various methods, consideration has been given to
the manner in which the spatial, temporal and structural information
have been exploited. Hence, the survey discusses the advantages and
limitations of the reviewed methods from the spatial-temporal-struc-
tural encoding viewpoint, and suggests potential directions for future
research.

A key novelty of this survey is the focus on three architectures of
neural networks used in the various deep learning methods reviewed
namely CNN-based, RNN-based and other structured networks. Fig. 1
illustrates the taxonomy underpinning this survey.

This is one of the first surveys dedicated to RGB-D-based human
motion recognition using deep learning. Apart from this claim, this
survey distinguishes itself from other surveys through the following
contributions:

Table 1
Statistics of the public available benchmark datasets that are commonly used for evaluation with deep learning. Notation for the header: Seg: Segmented, Con:
Continuous, D: Depth, S: Skeleton, Au:Audio, Ac: Accelerometer, IR:IR videos, #:number of, JI: Jaccard Index.

Dataset year Acquisition device Seg/Con Modality #Class #Subjects #Samples #Views Metric

CMU Mocap 2001 Mocap Seg RGB,S 45 144 2235 1 Accuracy
HDM05 2007 Mocap Seg RGB,S 130 5 2337 1 Accuracy
MSR-Action3D 2010 Kinect v1 Seg S,D 20 10 567 1 Accuracy
MSRC-12 2012 Kinect v1 Seg S 12 30 594 1 Accuracy
MSR DailyActivity3D 2012 Kinect v1 Seg RGB,D,S 16 10 320 1 Accuracy
UTKinect 2012 Kinect v1 Seg RGB,D,S 10 10 200 1 Accuracy
G3D 2012 Kinect v1 Seg RGB,D,S 5 5 200 1 Accuracy
SBU Kinect Interaction 2012 Kinect v1 Seg RGB,D,S 7 8 300 1 Accuracy
Berkeley MHAD 2013 Mocap Kinect v1 Seg RGB,D,S,Au,Ac 12 12 660 4 Accuracy
Multiview Action3D 2014 Kinect v1 Seg RGB,D,S 10 10 1475 3 Accuracy
ChaLearn LAP IsoGD 2016 Kinect v1 Seg RGB,D 249 21 47,933 1 Accuracy
NTU RGB+D 2016 Kinect v2 Seg RGB,D,S,IR 60 40 56,880 80 Accuracy
ChaLearn2014 2014 Kinect v1 Con RGB,D,S,Au 20 27 13,858 1 Accuracy JI etc.
ChaLearn LAP ConGD 2016 Kinect v1 Con RGB,D 249 21 22,535 1 JI
PKU-MMD 2017 Kinect v2 Con RGB,D,S,IR 51 66 1076 3 JI etc.
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• Comprehensive coverage of the most recent and advanced deep
learning-based methods developed in the last five years, thereby
providing readers with a complete overview of recent research re-
sults and state-of-the-art methods.

• Insightful categorization and analysis of methods based on the dif-
ferent properties of the modalities; highlight of the pros and cons of
the methods described in the reviewed papers from the viewpoint of
spatial–temporal-structural encoding.

• Discussion of the challenges of RGB-D-based motion recognition;
analysis of the limitations of available methods and discussion of
potential research directions.

Additionally, several recently released or commonly used RGB-D-
based benchmark datasets associated with deep learning are surveyed.
The main application domain of interest in this survey paper is human
motion recognition based on RGB-D data, including gesture recogni-
tion, action/activity recognition and interaction recognition. The lack
of datasets focused on RGB-D-based group activity recognition has led
to paucity of research on this topic and thus this survey does not cover
this topic. Other RGB-D-based human-centered applications, such as
human detection, tracking and pose estimation, are also not the focus of
this paper. For surveys on RGB-D data acquisition readers are referred
to Chen et al. (2013),Cheng et al. (2016),Han et al. (2017).

Subsequent sections of the this survey are organized as follows.
Commonly used RGB-D-based benchmark datasets are described in
Section 2. Sections 3 to 6 discuss methods of RGB-D-based motion re-
cognition using deep learning from four perspectives: RGB-based mo-
tion recognition, depth-based motion recognition, skeleton-based mo-
tion recognition and RGB+D-based motion recognition. Challenges of
RGB-D-based motion recognition and pointers to future directions are
presented in Section 7. The survey provides concluding remarks in
Section 8.

2. Benchmark datasets

Over the last decade, a number of RGB-D benchmark datasets have
been collected and made publicly available for the research community.
The sources of the datasets are mainly of three categories (Chen et al.,
2013; Cheng et al., 2016; Han et al., 2017): Motion capture (Mocap)
system, structured-light cameras (e.g. Kinect v1) and time-of-flight
(ToF) cameras (e.g. Kinect v2). Hence the modalities of the datasets
cover RGB, depth, skeleton and their combinations. With the advance of
deep learning, deep methods have been developed for estimating ske-
letons directly from single images or video sequences, such as DeepPose
(Toshev and Szegedy, 2014), Deepercut (Insafutdinov et al., 2016) and
Adversarial PoseNet (Chen et al., 2017). A comprehensive survey of
these datasets have appeared in the literature (see e.g. Cheng et al.,
2016 for hand gestures and (Zhang et al., 2016b) for action recogni-
tion). In the present survey only 15 large-scale datasets that have been

commonly adopted for evaluating deep learning-based methods are
described. The reader is referred to Table 2 for a sample of works
(publications) that have used these datasets. For the purpose of this
survey, the datasets have been divided into two groups: segmented
datasets and continuous/online datasets.

2.1. Segmented datasets

By segmented datasets we refer to those datasets where samples
correspond to a whole begin-end action/gestures, with one segment for
one action. They are mainly used for classification purposes. The fol-
lowing are several segmented datasets commonly used for the evalua-
tion of methods based on deep learning.

2.1.1. CMU Mocap
CMU Graphics Lab Motion Capture Database (CMU Mocap)

(CMU, 2001) (http://mocap.cs.cmu.edu/) is one of the earliest source
of data that covers a wide range of human actions, including interac-
tions between two subjects, human locomotion, interactions with un-
even terrain, sports, and other human actions. This dataset consists of
RGB and skeleton modalities.

2.1.2. HDM05
Motion Capture Database HDM05 (Müller et al., 2007) (http://

resources.mpi-inf.mpg.de/HDM05/) was captured by an optical
marker-based technology with the frequency of 120 Hz, which contains
2337 sequences for 130 actions performed by 5 non-professional actors,
and 31 joints in each frame. Besides skeleton data, this dataset also
provides RGB data.

2.1.3. MSR-Action3D
MSR-Action3D (Li et al., 2010) (http://www.uow.edu.au/

~wanqing/#MSRAction3DDatasets) is the first public benchmark
RGB-D action dataset collected using Kinect ™sensor by Microsoft Re-
search, Redmond and University of Wollongong in 2010. The dataset
contains 20 actions: high arm wave, horizontal arm wave, hammer, hand
catch, forward punch, high throw, draw x, draw tick, draw circle, hand clap,
two hand wave, side-boxing, bend, forward kick, side kick, jogging, tennis
serve, golf swing, pickup and throw. Ten subjects performed these actions
three times. All the videos were recorded from a fixed point of view and
the subjects were facing the camera while performing the actions. The
background of the dataset was removed by some post-processing.
Specifically, if an action needs to be performed with one arm or one leg,
the actors were required to perform it using right arm or leg.

2.1.4. MSRC-12
MSRC-12 dataset (Fothergill et al., 2012)(http://research.microsoft.

com/en-us/um/cambridge/projects/msrc12/) was collected by Micro-
soft Research Cambridge and University of Cambridge in 2012. The

Fig. 1. Categorisation of the methods for RGB-D-based motion recognition using deep learning.
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Table 2
Performance comparison among different methods on commonly used RGB-D datasets. Notation: D: Depth, S: Skeleton, Acc: Accuracy, JI: Jaccard Index, cs: cross-
subject setting, cv: cross-view setting. Without specific notation, accuracy is used for metric.

Dataset Reference Modality Method Fusion method Metric

CMU Mocap (Zhu et al., 2016d) Skeleton Co-occurrence+LSTM None 81.04%
(Ke et al., 2017b) Skeleton Clips+CNN+MTLN None 88.30%

HDM05 (Huang et al., 2017) Skeleton Deep Learning on Lie Group None 75.78%
(Du et al., 2015b) Skeleton HBRNN-L None 96.92%
(Zhu et al., 2016d) Skeleton Co-occurrence+LSTM None 97.25%

MSR-Action3D (Liu et al., 2016c) Depth 3DCNN None 84.07%
(Veeriah et al., 2015) Skeleton dRNN None 92.03%
(Du et al., 2015b) Skeleton HBRNN-L None 94.49%
(Shi and Kim, 2017) Depth+ Skeleton PRNN Side information 94.90%
(Wang et al., 2016b) Depth WHDMM+CNN None 100.00%
(Wang et al., 2017c) Depth S2DDI None 100.00%

MSRC-12 (Wang et al., 2016e) Skeleton JTM+CNN None 93.12%
(Hou et al., 2016) Skeleton SOS+CNN None 94.27%
(Liu et al., 2017b) Skeleton Enhanced Visualization+CNN None 96.62%

MSRDaily Activity3D (Wang et al., 2016b) Depth WHDMM+CNN None 85.00%
(Luo et al., 2017) Depth Unsupervised+ConvLSTM None 86.90%
(Shahroudy et al., 2017) RGB+Depth DSSCA-SSLM Hierarchical fusion 97.50%
(Wang et al., 2017c) Depth S2DDI None 97.50%

UTKinect (Liu et al., 2016c) Depth 3DCNN None 82.00%
(Wang et al., 2016b) Depth WHDMM+CNN None 90.91%
(Zhang et al., 2017c) Skeleton JL_d+RNN None 95.96%
(Lee et al., 2017) Skeleton Ensemble TS-LSTM Ensemble 96.97%
(Liu et al., 2016a) Skeleton ST-LSTM+Trust Gate None 97.00%

G3D (Huang et al., 2017) Skeleton Deep Learning on Lie Group None 89.10%
(Wang et al., 2016e) Skeleton JTM+CNN None 94.24%
(Hou et al., 2016) Skeleton SOS+CNN None 95.45%
(Wang et al., 2017c) Depth S2DDI None 96.06%

SBU Kinect interaction (Shi and Kim, 2017) Depth+ Skeleton PRNN Side Information 89.20%
(Zhu et al., 2016d) Skeleton Co-occurrence+LSTM None 90.41%
(Song et al., 2017) Skeleton STA-LSTM None 91.51%
(Liu et al., 2016a) Skeleton ST-LSTM+Trust Gate None 93.30%
(Ke et al., 2017a) Skeleton SkeletonNet(CNN) None 93.47%
(Ke et al., 2017b) Skeleton Clips+CNN+MTLN None 93.57%
(Zhang et al., 2017c) Skeleton JL_d+RNN None 99.02%

Berkeley MHAD (Ijjina and Krishna Mohan, 2016) Skeleton Stacked Autoencoder None 98.03%
(Du et al., 2015b) Skeleton HBRNN-L None 100.00%
(Zhang et al., 2017c) Skeleton JL_d+RNN None 100.00%
(Du et al., 2015a) Skeleton Skeleton Matrix+CNN None 100.00%
(Liu et al., 2016a) Skeleton ST-LSTM+Trust Gate None 100.00%

Multiview Action3D (Rahmani and Mian, 2016) Depth Fitting model+CNN None 92.00%
(Liu et al., 2017b) Skeleton Enhanced Visualization+CNN None 92.61%

ChaLearn LAP IsoGD (Wang et al., 2017b) RGB+ Depth Sceneflow+CNN Early Fusion 36.27%
(Wang et al., 2016c) Depth DynamicImages+CNN None 39.23%
(Wang et al., 2018a) Depth DynamicMaps+CNN None 43.72%
(Wang et al., 2018b) Depth+RGB Cooperative CNN None 44.80%
(Zhu et al., 2016b) RGB+Depth Pyramidal C3D Score Fusion 45.02%
(Duan et al., 2016) RGB+Depth 2SCVN-3DDSN Score Fusion 49.17%
(Li et al., 2016c) RGB+Depth C3D Score Fusion 49.20%
(Zhu et al., 2017a) RGB+Depth C3D+ConvLSTM Score Fusion 51.02%

NTU RGB+D (Luo et al., 2017) RGB Unsupervised+ConvLSTM None 56.00%(cs)
(Huang et al., 2017) Skeleton Deep Learning on Lie Group None 61.37%(cs)

66.95%(cv)
(Shahroudy et al., 2016) Skeleton 2Layer P-LSTM None 62.93%(cs)

70.27%(cv)
(Luo et al., 2017) Depth Unsupervised+ConvLSTM None 66.20%(cs)
(Liu et al., 2016a) Skeleton ST-LSTM+Trust Gate None 69.20%(cs)

77.70%(cv)
(Zhang et al., 2017c) Skeleton JL_d+RNN None 70.26%(cs)

82.39%(cv)
(Wang et al., 2016e) Skeleton JTM+CNN None 73.40%(cs)

75.20%(cv)
(Song et al., 2017) Skeleton STA-LSTM None 73.40%(cs)

81.20%(cv)
(Kim and Reiter, 2017) Skeleton Res-TCN None 74.30%(cs)

83.10%(cv)
(Lee et al., 2017) Skeleton Ensemble TS-LSTM Ensemble 74.60%(cs)

81.25%(cv)
(Shahroudy et al., 2017) RGB+Depth DSSCA-SSLM Hierarchical Fusion 74.86%(cs)
(Ke et al., 2017a) Skeleton SkeletonNet(CNN) None 75.94%(cs)

81.16%(cv)
(Li et al., 2017a) Skeleton JDM+CNN None 76.20%(cs)

82.30%(cv)
(Ke et al., 2017b) Skeleton Clips+CNN+MTLN None 79.57%(cs)

(continued on next page)
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authors provided three familiar and easy to prepare instruction mod-
alities and their combinations to the participants. The modalities are (1)
descriptive text breaking down the performance kinematics, (2) an
ordered series of static images of a person performing the gesture with
arrows annotating as appropriate, and (3) video (dynamic images) of a
person performing the gesture. There are 30 participants in total and for
each gesture, the data were collected as: Text (10 people), Images (10
people), Video (10 people), Video with text (10 people), Images with
text (10 people). The dataset was captured using one Kinect ™sensor
and only the skeleton data are made available.

2.1.5. MSRDailyActivity3D
MSRDailyActivity3D Dataset (Wang et al., 2012) (http://www.uow.

edu.au/~wanqing/#MSRAction3DDatasets) was collected by Microsoft
and the Northwestern University in 2012 and focused on daily activ-
ities. The motivation was to cover human daily activities in the living
room. The actions were performed by 10 actors while sitting on the sofa
or standing close to the sofa. The camera was fixed in front of the sofa.
In addition to depth data, skeleton data are also recorded, but the joint
positions extracted by the tracker are very noisy due to the actors being
either sitting on or standing close to the sofa.

2.1.6. UTKinect
UTKinect dataset (Xia et al., 2012) (http://cvrc.ece.utexas.edu/

KinectDatasets/HOJ3D.html) was collected by the University of Texas
at Austin in 2012. Ten types of human actions were performed twice by
10 subjects. The subjects performed the actions from a variety of views.
One challenge of the dataset is due to the actions being performed with
high actor-dependent variability. Furthermore, human-object occlu-
sions and body parts being out of the field of view have further in-
creased the difficulty of the dataset. Ground truth in terms of action
labels and segmentation of sequences are provided.

2.1.7. G3D
Gaming 3D dataset (G3D) (Bloom et al., 2012) (http://dipersec.

king.ac.uk/G3D/) captured by Kingston University in 2012 focuses on
real-time action recognition in gaming scenario. It contains 10 subjects
performing 20 gaming actions. Each subject performed these actions
thrice. Two kinds of labels were provided as ground truth: the onset and
offset of each action and the peak frame of each action.

2.1.8. SBU Kinect Interaction Dataset
SBU Kinect Interaction Dataset (Yun et al., 2012) (http://www3.cs.

stonybrook.edu/~kyun/research/kinect_interaction/index.html) was
collected by Stony Brook University in 2012. It contains eight types of
interactions. All videos were recorded with the same indoor back-
ground. Seven participants were involved in performing the activities
which have interactions between two actors. The dataset is segmented
into 21 sets and each set contains one or two sequences of each action
category. Two kinds of ground truth information are provided: action
labels of each segmented video and identification of “active” actor and
“inactive” actor.

2.1.9. Berkeley MHAD
Berkeley Multimodal Human Action Database (Berkeley MHAD)

(Ofli et al., 2013) (http://tele-immersion.citris-uc.org/berkeley_mhad#
dl), collected by University of California at Berkeley and Johns Hopkins
University in 2013, was captured in five different modalities to expand
the fields of application. The modalities are derived from: optical
mocap system, four multi-view stereo vision cameras, two Microsoft
Kinect v1 cameras, six wireless accelerometers and four microphones.
Twelve subjects performed 11 actions, five times each. Three categories
of actions are included: (1) actions with movement in full body parts,
e.g., jumping in place, jumping jacks, throwing, etc., (2) actions with high
dynamics in upper extremities, e.g.,waving hands, clapping hands, etc.
and (3) actions with high dynamics in lower extremities, e.g., sit down,
stand up. The actions were executed with style and speed variations.

2.1.10. Northwestern-UCLA Multiview Action 3D
Northwestern-UCLA Multiview Action 3D (Wang et al., 2014)

(http://users.eecs.northwestern.edu/~jwa368/my_data.html) was col-
lected by Northwestern University and University of California at Los
Angles in 2014. This dataset contains data taken from a variety of
viewpoints. The actions were performed by 10 actors and captured by
three simultaneous Kinect™v1 cameras.

2.1.11. ChaLearn LAP IsoGD
ChaLearn LAP IsoGD Dataset (Wan et al., 2016b) (http://www.cbsr.

ia.ac.cn/users/jwan/database/isogd.html) is a large RGB-D dataset for
segmented gesture recognition, and it was collected by Kinect v1
camera. It includes 47,933 RGB-D depth sequences, each RGB-D video
representing one gesture instance. There are 249 gestures performed by
21 different individuals. The dataset is divided into training, validation

Table 2 (continued)

Dataset Reference Modality Method Fusion method Metric

84.83%(cv)
(Liu et al., 2017b) Skeleton Enhanced Visualization+CNN None 80.03%(cs)

87.21%(cv)
(Zolfaghari et al., 2017) RGB Chained Multi-stream Markov chain 80.80%(cs)
(Wang et al., 2018b) RGB+Depth Cooperative CNN None 86.42%(cs)

89.08%(cv)
(Wang et al., 2018a) Depth DynamicMaps+CNN None 87.08%(cs)

84.22%(cv)
ChaLearn2014 (Du et al., 2015a) Skeleton Skeleton Matrix+CNN None 91.16%

(Pigou et al., 2016) RGB Temp Conv+RNN,LSTM None 94.49%
0.906(JI)

(Molchanov et al., 2016) RGB+Depth CTC+RNN Score Fusion 98.20%
0.980(JI)

(Wu et al., 2016) RGB+Depth+Skeleton DDNN Late Fusion 0.809(JI)
ChaLearn LAP ConGD (Wang et al., 2016d) Depth IDMM+CNN None 0.240(JI)

(Chai et al., 2016) RGB+Depth RNN Score Fusion 0.266(JI)
(Camgoz et al., 2016) RGB C3D None 0.343(JI)
(Wang et al., 2018a) Depth DynamicMaps+CNN None 0.391(JI)

PKU-MMD (Song et al., 2017) S SlidingWindo+STA-LSTM None 0.427(JI)(cs)
0.468(JI)(cv)

(Li et al., 2016a) S JCR-RNN None 0.479(JI)(cs)
0.728(JI)(cv)
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and test sets. All three sets consist of samples of different subjects to
ensure that the gestures of one subject in the validation and test sets
will not appear in the training set.

2.1.12. NTU RGB+D
NTU RGB+D Dataset (Shahroudy et al., 2016) (https://github.com/

shahroudy/NTURGB-D) is currently the largest action recognition da-
taset in terms of the number of samples per action. The RGB-D data is
captured by Kinect v2 cameras. The dataset has more than 56 thousand
sequences and 4 million frames, containing 60 actions performed by 40
subjects aging between 10 and 35. It consists of front view, two side
views and left, right 45° views.

2.2. Continuous/online datasets

Continuous/online datasets refer to those datasets where each video
sequence may contain one or more actions/gestures, and the segmented
position between different motion classes are unknown. These datasets
are mainly used for action detection, localization and online prediction.
There are few datasets for this type.

2.2.1. ChaLearn2014 Multimodal Gesture Recognition
ChaLearn2014 Multimodal Gesture Recognition (Escalera et al.,

2014) (http://gesture.chalearn.org/2014-looking-at-people-challenge)
is multi-modal dataset collected by Kinect v1 sensor, including RGB,
depth, skeleton and audio modalities. In all sequences, a single user is
recorded in front of the camera, performing natural communicative
Italian gestures. The starting and ending frames for each gesture are
annotated along with the gesture class label. It contains nearly 14K
manually labeled (beginning and ending frame) gesture performances
in continuous video sequences, with a vocabulary of 20 Italian gesture
categories. There are 1, 720, 800 labeled frames across 13, 858 video
fragments of about 1–2 min sampled at 20 Hz. The gestures are per-
formed by 27 different individuals under diverse conditions; these in-
clude varying clothes, positions, backgrounds and lighting.

2.2.2. ChaLearn LAP ConGD
The ChaLearn LAP ConGD Dataset (Wan et al., 2016b) (http://

www.cbsr.ia.ac.cn/users/jwan/database/congd.html) is a large RGB-D
dataset for continuous gesture recognition. It was collected by Kinect v1
sensor and includes 47,933 RGB-D gesture instances in 22,535 RGB-D
gesture videos. Each RGB-D video may contain one or more gestures.
There are 249 gestures performed by 21 different individuals. The da-
taset is divided into training, validation and test sets. All three sets
consist of samples of different subjects to ensure that the gestures of one
subject in the validation and test sets will not appear in the training set.

2.2.3. PKU-MMD
PKU-MMD (Chunhui et al., 2017) (http://www.icst.pku.edu.cn/

struct/Projects/PKUMMD.html) is a large scale dataset for continuous
multi-modality 3D human action understanding and covers a wide
range of complex human activities with well annotated information. It
was captured via the Kinect v2 sensor. PKU-MMD contains 1076 long
video sequences in 51 action categories, performed by 66 subjects in
three camera views. It contains almost 20,000 action instances and 5.4
million frames in total. It provides multi-modality data sources, in-
cluding RGB, depth, Infrared Radiation and Skeleton.

Table 1 shows the statistics of publicly available benchmark datasets
that are commonly used for evaluation of deep learning-based algo-
rithms. It can be seen that the surveyed datasets cover a wide range of
different types of actions including gestures, simple actions, daily ac-
tivities, human–object interactions, human–human interactions. It also
covers both segmented and continuous/online datasets, with different
acquisition devices, modalities, and views. Sample images from dif-
ferent datasets are shown in Fig. 2. In this section, we introduce the
deep learning concepts and architectures that are relevant or have been

applied to RGB-D-based motion recognition. Readers who are interested
in more background and techniques are referred to the book by
Goodfellow et al. (2016).

3. RGB-based motion recognition with deep learning

RGB is one important channel of RGB-D data with characteristics
including shape, color and texture that bear rich features. These prop-
erties also make it effective to directly use networks, such as 2D CNNs
(He et al., 2016; Krizhevsky et al., 2012; Simonyan and Zisserman,
2014b), to extract frame-level features. Even though most of the sur-
veyed methods for this section are not adapted to RGB-D-based data-
sets, we argue that the following methods could be directly adapted to
RGB modality of RGB-D datasets. We define three categories namely,
CNN-based, RNN-based and other-architecture-based approaches for
segmented motion recognition; the first two categories are for con-
tinuous/online motion recognition.

3.1. Segmented motion recognition

3.1.1. CNN-based approach
For this group of methods, currently there are mainly four ap-

proaches to encode spatial-temporal-structural information. The first
approach applies CNN to extract features from individual frames and
later, fuse the temporal information. For example Karpathy et al. (2014)
investigated four temporal fusion methods, and proposed the concept of
slow fusion where higher layers get access to progressively more global
information in both spatial and temporal dimensions (see Fig. 4). Fur-
thermore, several temporal pooling methods have been explored and
the suggestion is that max pooling in the temporal domain is preferable
(Ng et al., 2015).

The second approach extends convolutional operation into temporal
domain. In one such implementation, Ji et al. (2013) proposed 3D-
convolutional networks using 3D kernels (filters extended along the
time axis) to extract features from both spatial and temporal dimen-
sions. This work empirically showed that the 3D-convolutional net-
works outperform their 2D frame-based counterparts. With modern
deep architectures, such as VGG (Simonyan and Zisserman, 2014b), and
large-scale supervised training datasets, such as Sports-1M
(Karpathy et al., 2014), Tran et al. (2015) extended the work presented
in Ji et al. (2013) by including 3D pooling layers, and proposed a
generic descriptor named C3D by averaging the outputs of the first fully
connected layer of the networks (see Fig. 3). However, both of these
works break the video sequence into short clips and aggregate video-
level information by late score fusion. This is likely to be suboptimal
when considering some long action sequence, such as walking or
swimming that lasts several seconds and spans tens or hundreds of
video frames. To handle this problem, Varol et al. (2018) investigated
the learning of long-term video representations and proposed the Long-
term Temporal Convolutions (LTC) at the expense of decreasing spatial
resolution to keep the complexity of networks tractable. Despite the fact
that this is straightforward and mainstream, extending spatial kernels
to 3D spatio-temporal derivative inevitably increases the number of
parameters of the network. To relieve the drawbacks of 3D kernels,
Sun et al. (2015) factorized a 3D filter into a combination of 2D and 1D
filters.

The third approach is to encode the video into dynamic images that
contain the spatio-temporal information and then apply CNN for image-
based recognition. Bilen et al. (2016) proposed to adopt rank pooling
(Fernando et al., 2016b) to encode the video into one dynamic set of
images and used pre-trained models over ImageNet (Krizhevsky et al.,
2012) for fine-tuning (see Fig. 6). The end-to-end learning methods
with rank pooling has also been proposed in Bilen et al. (2016) and
Fernando and Gould (2016). Hierarchical rank pooling (Fernando et al.,
2016a) is proposed to learn higher order and non-linear representations
compared to the original work. Generalized rank pooling
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Fig. 2. Sample images from different datasets.
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(Cherian et al., 2017) is introduced to improve the original method via
a quadratic ranking function which jointly provides a low-rank ap-
proximation to the input data and preserves their temporal order in a
subspace.

Besides the above works that aim to adopt one network to exploit
both spatio-temporal information contained in the video, the fourth
approach separates the two factors and adopt multiple stream net-
works. Simonyan and Zisserman (2014a) proposed one spatial stream
network fed with raw video frames, and one temporal stream network
accepting optical flow fields as input. The two streams are fused to-
gether using the softmax scores (see Fig. 5 for the two-stream archi-
tecture). Wang et al. (2015a) extended the two-stream networks by
integrating improved trajectories (Wang et al., 2013), where trajectory-
constrained sampling and pooling are used to encode deep features
learned from deep CNN architecture, into effective descriptors. To in-
corporate long-range temporal structure using the two-stream net-
works, Wang et al. (2016a) devised a temporal segment network (TSN)
that uses a sparse sampling scheme to extract short snippets over a long
video sequence. With the removal of redundancy from consecutive
frames and a segmental structure, aggregated information is obtained
from the sampled snippets. To reduce the expensive calculation of op-
tical flow, Zhang et al. (2016a) accelerated this two stream structure by
replacing optical flow with motion vector which can be obtained di-
rectly from compressed videos without extra calculation.
Wang et al. (2016g) leveraged semantic cues in video by using a two-
stream semantic region-based CNNs (SR-CNNs) to incorporate human/
object detection results into the framework. In their work,
Chéron et al. (2015) exploit spatial structure of the human pose and
extract a pose-based convolutional neural network (P-CNN) feature

from both RGB frames and optical flow for fine-grained action re-
cognition. The work presented in Wang et al. (2016f) formulated the
problem of action recognition from a new perspective and model an
action as a transformation which changes the state of the environment
before the action to the state after the action. They designed a Siamese
network which models the action as a transformation on a high-level
feature space based on the two-stream model. Based on the two-stream
framework, Zhu et al. (2016c) proposed a key volume mining deep
framework for action recognition, where they identified key volumes
and conducted classification simultaneously. Inspired by the success of
Residual Networks (ResNets) (He et al., 2016),
Feichtenhofer et al. (2016a) injected residual connections between the
two streams to allow spatial-temporal interaction between them. In-
stead of using optical flow for temporal stream, Lea et al. (2016)
adopted Motion History Image (MHI) (Bobick and Davis, 2001) as the
motion clue. The MHI was combined with RGB frames in a spatio-
temporal CNN for fined grained action recognition. However, all the

Fig. 3. C3D net has 8 convolutions, 5 max-poolings, and 2 fully connected layers, followed by a softmax output layer. All 3D convolution kernels are 3 × 3 × 3
with stride 1 in both spatial and temporal dimensions. Number of filters are indicated in each box. The 3D pooling layers are as indicated from pool1 to pool5. All
pooling kernels are 2 × 2 × 2, except for pool1 which is 1 × 2 × 2. Each fully connected layer has 4096 output units. Figure from Tran et al. (2015).

Fig. 4. Different approaches for fusing information over temporal dimension
through the network. Red, green and blue boxes indicate convolutional, nor-
malization and pooling layers respectively. In the Slow Fusion model, the de-
picted columns share parameters. Figure from Karpathy et al. (2014). (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 5. Two-stream architecture for RGB-based motion recognition. Figure from Simonyan and Zisserman (2014a).

Fig. 6. Rank pooling encodes the RGB video into one dynamic image and CNN
is adopted for feature extraction and classification. Figure from
Bilen et al. (2016).
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methods reviewed above incorporated the two streams from separate
training regimes; any registration of the two streams was neglected. In
order to address this gap and propose a new architecture for spatial-
temporal fusion of the two streams Feichtenhofer et al. (2016b) in-
vestigated three aspects of fusion for the two streams: (i) how to fuse
the two networks with consideration for spatial registration, (ii) where
to fuse the two networks and, (iii) how to fuse the networks temporally.
One of their conclusions was that the results suggest the importance of
learning correspondences between highly abstract ConvNet features
both spatially and temporally.

3.1.2. RNN-based approach
For RNN-based approach, Baccouche et al. (2011) tackled the pro-

blem of action recognition through a cascade of 3D CNN and LSTM, in
which the two networks were trained separately. Differently from the
separate training, Donahue et al. (2015) proposed one Long-term Re-
current Convolutional Network (LRCN) to exploit end-to-end training of
the two networks(see illustration in Fig. 7). To take full advantage of
both CNN and RNN, Ng et al. (2015) aggregated CNN features with
both temporal pooling and LSTM for temporal exploitation, and fused
the output scores from the feature pooling and LSTM network to con-
duct final action recognition. Pigou et al. (2016) proposed an end-to-
end trainable neural network architecture incorporating temporal
convolutions and bidirectional LSTM for gesture recognition. This
provided opportunity to mine temporal information that is much dis-
criminative for gesture recognition. In their work, Sharma et al. (2016)
proposed a soft attention model for action recognition based on LSTM
(see Fig. 8). The attention model learns the parts in the frames that are
relevant for the task at hand and attaches higher importance to them.
Previous attention-based methods have only utilized video-level cate-
gory as supervision to train LSTM. This strategy may lack a detailed and
dynamical guidance and consequently restrict their capacity for mod-
elling complex motions in videos. Du et al. (2017) address this problem
by proposing a recurrent pose-attention network (RPAN) for action
recognition in videos, which can adaptively learn a highly dis-
criminative pose-related feature for every-step action prediction of
LSTM. To take advantage of both Fisher Vector (Sánchez et al., 2013)
and RNN, Lev et al. (2016) introduced a Recurrent Neural Network
Fisher Vector (RNN-FV) where the GMM probabilistic model in the
fisher vector is replaced by a RNN and thus avoids the need for the
assumptions of data distribution in the GMM. Even though RNN is re-
markably capable of modeling temporal dependences, it lacks an in-
tuitive high-level spatial-temporal structure. The spatio-temporal-
structural information has been mined by Jain et al. (2016) through a
combination of the powers of spatio-temporal graphs and RNN for

action recognition. Recently, Sun et al. (2017) proposed a Lattice-LSTM
(L2STM) network, which extends LSTM by learning independent
hidden state transitions of memory cells for individual spatial locations.
This method effectively enhances the ability to model dynamics across
time and addresses the non-stationary issue of long-term motion dy-
namics without significantly increasing the model complexity. Differ-
ently from previous methods that using only feedforward connections,
Shi et al. (2017) proposed a biologically-inspired deep network, called
ShuttleNet1. Unlike traditional RNNs, all processors inside ShuttleNet
are connected in a loop to mimic the human brainâ;;s feedforward and
feedback connections. In this manner, the processors are shared across
multiple pathways in the loop connection. Attention mechanism is then
employed to select the best information flow pathway.

3.1.3. Other-architecture-based approach
Besides the commonly used CNN- and RNN-based methods for

motion recognition from RGB modality, there are several other struc-
tures that have been adopted for this task. Jhuang et al. (2007) used a
feedforward hierarchical template matching architecture for action
recognition with pre-defined spatio-temporal filters in the first layer. In
his thesis, Chen (2010) adopted the convolutional RBM (CRBM) as the
basic processing unit and proposed the so-called space-time Deep Belief
Network (ST-DBN) that alternates the aggregation of spatial and tem-
poral information so that higher layers capture longer range statistical
dependencies in both space and time. Taylor et al. (2010) extended the
Gated RBM (GRBM) (Memisevic and Hinton, 2007) to convolutional
GRBM (convGRBM) that shares weights at all locations in an image and
inference is performed through convolution. Le et al. (2011) presented
an extension of the independent subspace analysis algorithm
(Theis, 2007) to learn invariant spatio-temporal features from un-
labeled video data. They scale up the original ISA to larger input data
by employing two important ideas from convolutional neural networks:
convolution and stacking. This convolutional stacking idea enables the
algorithm to learn a hierarchical representation of the data suitable for
recognition. Yan et al. (2014) proposed Dynencoder, a three layer auto-
encoder, to capture video dynamics. Dynencoder is shown to be suc-
cessful in synthesizing dynamic textures, and one can think of a Dy-
nencoder as a compact way of representing the spatio-temporal in-
formation of a video. Similarly, Srivastava et al. (2015) introduced a
LSTM autoencoder model as shown in Fig. 10. The LSTM autoencoder
model consists of two RNNs, namely, the encoder LSTM and the de-
coder LSTM. The encoder LSTM accepts a sequence as input and learns
the corresponding compact representation. The states of the encoder
LSTM contain the appearance and dynamics of the sequence. The de-
coder LSTM receives the learned representation to reconstruct the input
sequence. Inspired by the Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014), Mathieu et al. (2016) adopted the adversarial
mechanism to train a multi-scale convolutional network to generate
future frames given an input sequence. To deal with the inherently
blurry predictions obtained from the standard Mean Squared Error
(MSE) loss function, they proposed three different and complementary
feature learning strategies: a multi-scale architecture, an adversarial
training method, and an image gradient difference loss function.

3.2. Continuous/online motion recognition

Most of the action recognition methods reviewed above rely heavily
on segmented videos for model training. However, it is very expensive
and time-consuming to acquire a large-scale trimmed video dataset.
The availability of untrimmed video datasets (e.g. Chunhui et al., 2017;
De Geest et al., 2016; Heilbron et al., 2015; Wan et al., 2016b; Yeung
et al., 2017) have encouraged research and challenges/contests in
motion recognition in this domain.

3.2.1. CNN-based approach
Inspired by the success of region-proposal-based object detection

Fig. 7. LRCN processes the variable-length visual input with a CNN, whose
outputs are fed into a stack of recurrent sequence models. The output is a
variable-length prediction. Figure from Donahue et al. (2015).
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using R-CNN (Girshick, 2015; Girshick et al., 2014; Ren et al., 2015),
several proposal-based action recognition methods from untrimmed
video are proposed. These methods first generate a reduced number of
candidate temporal windows, and then an action classifier dis-
criminates each proposal independently into one of the actions of in-
terest. For instance, based on the two-stream concept (Simonyan and
Zisserman, 2014a), Gkioxari and Malik (2015) classified frame-based
region proposals of interest using static and motion cues. The regions
are then linked across frames based on the predictions and their spatial
overlap; thus producing action tubes respectively for each action and
video. Weinzaepfel et al. (2015) also started from the frame-level pro-
posals, selected the highest scoring ones, tracked them throughout the
video, and adopted a multi-scale sliding window approach over tracks
to detect the temporal content of an action. Shou et al. (2016) proposed
a multi-stage segment-based 3D CNNs to generate candidate segments,
that are used to recognize actions and localize temporal boundaries.
Peng and Schmid (2016) generated rich proposals from both RGB and
optical flow data by using region proposal networks for frame-level
action detection, and stacked optical flows to enhance the dis-
criminative power of motion R-CNN. Wang et al. (2017a) proposed an
UntrimmedNet to generate clip proposals that may contain action in-
stances for untrimmed action recognition. Based on these clip-level
representations, the classification module aims to predict the scores for
each clip proposal and the selection module tries to select or rank those
clip proposals. Similarly in the same direction, Zhao et al. (2017)
adopted explicit structural modeling in the temporal dimension. In their
model, each complete activity instance is considered as a composition
of three major stages, namely starting, course, and ending, and they in-
troduced structured temporal pyramid pooling to produce a global re-
presentation of the entire proposal. Differently from previous methods,
Zhu et al. (2017b) proposed a framework that integrates the com-
plementary spatial and temporal information into an end-to-end train-
able system for video action proposal, and a novel and efficient path
trimming method is proposed to handle untrimmed video by examining
actionness and background score pattern without using extra detectors.
To generalize R-CNN from 2D to 3D, Hou et al. (2017a) proposed an
end-to-end 3D CNN-based approach for action detection in videos. A
Tube Proposal Network was introduced to leverage skip pooling in
temporal domain to preserve temporal information for action locali-
zation in 3D volumes, and Tube-of-Interest pooling layer was proposed
to effectively alleviate the problem with variable spatial and temporal
sizes of tube proposals. Saha et al. (2017) proposed a deep net frame-
work capable of regressing and classifying 3D region proposals span-
ning two successive video frames. The core of the framework is an
evolution of classical region proposal networks (RPNs) to 3D RPNs.

Similarly, Kalogeiton et al. (2017) extended the Single Shot MultiBox
Detector (SSD) (Liu et al., 2016b) framework from 2D to 3D by pro-
posing an Action Tubelet detector. In order to quickly and accurately
generate temporal action proposals, Gao et al. (2017) proposed a
Temporal Unit Regression Network (TURN) model, that jointly predicts
action proposals and refines the temporal boundaries by temporal co-
ordinate regression using CNN. Similarly, Singh et al. (2017) designed
an efficient online algorithm to incrementally construct and label ‘ac-
tion tubes’ from the SSD frame level detections, making it the first real-
time (up to 40fps) system able to perform online S/T action localisation
on the untrimmed videos. Besides the proposal-based methods dis-
cussed above, Lea et al. (2017) introduced a new class of temporal
models, called Temporal Convolutional Networks (TCNs), that use a
hierarchy of temporal convolutions to perform fine-grained action
segmentation or detection.

3.2.2. RNN-based approach
Apart from the proposal-based methods that use CNN, there are

several proposal-based methods using RNN for temporal modeling.
Escorcia et al. (2016) introduced the Deep Action Proposals (DAPs) that
generate temporal action proposals from long untrimmed videos for
action detection and classification (see Fig. 9). They adopted C3D
network (Tran et al., 2015) for visual encoder and LSTM for sequence
encoder. However, all of these methods generated proposals by a
sliding window approach, dividing the video into short overlapping
temporal window, which is computationally expensive. To reduce the
number of proposals, Buch et al. (2017) proposed a single-stream
temporal action proposal generation method that does not the need to
divide input into short overlapping clips or temporal windows for batch
processing.

Besides the proposal-based methods, there are several methods that
are proposal-free. Yeung et al. (2016) proposed an end-to-end training
model that is formulated as a recurrent neural network-based agent.
This agent learns a policy for sequentially forming and refining hy-
potheses about action instances based on the intuition that the process
of detecting actions is naturally one of observation and refinement.
They adopted two networks namely, observation network and recurrent
network, for this purpose. Singh et al. (2016) presented a multi-stream
bi-directional recurrent neural network for fine-grained action detec-
tion. They adopted a tracking algorithm to locate a bounding box
around the person and trained two streams on motion and appearance
cropped to the tracked bounding box. The video sequence was split into
fixed long chunks for the input of two-stream networks, and bi-direc-
tional LSTM was used to model long-term temporal dynamics within
and between actions. Ma et al. (2016) introduced a novel ranking loss

Fig. 8. The CNN takes the video frames as its input and produces a feature tube. The model computes the current input xt as an average of the feature slices weighted
according to the location softmax It. At each time-step t, the recurrent network takes a feature slice xt as input. It then propagates xt through three layers of LSTMs and
predicts the next location probabilities +It 1 and the class label yt. Figure from Sharma et al. (2016).
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within the RNN objective so that the trained model better captures
progression of activities. The ranking loss constrains the detection score
of the correct category to be monotonically non-decreasing as the ac-
tivity progresses. The same time, the detection score margin between
the correct activity category and all other categories is monotonically
non-decreasing. Huang et al. (2016) proposed a weakly-supervised

framework for action labeling in video (see Fig. 11), where only the
order of occurring actions is required during training. They proposed an
Extended Connectionist Temporal Classification (ECTC) framework to
efficiently evaluate all possible alignments between the input and label
sequences via dynamic programming and explicitly enforce their con-
sistency with frame-to-frame visual similarities. Taking inspiration from
classical linear dynamic systems theory for modeling time series,
Dave et al. (2017) derived a series of recurrent neural networks that
sequentially make top-down predictions about the future and then
correct those predictions with bottom-up observations. Their pre-
dictive-corrective architecture allows the incorporation of insights from
time-series analysis: adaptively focus computation on “surprising”
frames where predictions require large corrections; simplify learning in
that only “residual-like” corrective terms need to be learned over time
and naturally decorrelate an input stream in a hierarchical fashion,
producing a more reliable signal for learning at each layer of a network.

4. Depth-based motion recognition with deep learning

Compared with RGB videos, the depth modality is insensitive to
illumination variations, invariant to color and texture changes, reliable
for estimating body silhouette and skeleton, and provides rich 3D
structural information of the scene. However, there are only few pub-
lished results on depth based action recognition using deep learning
methods. Two reasons can be adduced for this situation. First, the ab-
sence of color and texture in depth maps weakens the discriminative
representation power of CNN models (Liu et al., 2016c). Second, ex-
isting depth data is relatively small-scale. The conventional pipelines

Fig. 9. The Deep Action Proposals algorithm can localize segments of varied duration around actions occurring along a video without exhaustively exploring multiple
temporal scales. Figure from Escorcia et al. (2016).

Fig. 10. The LSTM autoencoder model and LSTM future predictor model.
Figure from Srivastava et al. (2015).

Fig. 11. The problem of weakly supervised action labelling is tackled where only the order of the occurring actions in given during training. The temporal model is
trained by maximizing the probability of all possible frame-to-label alignments. At testing time, no annotation is given. The learned model encodes the temporal
structure of videos and could predict the actions without further information. Figure from Huang et al. (2016).
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are purely data-driven and learn representation directly from the pixels.
Such model is likely to be at risk of overfitting when the network is
optimized on limited training data. Currently, there are only CNN-based
methods for depth-based motion recognition.

4.1. Segmented motion recognition

4.1.1. CNN-based approach
Wang et al. (2015b, 2016b) proposed a method called Weighted

Hierarchical Depth Motion Maps (WHDMM) + 3ConvNet, as shown in
Fig. 12 for human action recognition from depth maps on small training
datasets. Three strategies were developed to leverage the capability of
ConvNets in mining discriminative features for recognition. Firstly,
different viewpoints are mimicked by rotating the 3D points of the
captured depth maps. This not only augments the data, but also makes
the trained ConvNets view-tolerant. Secondly, WHDMMs at several
temporal scales were constructed to encode the spatio-temporal motion
patterns of actions into 2D spatial structures. The 2D spatial structures
are further enhanced for recognition by converting the WHDMMs into
pseudo-color images. Lastly, the three ConvNets were initialized with
the models obtained from ImageNet and fine-tuned independently on
the color-coded WHDMMs constructed in three orthogonal planes. In-
spired by the promising results achieved by rank pooling method
(Bilen et al., 2016) on RGB data, Wang et al. (2016c) encoded the depth
map sequences into three kinds of dynamic images with rank pooling:
Dynamic Depth Images (DDI), Dynamic Depth Normal Images (DDNI)
and Dynamic Depth Motion Normal Images (DDMNI). These three re-
presentations capture the posture and motion information from three

different levels for gesture recognition. Specifically, DDI exploits the
dynamics of postures over time and DDNI and DDMNI exploit the 3D
structural information captured by depth maps. Wang et al. (2018a)
replaced the bidirectional rank pooling in the method of
Wang et al. (2016c) with hierarchical and bidirectional rank pooling to
capture both high order and non-linear dynamics effectively for both
gesture and action recognition. Recently, Wang et al. (2017c) proposed
to represent a depth map sequence into three pairs of structured dy-
namic images at body, part and joint levels respectively through bi-
directional rank pooling. Different from previous works that applied
one ConvNet for each part/joint separately, one pair of structured dy-
namic images is constructed from depth maps at each granularity level
and serves as the input of a ConvNet. The structured dynamic image not
only preserves the spatial-temporal information but also enhances the
structure information across both body parts/joints and at different
temporal scales. In addition, it requires low computational cost and
memory to construct. This new representation, referred to as Spatially
Structured Dynamic Depth Images (S2DDI), aggregates from global to
fine-grained motion and structure information in a depth sequence, and
enables us to fine-tune the existing ConvNet models trained on image
data for classification of depth sequences, without a need for training
the models afresh. Similarly, Hou et al. (2017b) extended S2DDI to
Spatially and Temporally Structured Dynamic Depth Images (STSDDI),
where a hierarchical bidirectional rank pooling method was adopted to
exploit the spatio-temporal-structural information contained in the
depth sequence and it is applied to interactions of two subjects. Dif-
ferently from the above texture image encoding method, Rahmani and
Mian (2016) proposed a cross-view action recognition based on depth
sequence. Their method comprises two steps: (i) learning a general
view-invariant human pose model from synthetic depth images and, (ii)
modeling the temporal action variations. To enlarge the training data
for CNN, they generated the training data synthetically by fitting rea-
listic synthetic 3D human models to real mocap data and then rendering
each pose from a large number of viewpoints. For spatio-temporal re-
presentation, they used group sparse Fourier Temporal Pyramid which
encodes the action-specific discriminative output features of the pro-
posed human pose model.

4.2. Continuous/online motion recognition

4.2.1. CNN-based approach
For continuous gesture recognition, Wang et al. (2016d) first seg-

mented the continuous depth sequence into segmented sequences using

Fig. 12. Depth map sequences are encoded into texture color images by using the concepts of Depth Motion Maps (DMM) (Yang et al., 2012) and pseudo-coloring,
and at the same time enlarged the training data by scene rotation on the 3D point cloud. Three channel of CNN are adopted for feature extraction and classification.
Figure from Wang et al. (2016b).

Fig. 13. The JTM framework for skeleton-based motion recognition with CNN.
Figure from Wang et al. (2016e).
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quantity of movement (QOM) (Jiang et al., 2015), and then adopted
improved DMM (IDMM) to encode the dynamics of depth sequences
into texture images for large-scale continuous gesture recognition. To
improve the encoding quality of depth sequences, Wang et al. (2018a)
proposed three simple, compact yet effective representations of depth
sequences, referred to respectively as Dynamic Depth Images (DDI),
Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion
Normal Images (DDMNI), for continuous action recognition. These
dynamic images are constructed from a segmented sequence of depth
maps using hierarchical bidirectional rank pooling to effectively cap-
ture the spatial-temporal information. Specifically, DDI exploits the
dynamics of postures over time while DDNI and DDMNI extract the 3D
structural information captured by depth maps. The image-based re-
presentations enable us to fine-tune the existing ConvNet models
trained on image data without training a large number of parameters
from scratch.

5. Skeleton-based motion recognition with deep learning

Differently from RGB and depth, skeleton data contains the posi-
tions of human joints, which can be considered relatively high-level
features for motion recognition. There are two common ways to esti-
mate skeletons, one is to use MOCAP systems and the other is to esti-
mate skeletons directly from depth maps or RGB images/video.
Skeletons from MOCAP systems are often robust to scale and illumi-
nation changes and can be invariant to viewpoints as well as human
body rotation and motion speed; Skeletons estimated from depth maps
or RGB images/video are prone to errors caused by a number of factors
including viewpoints and occlusion since both factors can lead to sig-
nificant different appearance of same actions. Currently, there are
mainly three approaches to skeleton-based motion recognition using
deep learning: (i) RNN-based, (ii) CNN-based and other-architecture-
based approaches for segmented motion recognition and, (iii) RNN-
based approaches for continuous/online motion recognition.

5.1. Segmented motion recognition

5.1.1. CNN-based approach
The main step in this approach is to convert the skeleton sequences

into images where the spatio-temporal information is reflected in the
image properties including color and texture. Du et al. (2015a) re-
presented a skeleton sequence as a matrix by concatenating the joint
coordinates at each instant and arranging the vector representations in
a chronological order. The matrix is then quantified into an image and
normalized to handle the variable-length problem. The final image is
fed into a CNN model for feature extraction and
recognition.Wang et al. (2016e) proposed to encode spatio-temporal
information contained in the skeleton sequence into multiple texture
images, namely, Joint Trajectory Maps (JTM), as shown in Fig. 13 by
mapping the trajectories into HSV (hue, saturation, value) space. Pre-
trained models over Imagenet is adopted for fine-tuning over the JTMs
to extract features and recognize actions. Similarly, Hou et al. (2016)
drew the skeleton joints with a specific pen to three orthogonal can-
vases, and encodes the dynamic information in the skeleton sequences
with color encoding. Li et al. (2017a) proposed to encode the pair-wise
distances of skeleton joints of single or multiple subjects into texture
images, namely, Joint Distance Maps (JDM), as the input of CNN for
action recognition. Compared with the works reported by
Wang et al. (2016e) and Hou et al. (2016), JDM is less sensitive to view
variations. Liu et al. (2017b) introduced an enhanced skeleton visua-
lization method to represent a skeleton sequence as a series of visual
and motion enhanced color images. They proposed a sequence-based
view invariant transform to deal with the view variation problem, and
multi-stream CNN fusion method is adopted to conduct recognition.
Ke et al. (2017a) designed vector-based features for each body part of
human skeleton sequences, which are translation, scale and rotation

invariant, and transformed the features into images to feed into CNN for
learning high level and discriminative representation. In another effort,
Ke et al. (2017b) represented the sequence as a clip with several gray
images for each channel of the 3D coordinates, which reflects multiple
spatial structural information of the joints. The images are fed to a deep
CNN to learn high-level features, and the CNN features of all the three
clips at the same time-step are concatenated in a feature vector. Each
feature vector represents the temporal information of the entire ske-
leton sequence and one particular spatial relationship of the joints. A
Multi-Task Learning Network (MTLN) is adopted to jointly process the
feature vectors of all time-steps in parallel for action recognition.
Kim and Reiter (2017) approached the problem differently and pro-
posed to use the Temporal Convolutional Neural Networks (TCN)
(Lea et al., 2017) for skeleton based action recognition. They re-de-
signed the original TCN into Res-TCN by factoring out the deeper layers
into additive residual terms that yields both interpretable hidden re-
presentations and model parameters.

5.1.2. RNN-based approach
In this class of approaches, skeleton features are input to an RNN in

order to exploit the temporal evolution. For instance, in a series or
works Du et al. (2016, 2015b) divided the whole skeleton sequence into
five parts according to the human physical structure, and separately fed
them into five bidirectional RNNs/LSTMs. As the number of layers in-
creases, the representations extracted by the subnets are hierarchically
fused to build a higher-level representation. The process is illustrated in
Fig. 14. This method explicitly encodes the spatio-temporal-structural
information into high level representation. Veeriah et al. (2015) pro-
posed a differential gating scheme for the LSTM neural network, which
emphasizes the change in information gain caused by the salient mo-
tions between the successive frames. This work is one of the first aimed
at demonstrating the potential of learning complex time-series re-
presentations via high-order derivatives of states. Zhu et al. (2016d)
designed two types of regularizations to learn effective features and
motion dynamics. In the fully connected layers, they introduced reg-
ularization to drive the model to learn co-occurrence features of the
joints at different layers. Furthermore, they derived a new dropout and
apply it to the LSTM neurons in the last LSTM layer, which helps the
network to learn complex motion dynamics. Instead of keeping a long-
term memory of the entire body’s motion in the cell,
Shahroudy et al. (2016) proposed a part-aware LSTM human action
learning model (P-LSTM) wherein memory is split across part-based
cells. It is argued that keeping the context of each body part in-
dependent and representing the output of the P-LSTM unit as a com-
bination of independent body part context information is more effi-
cient. Previous RNN-based 3D-action recognition methods have
adopted RNN to model the long-term contextual information in the
temporal domain for motion-based dynamics representation. However,

Fig. 14. The LSTM autoencoder model and LSTM future predictor model.
Figure from Du et al. (2015b).
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there is also strong dependency between joints in the spatial domain. In
addition the spatial configuration of joints in video frames can be
highly discriminative for 3D-action recognition task. To exploit this
dependency, Liu et al. (2016a) proposed a spatio-temporal LSTM (ST-
LSTM) network which extends the traditional LSTM-based learning to
both temporal and spatial domains. Rather than concatenate the joint-
based input features, ST-LSTM explicitly models the dependencies be-
tween the joints and applies recurrent analysis over spatial and tem-
poral domains concurrently. Besides, they introduced a trust gate me-
chanism to make LSTM robust to noisy input data. Song et al. (2017)
proposed a spatio-temporal attention model with LSTM to auto-
matically mine the discriminative joints and learn the respective and
different attentions of each frame along the temporal axis. Similarly,
Liu et al. (2017a) proposed a Global Context-Aware Attention LSTM
(GCA-LSTM) to selectively focus on the informative joints in the action
sequence with the assistance of global context information. Differently
from previous works that adopted the coordinates of joints as input,
Zhang et al. (2017c) investigated a set of simple geometric features of
skeleton using 3-layer LSTM framework, and showed that using joint-
line distances as input requires less data for training. Based on the
notion that LSTM networks with various time-step sizes can model
various attributes well, Lee et al. (2017) proposed an ensemble Tem-
poral Sliding LSTM (TS-LSTM) networks for skeleton-based action re-
cognition. The proposed network is composed of multiple parts con-
taining short-term, medium- term and long-term TS-LSTM networks,
respectively. Li et al. (2017b) proposed an adaptive and hierarchical
framework for fine-grained, large-scale skeleton-based action recogni-
tion. This work was motivated by the need to distinguish fine-grained
action classes that are intractable using a single network, and adaptivity
to new action classes by model augmentation. In the framework, mul-
tiple RNNs are effectively incorporated in a tree-like hierarchy to mi-
tigate the discriminative challenge and thus using a divide-and-conquer
strategy. To deal with large view variations in captured human actions,
Zhang et al. (2017b) proposed a self-regulated view adaptation scheme
which re-positions the observation viewpoints dynamically, and in-
tegrated the proposed view adaptation scheme into an end-to-end LSTM
network which automatically determines the “best” observation view-
points during recognition.

5.1.3. Other-architecture-based approach
Besides the RNN- and CNN-based approaches, there are several

other deep learning-based methods. Salakhutdinov et al. (2013) pro-
posed a new compositional learning architecture that integrates deep
learning models with structured hierarchical Bayesian models. Speci-
fically, this method learns a hierarchical Dirichlet process (HDP)
(Teh et al., 2004) prior over the activities of the top-level features in a
deep Boltzmann machine (DBM). This compound HDP–DBM model
learns novel concepts from very few training examples by learning: (i)
low-level generic features, (ii) high-level features that capture corre-
lations among low-level features and, (iii) a category hierarchy for
sharing priors over the high-level features that are typical of different
kinds of concepts. Wu and Shao (2014) adopted deep belief networks
(DBN) to model the distribution of skeleton joint locations and extract
high-level features to represent humans at each frame in 3D space.
Ijjina and Krishna Mohan (2016) adopted stacked auto encoder to learn
the underlying features of input skeleton data. Huang et al. (2017) in-
corporated the Lie group structure into a deep learning architecture to
learn more appropriate Lie group features for skeleton based action
recognition (see Fig. 16).

5.2. Continuous/online motion recognition

5.2.1. RNN-based approach
Differently from previous methods that recognize motion from

segmented skeleton sequences, Li et al. (2016a) proposed a multi-task
end-to-end Joint Classification-Regression Recurrent Neural Network to

explore the action type and temporal localization information. They
adopted LSTM to capture the complex long-range temporal dynamics,
which avoids the typical sliding window design and thus ensures high
computational efficiency. Furthermore, the subtask of regression opti-
mization provides the ability to forecast the action prior to its occur-
rence. The framework is shown in Fig. 15.

6. RGB+D-based motion recognition with deep learning

As discussed in previous sections, RGB, depth and skeleton mod-
alities have their own specific properties, and how to combine the
strengths of these modalities with deep learning approach is important.
To address this problem, several methods have been proposed. In
general, these methods can be categorized as (i) CNN-based, (ii) RNN-
based and other-architecture-based approaches for segmented motion
recognition and, (iii) RNN-based continuous/online motion recogni-
tion.

6.1. Segmented motion recognition

6.1.1. CNN-based approach
Zhu et al. (2016b) fused RGB and depth in a pyramidal 3D con-

volutional network based on C3D (Tran et al., 2015) for gesture re-
cognition. They designed pyramid input and pyramid fusion for each
modality and late score fusion was adopted for final recognition.
Duan et al. (2016) proposed a convolutional two-stream consensus
voting network (2SCVN) which explicitly models both the short-term
and long-term structure of the RGB sequences. To alleviate distractions
from background, a 3D depth-saliency ConvNet stream (3DDSN) was
aggregated in parallel to identify subtle motion characteristics. Later
score fusion was adopted for final recognition. The methods described
so far considered RGB and depth as separate channels and fused them
later. Wang et al. (2017b) took a different approach and adopted scene
flow to extract features that fused the RGB and depth from the onset.
The new representation based on CNN and named Scene Flow to Action
Map (SFAM) was used for motion recognition, as shown in Fig. 18.
Different from previous methods, Wang et al. (2018b) proposed to co-
operatively train a single convolutional neural network (named c-
ConvNet) on both RGB and depth features, and deeply aggregate the
two kinds of features for action recognition. While the conventional
ConvNet learns the deep separable features for homogeneous modality-
based classification with only one softmax loss function, the c-ConvNet
enhances the discriminative power of the deeply learned features and
weakens the undesired modality discrepancy by jointly optimizing a
ranking loss and a softmax loss for both homogeneous and hetero-
geneous modalities. Rahmani and Bennamoun (2017) proposed an end-
to-end learning model for action recognition from depth and skeleton
data. The proposed model learned to fuse features from depth and

Fig. 15. The joint classification-regression RNN framework for online action
detection and forecasting. Figure from Li et al. (2016a).
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skeletal data, capture the interactions between body-parts and/or in-
teractions with environmental objects, and model the temporal struc-
ture of human actions in an end-to-end learning framework. The pro-
posed method was made robust to viewpoint changes, by introducing a
deep CNN which transfers visual appearance of human body-parts ac-
quired from different unknown views to a view-invariant space.

6.1.2. RNN-based approach
For RGB and depth fusion, Pigou et al. (2016) directly considered

the depth as the fourth channel and CNN was adopted to extract frame-
based appearance features. Temporal convolutions and RNN were
combined to capture the temporal information. Li et al. (2016b)
adopted C3D (Tran et al., 2015) to extract features separately from RGB
and depth modalities, and used the concatenated for SVM classifier.
Zhu et al. (2017a) presented a gesture recognition method using C3D
(Tran et al., 2015) and convolutional LSTM (convLSTM) (Xingjian et al.,
2015) based on depth and RGB modalities (see Fig. 17). The major
drawback of traditional LSTM in handling spatio-temporal data is its
usage of full connections in input-to-state and state-to-state transitions

in which no spatial information is encoded. The ConvLSTM determines
the future state of a certain cell in the grid by the inputs and past states
of its local neighbors. Average score fusion was adopted to fuse the two
separate channel networks for the two modalities. Luo et al. (2017)
proposed to use a RNN-based encoder-decoder framework to learn a
video representation by predicting a sequence of basic motions de-
scribed as atomic 3D flows. The learned representation is then extracted
from the generated model to recognize activities.

Shi and Kim (2017) fused depth and skeleton in a so-called privi-
leged information (PI)-based RNN (PRNN) that exploits additional
knowledge of skeleton sequences to obtain a better estimate of network
parameters from depth map sequences. A bridging matrix is defined to
connect softmax classification loss and regression loss by discovering
latent PI in the refinement step. The whole process is illustrated in
Fig. 19.

For RGB and skeleton fusion, Mahasseni and Todorovic (2016)
presented a regularization of LSTM learning where the output of an-
other encoder LSTM (eLSTM) grounded on 3D human-skeleton training
data is used as the regularization. This regularization rests on the hy-
pothesis that since videos and skeleton sequences are about human
motions their respective feature representations should be similar. The
skeleton sequences, being view-independent and devoid of background
clutter, are expected to facilitate capturing important motion patterns
of human-body joints in 3D space.

6.1.3. Other-architecture-based approach
Shahroudy et al. (2017) extracted hand-crafted features which are

neither independent nor fully correlated from RGB and depth, and
embedded the input feature into a space of factorized common and
modality-specific components. The combination of shared and specific
components in input features can be very complex and highly non-

Fig. 16. Conceptual illustration of LieNet architecture. In the network structure, the data space of each RotMap/RotPooling layer corresponds to a Lie group, while
the weight spaces of the RotMap layers are Lie groups as well. Figure from Huang et al. (2017).

Fig. 17. The deep architecture is composed of five components: (a) input pre-
processing; (b) 3D CNN (C3D); (c) ConvLSTM; (d) spatial pyramid pooling and
fully connected layers; (e) multimodal score fusion. Figure from
Zhu et al. (2017a).

Fig. 18. The framework of using scene flow for motion recognition. Scene flow
vectors are first transformed into Scene Flow Maps (SFM), and then using
Channel Transform Kernels to transform SFM into an analogous RGB space to
take advantage of pre-train models over ImageNet. Figure from
Wang et al. (2017b).
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linear. In order to disentangle them, they stacked layers of non-linear
auto encoder-based component factorization to form a deep shared-
specific analysis network.

In a RGB, depth and skeleton fusion method, Wu et al. (2016)
adopted Gaussian–Bernouilli Deep Belief Network (DBN) to extract
high-level skeletal joint features and the learned representation is used
to estimate the emission probability needed to infer gesture sequences.
A 3D Convolutional Neural Network (3DCNN) was used to extract
features from 2D multiple channel inputs such as depth and RGB images
stacked along the 1D temporal domain. In addition, intermediate and
late fusion strategies were investigated in combination with the tem-
poral modeling. The result of both mechanisms indicates that multiple-
channel fusion can outperform individual modules.

6.2. Continuous/online motion recognition

6.2.1. RNN-based approach
Chai et al. (2016) proposed to fuse RGB and depth in a two-stream

RNN (2S-RNN) for gesture recognition. They designed a fusion layer for
depth and RGB before the LSTM layer. Molchanov et al. (2016) pre-
sented an algorithm for joint segmentation and classification of dy-
namic hand gestures from continuous video streams. They proposed a
network that employs a recurrent C3D with connectionist temporal
classification (CTC) (Graves et al., 2006). They trained a separate net-
work for each modality and averaged their scores for final recognition.
Beside RGB and depth modalities, they also adopted stereo-IR modality
in their work.

7. Discussion

We presented a comprehensive overview of RGB-D based motion
recognition using deep learning. We defined a taxonomy covering two
groups: segmented and continuous/online motion recognition, with
four categories in each group based on the adopted modalities. From
the viewpoint of encoding spatio-temporal-structural information con-
tained in the video sequences, CNN, RNN and other networks adopted
for motion recognition are discussed in each category. In subsequent
sections, the relative performance of the different methods on several
commonly used RGB-D datasets are analysed, and from the comparisons
we highlight some challenges. The discussion on performance and
challenges then provides a basis for outlining potential future research

directions.

7.1. Performance analysis of the current methods

In this section, we compare the accuracy of different methods using
several commonly used datasets, including CMU Mocap, HDM05, MSR-
Action3D, MSRC-12, MSRDailyActivity3D, UTKinect, G3D, SBU Kinect
Interaction, Berkeley MHAD, Northwestern-UCLA Multiview Action3D,
ChaLearn LAP IsoGD, NTU RGB+D, ChaLearn2014, ChaLearn LAP
ConGD, and PKU-MMD. These datasets cover motion capture sensor
system, structured light cameras (Kinect v1) and ToF cameras (Kinect
v2). The last three datasets are continuous datasets while the others are
segmented datasets. The performance is evaluated using accuracy for
segmented motion recognition, and Jaccard Index is added as another
criteria for continuous motion recognition. The accuracy is calculated
as the proportion of accurately labelled samples. The Jaccard index
measures the average relative overlap between true and predicted se-
quences of frames for a given gesture/action. For a sequence s, let Gs, i

and Ps, i be binary indicator vectors for which 1-values correspond to
frames in which the ith gesture/action label is being performed. The
Jaccard Index for the ith class is defined for the sequence s as:
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The detailed comparison of different methods is presented in fol-
lowing Table 2. From the Table we can see that there is no single ap-
proach that is able to produce the best performance over all datasets.
Generally speaking, methods using multi-modal information can have

Fig. 19. The framework of PI-based RNNs. It consists of three steps: (1) the pre-training step taking both depth maps and skeleton as input. An embedded encoder is
trained in a standard CNN-RNN pipeline. (2) The trained encoder is used to initialize the learning step. A multi-task loss is applied to exploit the PI in the regression
term as a secondary task. (3) Finally, refinement step aims to discover the latent PI by defining a bridging matrix, in order to maximize the effectiveness of the PI. The
latent PI is utilized to close the gap between different information. The latent PI, bridging matrix and the network are optimized iteratively in an EM procedure.
Figure from Shi and Kim (2017).
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better performance than their single modality counterpart due to the
complementary properties of the three different modalities. On some
datasets, such as NTU RGB+D dataset, current results suggest that
CNN-based methods tend to be better than RNN-based methods. This is
probably due to fact that CNN-based methods includes human em-
pirical knowledge in the coding process, and could take advantage of
pre-trained models over large image set, such as ImageNet. The com-
bination of CNN and RNN seems to be a good choice for motion re-
cognition, for instance, the C3D+ConvLSTM (Zhu et al., 2017a)
method achieved promising results on ChaLearn LAP IsoGD dataset. For
continuous motion recognition, RNN-based methods tend to achieve
good results.

7.2. Challenges

The advent of low-cost RGB-D sensors that have access to extra
depth and skeleton data, has motivated the significant development of
human motion recognition. Promising results have been achieved with
deep learning approaches (Liu et al., 2016a; Wang et al., 2016b; Zhang
et al., 2017c), on several constrained simple datasets, such as MSR-
Action3D, Berkeley MHAD and SBU Kinect Interaction. Despite this
success, results are far from satisfactory on some large complex data-
sets, such as ChaLearn LAP IsoGD and NTU RGB+D datasets and
especially the continuous/online datasets. In fact, it is still very difficult
to build a practical intelligent recognition system. Such goal poses
several challenges:

Encoding temporal information. As discussed, there are several
methods to encode temporal information. We can use CNN to extract
frame-based features and then conduct temporal fusion (Karpathy et al.,
2014), or adopt 3D filter and 3D pooling layers to learn motion features
(Tran et al., 2015), or use optical/scene flow to extract motion in-
formation (Simonyan and Zisserman, 2014a; Wang et al., 2017b), or
encode the video into images (Bilen et al., 2016; Wang et al., 2016b;
2016e), or use RNN/LSTM to model the temporal dependences
(Donahue et al., 2015; Du et al., 2015b; Liu et al., 2017a). However, all
these approaches have their drawbacks. Temporal fusion method tends
to neglect the temporal order; 3D filters and 3D pooling filters have a
very rigid temporal structure and they only accept a predefined number
of frames as input which is always short; optical/scene flow methods
are computationally expensive; sequence to images methods inevitably
loses temporal information during encoding; the weight sharing me-
chanism of RNN/LSTM methods make the sequence matching im-
precise, but rather approximated, so an appropriate distance function
must be used to predict the match probability. In fact, there is still no
perfect method for temporal encoding, and how to model temporal
information is a big challenge.

Small training data. Most of available deep learning methods rely on
large labeled training data (Karpathy et al., 2014; Tran et al., 2015).
However, in practical scenarios, obtaining large labeled training data is
costly and laborious, even impossible, especially in medical-related
applications. It has been shown that fine-tuning motion-based networks
with spatial data (ImageNet) is more effective than training from
scratch (Bilen et al., 2016; Simonyan and Zisserman, 2014a; Wang
et al., 2017b; 2016e). Strategies for data augmentation are also com-
monly used (Wang et al., 2016b). Likewise, training mechanisms to
avoid overfitting and control learning rate have also been studied
(Srivastava et al., 2014). However, it is still a challenge to effectively
train deep networks from small training data.

Viewpoint variation and occlusion. When skeletons are estimated from
RGB images/video or depth maps, viewpoint variation may cause sig-
nificantly different appearance of same actions, and occlusion would
“crash” the skeleton data. Occlusion includes inter-occlusion caused by
other subjects or objects, and self-occlusion created by the object/
subject itself. Most of available datasets require subjects to perform
actions in a visible and restricted view to avoid occlusion, and this
results in limited view data collection and less occlusion. However,

occlusion is inevitable in practical scenarios, especially for interactions.
This makes it challenging to isolate individuals in overlapping area and
extract features of a unique person; leading to the ineffectiveness of
many of available approaches (Du et al., 2015b; Li et al., 2017a;
Shahroudy et al., 2016). Possible solutions to handle viewpoint varia-
tion and occlusion include the use of multi-sensor systems (Chunhui
et al., 2017; Ofli et al., 2013; Shahroudy et al., 2016; Wang et al.,
2014). The multi-camera systems is able to generate multi-view data,
but the drawback is the requirement of synchronization and feature/
recognition fusion among different views. This usually increases pro-
cessing complexity and computation cost. Several methods have been
proposed to handle the viewpoint variation and occlusion.
Wang et al. (2015b) proposed to rotate the depth data in 3D point
clouds through different angles to deal with viewpoint invariance;
spherical coordinate system corresponding to body center was devel-
oped to achieve view-independent motion recognition (Huang et al.,
2017). However, these methods become less effective when occlusion
occurs. How to effectively handle occlusion using deep learning
methods is a new challenge.

Execution rate variation and repetition. The execution rate may vary
due to the different performing styles and states of individuals. The
varying rate results in different frames for the same motion. Repetition
also bring about this issue. The global encoding methods (Hou et al.,
2016; Ke et al., 2017a; Liu et al., 2017b) would become less effective
due to the repetition. The commonly used methods to handle this
problem is up/down sampling (Li et al., 2017a; Zhang et al., 2017c; Zhu
et al., 2016d). However, sampling methods would inevitably bring re-
dundant or loss of useful information. Effective handling of this pro-
blem remains a challenge.

Cross-datasets. Many research works have been carried out to re-
cognize human actions from RGB-D video clips. To learn an effective
action classifier, most of the previous approaches rely on enough
training labels. When being required to recognize the action in a dif-
ferent dataset, these approaches have to re-train the model using new
labels. However, labeling video sequences is a very tedious and time-
consuming task, especially when detailed spatial locations and time
durations are required. Even though some works have studied this topic
(Cao et al., 2010; Sultani and Saleemi, 2014; Zhang et al., 2017a), they
are all based on hand-crafted features, and the results are far from sa-
tisfactory due to the large distribution variances between different
datasets, including different scenarios, different modalities, different
views, different persons, and even different actions. How to deal with
cross-datasets RGB-D motion recognition is a big challenge.

Online motion recognition. Most of available methods rely on seg-
mented data, and their capability for online recognition is quite limited.
Even though continuous motion recognition is one improved version
where the videos are untrimmed, it still assumes that all the videos are
available before processing. Thus, proposal-based methods (Shou et al.,
2016; Wang et al., 2017a) can be adopted for offline processing. Dif-
ferently from continuous motion recognition, online motion recognition
aims to receive continuous streams of unprocessed visual data and re-
cognize actions from an unsegmented stream of data in a continuous
manner. So far two main approaches can be identified for online re-
cognition, sliding window-based and RNN-based. Sliding window-based
methods (Chunhui et al., 2017) are simple extension of segmented-
based action recognition methods. They often consider the temporal
coherence within the window for prediction and the window-based
predictions are further fused to achieve online recognition. However,
the performance of these methods are sensitive to the window size
which depends on actions and is hard to set. Either too large or too
small a window size could lead to significant drop in recognition. For
RNN-based methods (Li et al., 2016a; Molchanov et al., 2016), even
though promising results have been achieved, it is still far from sa-
tisfactory in terms of performance. How to design effective practical
online recognition system is a big challenge.

Action prediction. We are faced with numerous situations in which
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we must predict what actions other people are about to do in the near
future. Predicting future actions before they are actually executed is a
critical ingredient for enabling us to effectively interact with other
humans on a daily basis (Hoai and De la Torre, 2014; Lan et al., 2014;
Ryoo, 2011; Sadegh Aliakbarian et al., 2017; Vu et al., 2014). There are
mainly two challenges for this task: first, we need to capture the subtle
details inherent in human movements that may imply a future action;
second, predictions usually should be carried out as quickly as possible
in the social world, when limited prior observations are available.
Predicting the action of a person before it is actually executed has a
wide range of applications in autonomous robots, surveillance and
health care. How to develop effective algorithms for action prediction is
really challenging.

7.3. Future research directions

The discussion on the challenges faced by available methods allows
us to outline several future research directions for the development of
deep learning methods for motion recognition. While the list is not
exhaustive, they point at research activities that may advance the field.

Hybrid networks. Most of previous methods adopted one type of
neural networks for motion recognition. As discussed, there is no per-
fect solution for temporal encoding using single networks. Even though
available works such as C3D+ConvLSTM (Zhu et al., 2017a) used two
types of networks, the cascaded connection makes them dependent on
each other during training. How to cooperatively train different kinds
of networks would be a good research direction; for example, using the
output of CNN to regularize RNN training in parallel.

Simultaneous exploitation of spatial-temporal-structural information. A
video sequence has three important inherent properties that should be
considered for motion analysis: spatial information, temporal in-
formation and structural information. Several previous methods tend to
exploit the spatio-temporal information for motion recognition, how-
ever, structural information contained in the video is rarely explicitly
mined. Concurrent mining of these three kinds of information with deep
learning would be an interesting topic in the future (Jain et al., 2016).

Fusion of multiple modalities. While significant progress has been
achieved by singly using RGB, skeleton or depth modality, effective
deep networks for fusion of multi-modal data would be a promising
direction. For example, methods such as SFAM (Wang et al., 2017b) and
PRNN (Shi and Kim, 2017) have pioneered the research in this direc-
tion. The work SFAM (Wang et al., 2017b) proposed to extract scene
flow for motion analysis. The strategy of fusing the RGB and depth
modalities at the outset allowed the capture of rich 3D motion in-
formation. In PRNN (Shi and Kim, 2017) the concept of privileged in-
formation (side information) was introduced for deep networks training
and showed some promise. Zolfaghari et al. (2017) proposed the in-
tegration of different modalities via a Markov chain, which leads to a
sequential refinement of action labels. So far, most methods considered
the three modalities as separate channels and fused them at a later or
scoring stage using different fusion methods without cooperatively
exploiting their complementary properties. Cooperative training using
different modalities would be a promising research area.

Large-scale datasets. With the development of data-hungry deep
learning approach, there is demand for large scale RGB-D datasets. Even
though there are several large datasets, such as NTU RGB+D Dataset
(Shahroudy et al., 2016) and ChaLearn LAP IsoGD Dataset (Wan et al.,
2016b), they are focused on specific tasks. Various large-scale RGB-D
datasets are needed to facilitate research in this field. For instance,
large-scale fine-grained RGB-D motion recognition datasets and large-
scale occlusion-based RGB-D motion recognition datasets are urgently
needed.

Zero/one-shot learning. As discussed, it is not always easy to collect
large scale labeled data. Learning from a few examples remains a key
challenge in machine learning. Despite recent advances in important
domains such as vision and language, the standard supervised deep

learning paradigm does not offer a satisfactory solution for learning
new concepts rapidly from little data. How to adopt deep learning
methods for zero/one shot RGB-D-based motion recognition would be
an interesting research direction. Zero/one-shot learning is about being
able to recognize gesture/action classes that are never seen or only one
training sample per class before. This type of recognition should carry
embedded information universal to all other gestures/actions. In the
past few years, there are some works on zero/one-shot learning. For
example, Wan et al. (2016a) proposed the novel spatial-temporal fea-
tures for one-shot learning gesture recognition and have got promising
performances on Chalearn Gesture Dataset CGD) (Guyon et al., 2014).
For zero-shot learning, Madapana and Wachs (2017) proposed a new
paradigm based on adaptive learning which it is possible to determine
the amount of transfer learning carried out by the algorithm and how
much knowledge is acquired for a new gesture observation. However,
the mentioned works used traditional methods (such as bag of visual
words model Wan et al., 2013). Mettes and Snoek (2017) proposed a
spatial-aware object embedding for zero-shot action localization and
classification. The spatial-aware embedding generate action tubes by
incorporating word embeddings, box locations for actors and objects, as
well as their spatial relations. However, how to effectively adopt deep
learning methods for zero/one shot RGB-D based motion recognition
would be still an interesting research direction especially when using
only very few training samples.

Outdoor practical scenarios. Although lots of RGB-D datasets have
been collected during the last few years, there is a big gap between the
collected datasets and wild environment due to constrained environ-
ment setting and insufficient categories and samples. For example, most
available datasets do not involve much occlusion cases probably due to
the collapse of skeleton dataset in case of occlusion. However, in
practical scenarios, occlusion is inevitable. How to recover or find cues
from multi-modal data for such recognition tasks would be an inter-
esting research direction. Besides, with the development of depth sen-
sors, further distances could be captured, and recognition in outdoor
practical scenarios will gain the attention of researchers.

Unsupervised learning/self-learning. Collecting labeled datasets are
time-consuming and costly, hence learning from unsupervised video
data is required. Mobile robots mounted with RGB-D cameras need to
continuously learn from the environment and without human inter-
vention. How to automatically learn from the unlabeled data stream to
improve the learning capability of deep networks would be a fruitful
and useful research direction. Generative Adversarial Net (GAN)
(Ho and Ermon, 2016) has got much processes recently in image gen-
eration task, such as face generation, text-to-image task. Besides, it also
can be used for recognition task. For example, Tran et al. (2017) pro-
posed a Disentangled Representation learning Generative Adversarial
Networks (DR-GAN) for pose-invariant face recognition. Therefore, we
believe the GAN-based techniques also can be used for action/gesture
recognition, which is a great exciting direction for research.
Vondrick et al. (2016b) proposed a generative adversarial network for
video with spatial-temporal convolutional architecture that untangles
the scene’s foreground from backgrounds. This is an initial work to
capitalize on large amounts of unlabeled video in order to learn a model
of scene dynamic for both video recognition tasks (e.g. action classifi-
cation) and video generation tasks (e.g. future prediction). Increasing
research will be reported in the coming years on GAN-based methods
for video-based recognition.

Online motion recognition and prediction. Online motion recognition
and prediction is required in practical applications, and arguably this is
the final goal of motion recognition systems. Differently from seg-
mented recognition, online motion recognition requires the analysis of
human behavior in a continuous manner, and prediction aims to re-
cognize or anticipate actions that would happen. How to design effec-
tive online recognition and prediction systems with deep learning
methods has attracted some attention. For example,
Vondrick et al. (2016a) introduced a framework that capitalizes on
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temporal structure in unlabeled video to learn to anticipate human
actions and objects based on CNN, and it is likely to emerge as an active
research area.

8. Conclusion

This paper presents a comprehensive survey of RGB-D based motion
recognition using deep learning. We provide a brief overview of ex-
isting commonly used datasets and pointed at surveys that focused
mainly on datasets. The available methods are grouped into four cate-
gories according to the modality: RGB-based, depth-based, skeleton-
based and RGB+D-based. The three modalities have their own specific
features and lead to different choices of deep learning methods to take
advantages of their properties. Spatial, temporal and structural in-
formation inherent in a video sequence is defined, and from the view-
point of spatio-temporal-structural encoding, we analyse the pros and
cons of available methods. Based on the insights drawn from the survey,
several potential research directions are described, indicating the nu-
merous opportunities in this field despite the advances achieved to
date.
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