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Abstract

Face anti-spoofing is essential to prevent face recog-
nition systems from a security breach. Much of the pro-
gresses have been made by the availability of face anti-
spoofing benchmark datasets in recent years. However,
existing face anti-spoofing benchmarks have limited num-
ber of subjects (≤ 170) and modalities (≤ 2), which
hinder the further development of the academic commu-
nity. To facilitate face anti-spoofing research, we intro-
duce a large-scale multi-modal dataset, namely CASIA-
SURF, which is the largest publicly available dataset for
face anti-spoofing in terms of both subjects and visual
modalities. Specifically, it consists of 1, 000 subjects with
21, 000 videos and each sample has 3 modalities (i.e., RGB,
Depth and IR). We also provide a measurement set, evalu-
ation protocol and training/validation/testing subsets, de-
veloping a new benchmark for face anti-spoofing. More-
over, we present a new multi-modal fusion method as base-
line, which performs feature re-weighting to select the
more informative channel features while suppressing the
less useful ones for each modal. Extensive experiments
have been conducted on the proposed dataset to verify
its significance and generalization capability. The dataset
is available at https://sites.google.com/qq.
com/chalearnfacespoofingattackdete/.

1. Introduction
Face anti-spoofing aims to determine whether the cap-

tured face of a face recognition system is real or fake.
With the development of deep convolutional neural network
(CNN), face recognition [2, 6, 34, 46, 52] has achieved near-
perfect recognition performance and already has been ap-
plied in our daily life, such as phone unlock, access control,
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Figure 1. The CASIA-SURF dataset. It is a large-scale and multi-
modal dataset for face anti-spoofing, consisting of 492, 522 im-
ages with 3 modalities (i.e., RGB, Depth and IR).

face payment, etc. However, these face recognition systems
are prone to be attacked in various ways, including print
attack, video replay attack and 2D/3D mask attack, which
cause the recognition result to become unreliable. There-
fore, face presentation attack detection (PAD) [3, 4] is a vi-
tal step to ensure that face recognition systems are in a safe
reliable condition.

Recently, face PAD algorithms [20, 32] have achieved
great performances. One of the key points of this success
is the availability of face anti-spoofing datasets [5, 7, 10,
32, 48, 53]. However, compared to the large existing image
classification [14] and face recognition [51] datasets, face
anti-spoofing datasets have less than 170 subjects and 60, 00
video clips, see Table 1. The limited number of subjects
does not guarantee for the generalization capability required
in real applications. Besides, from Table 1, another problem
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Dataset Year # of subjects # of videos Camera Modal types Spoof attacks

Replay-Attack [7] 2012 50 1200 VIS RGB Print, 2 Replay
CASIA-MFSD [53] 2012 50 600 VIS RGB Print, Replay

3DMAD [15] 2013 17 255 VIS/Kinect RGB/Depth 3D Mask
MSU-MFSD [48] 2015 35 440 Phone/Laptop RGB Print, 2 Replay

Replay-Mobile [10] 2016 40 1030 VIS RGB Print, Replay
Msspoof [9] 2016 21 4704∗ VIS/NIR RGB/IR Print

Oulu-NPU [5] 2017 55 5940 VIS RGB 2 Print, 2 Replay
SiW [32] 2018 165 4620 VIS RGB 2 Print, 4 Replay

CASIA-SURF (Ours) 2018 1000 21000 RealSense RGB/Depth/IR Print, Cut

Table 1. The comparison of the public face anti-spoofing datasets (∗ indicates this dataset only contains images, not video clips).

is the limited number of data modalities. Most of the current
datasets only have one modal (e.g., RGB), and the existing
available multi-modal datasets [15, 9] are scarce, including
no more than 21 subjects.

In order to deal with previous drawbacks, we intro-
duce a large-scale multi-modal face anti-spoofing dataset,
namely CASIA-SURF, which consists of 1, 000 subjects
and 21, 000 video clips with 3 modalities (RGB, Depth, IR).
It has 6 types of photo attacks combined by multiple oper-
ations, e.g., cropping, bending the print paper and stand-off
distance. Some samples of the dataset are shown in Fig-
ure 1. As shown in Table 1, our dataset has two main advan-
tages: (1) It is the largest one in term of number of subjects
and videos; (2) The dataset is provided with three modali-
ties (i.e., RGB, Depth and IR).

Another open issue in face anti-spoofing is how per-
formance should be computed. Many works [32, 20, 5,
10] adopt the attack presentation classification error rate
(APCER), bona fide presentation classification error rate
(BPCER) and average classification error rate (ACER) as
the evaluation metric, in which APCER and BPCER are
used to measure the error rate of fake or live samples, and
ACER is the average of APCER and BPCER scores. How-
ever, in real applications, one may be more concerned about
the false positive rate, i.e., attacker is treated as real/live one.
Inspired by face recognition [31, 45], the receiver operat-
ing characteristic (ROC) curve is introduced for large-scale
face anti-spoofing in our dataset, which can be used to se-
lect a suitable trade off threshold between false positive rate
(FPR) and true positive rate (TPR) according to the require-
ments of a given real application.

To sum up, the contributions of this paper are three-fold:
(1) We present a large-scale multi-modal dataset for face
anti-spoofing. It contains 1, 000 subjects, being at least 6
times larger than existing datasets, with three modalities.
(2) We introduce a new multi-modal fusion method to effec-
tively merge the involved three modalities, which performs
modal-dependent feature re-weighting to select the more in-
formative channel features while suppressing the less useful
ones for each modality. (3) We conduct extensive experi-
ments on the proposed CASIA-SURF dataset.

2. Related work

2.1. Datasets

Most of existing face anti-spoofing datasets only con-
tain the RGB modalitiy. Replay-Attack [7] and CASIA-
FASD [53] are two widely used PAD datasets. Even the
recently released SiW [32] dataset, collected with high
resolution image quality, only contains RGB data. With
the widespread application of face recognition in mo-
bile phones, there are also some RGB datasets recorded
by replaying face video with smartphone, such as MSU-
MFSD [48], Replay-Mobile [10] and OULU-NPU [5].

As attack techniques are constantly upgraded, some new
types of presentation attacks (PAs) have emerged, e.g.,
3D [15] and silicone masks [2]. These are more realistic
than traditional 2D attacks. Therefore, the drawbacks of
visible cameras are revealed when facing these realistic face
masks. Fortunately, some new sensors have been introduced
to provide more possibilities for face PAD methods, such
as depth cameras, muti-spectral cameras and infrared light
cameras. Kim et al. [23] aim to distinguish between the fa-
cial skin and mask materials by exploiting their reflectance.
Kose et al. [28] propose a 2D+3D face mask attacks dataset
to study the effects of mask attacks. However, associ-
ated data has not been made public. 3DMAD [15] is the
first publicly available 3D masks dataset, which is recorded
using Microsoft Kinect sensor and consists of Depth and
RGB modalities. Another multi-modal face PAD dataset
is Msspoof [9], containing visible (VIS) and near-infrared
(NIR) images of real accesses and printed spoofing attacks
with ≤ 21 objects.

However, existing datasets in the face PAD community
have two common limitations. First, they all have the lim-
ited number of subjects and samples, resulting in a poten-
tial over-fitting risk when face PAD algorithms are tested
on these datasets [7, 53]. Second, most of existing datasets
are captured by visible camera that only includes the RGB
modality, causing a substantial portion of 2D PAD methods
to fail when facing new types of PAs (3D and custom-made
silicone masks).



2.2. Methods

Face anti-spoofing has been studied for decades. Some
previous works [36, 43, 25, 1] attempt to detect the evidence
of liveness (i.e., eye-blinking). Another works are based
on contextual [37, 26] and moving [44, 13, 22] informa-
tion. To improve the robustness to illumination variation,
some algorithms adopt HSV and YCbCr color spaces [3, 4],
as well as Fourier spectrum [29]. All of these methods
use handcrafted features, such as LBP [35, 8, 50, 33],
HoG [50, 33, 40] and GLCM [40]. They are fast and achieve
a relatively satisfactory performance on small public face
anti-spoofing datasets.

Some fusion methods have been proposed to obtain a
more general countermeasure effective against a variation
of attack types. Tronci et al. [42] proposed a linear fusion
of frame and video analysis. Schwartz et al. [40] intro-
duced feature level fusion by using Partial Least Squares
(PLS) regression based on a set of low-level feature de-
scriptors. Other works [11, 27] obtained an effective fu-
sion scheme by measuring the level of independence of two
anti-counterfeiting systems. However, these fusion meth-
ods focus on score or feature level, not modality level, due
to the lack of multi-modal datasets.

Recently, CNN-based methods [16, 30, 38, 49, 32, 20]
have been presented in the face PAD community. They treat
face PAD as a binary classification problem and achieve re-
markable improvements in the intra-testing. Liu et al. [32]
designed a network architecture to leverage two auxiliary
information (Depth map and rPPG signal) as supervision.
Amin et al. [20] introduced a new perspective for solv-
ing the face anti-spoofing by inversely decomposing a spoof
face into the live face and the spoof noise pattern. However,
they exhibited a poor generalization ability on the cross-
testing due to the over-fitting to training data. This prob-
lem remains open, although some works [30, 38] adopted
transfer learning to train a CNN model from ImageNet [14].
These works show the need of a larger PAD dataset.

3. CASIA-SURF dataset

As commented, all existing datasets involve a reduced
number of subjects and just one visual modality. Although
the publicly available datasets have driven the development
of face PAD and continue to be valuable tools for this com-
munity, their limited size severely impede the development
of face PAD with higher recognition to be applied in prob-
lems such as face payment or unlock.

In order to address current limitations in PAD, we col-
lected a new face PAD dataset, namely the CASIA-SURF
dataset. To the best our knowledge, CASIA-SURF dataset
is currently the largest face anti-spoofing dataset, containing
1, 000 Chinese people in 21, 000 videos. Another motiva-
tion in creating this dataset, beyond pushing the research on

Figure 2. Six attack styles in the CASIA-SURF dataset.

face anti-spoofing, is to explore recent face spoofing detec-
tion models performance when considering a large amount
of data. In the proposed dataset, each sample includes 1
live video clip, and 6 fake video clips under different attack
ways (one attack way per fake video clip). In the different
attack styles, the printed flat or curved face images will be
cut eyes, nose, mouth areas, or their combinations. Finally,
6 attacks are generated in the CASIA-SURF dataset. Fake
samples are shown in Figure 2. Detailed information of the
6 attacks is given below.

• Attack 1: One person hold his/her flat face photo
where eye regions are cut from the printed face.

• Attack 2: One person hold his/her curved face photo
where eye regions are cut from the printed face.

• Attack 3: One person hold his/her flat face photo
where eyes and nose regions are cut from the printed
face.

• Attack 4: One person hold his/her curved face photo
where eyes and nose regions are cut from the printed
face.

• Attack 5: One person hold his/her flat face photo
where eyes, nose and mouth regions are cut from the
printed face.



Figure 3. Illustrative sketch of recordings setups in the CASIA-
SURF dataset.

• Attack 6: One person hold his/her curved face photo
where eyes, nose and mouth regions are cut from the
printed face.

3.1. Acquisition details

We used the Intel RealSense SR300 camera to capture
the RGB, Depth and Infrared (IR) videos simultaneously. In
order to obtain the attack faces, we printed the color pictures
of the collectors with A4 paper. During the video record-
ing, the collectors were required to do some actions, such
as turn left or right, move up or down, walk in or away from
the camera. Moreover, the face angle of performers were
asked to be less 300. The performers stood within the range
of 0.3 to 1.0 meter from the camera. The diagram of data
acquisition procedure is shown in Figure 3, where it shows
how the multi-modal data was recorded via Intel RealSence
SR300 camera.

Four video streams including RGB, Depth and IR im-
ages were captured at the same time, plus the RGB-Depth-
IR aligned images using RealSense SDK. The RGB, Depth,
IR and aligned images are shown in the first column of Fig-
ure 4. The resolution is 1280 × 720 for RGB images, and
640× 480 for Depth, IR and aligned images.

3.2. Data preprocessing

In order to create a challenging dataset, we removed the
background except face areas from original videos. Con-
cretely, as shown in Figure 4, the accurate face area is ob-
tained through the following steps. Given that we have a
RGB-Depth-IR aligned video clip for each sample, we first
used Dlib [24] to detect face for every frame of RGB and
RGB-Depth-IR aligned videos, respectively. The detected
RGB and aligned faces are shown in the second column of
Figure 4. After face detection, we applied the PRNet [17]
algorithm to perform 3D reconstruction and density align-
ment on the detected faces. The accurate face area (namely,
face reconstruction area) is shown in the third column of
Figure 4. Then, we defined a binary mask based on non-
active face reconstruction area from previous steps. The bi-

Figure 4. Preprocessing details of the three modalities of the
CASIA-SURF dataset.

nary masks of RGB and RGB-Depth-IR images are shown
in the fourth column of Figure 4. Finally, we obtained face
area of RGB image via pointwise product between RGB im-
age and RGB binary mask. The Depth (or IR) area can be
calculated via the pointwise product between Depth (or IR)
image and RGB-Depth-IR binary mask. The face images
of three modalities (RGB, Depth, IR) are shown in the last
column of Figure 4.

3.3. Statistics

Table 2 presents the main statistics of the proposed
CASIA-SURF dataset:

(1) There are 1, 000 subjects and each one has a live
video clip and six fake video clips. Data contains variabil-
ity in terms of gender, age, glasses/no glasses, and indoor
environments.

(2) Data is split in three sets: training, validation and test-
ing. The training, validation and testing sets have 300, 100
and 600 subjects, respectively. Therefore, we have 6, 300
(2, 100 per modality), 2, 100 (700 per modality), 12, 600
(4, 200 per modality) videos for its corresponding set.

Training Validation Testing Total
# Obj. 300 100 600 1000

# Videos 6,300 2,100 12,600 21000
# Ori. img. 1,563,919 501,886 3,109,985 5,175,790

# Samp. img. 151,635 49,770 302,559 503,964
# Crop. img. 148,089 48,789 295,644 492522

Table 2. Statistical information of the proposed CASIA-SURF
dataset.



Figure 5. Gender and age distribution of the CASIA-SURF
dataset.

(3) From original videos, there are about 1.5 million, 0.5
million, 3.1 million frames in total for training, validation,
and testing sets, respectively. Owing to the huge amount
of data, we select one frame out of every 10 frames and
formed the sampled set with about 151K, 49K, and 302K
for training, validation and testing sets, respectively.

(4) After data prepossessing in Sec. 3.2 and removing
non-detected face poses with extreme lighting conditions,
we finally obtained about 148K, 48K, 295K frames for
training, validation and testing sets on the CASIA-SURF
dataset, respectively.

All subjects are Chinese, and the information of gen-
der statistics is shown in the left side of Figure5. It shows
that the ratio of female is 56.8% while the ratio of male is
43.2%. In addition, we also show age distribution of the
CASIA-SURF dataset in the right side of Fig 5. One can
see a wide distribution of age ranges from 20 to more than
70 years old, while most of subjects are under 70 years old.
On average, the range of [20, 30) ages is dominant, being
about 50% of all the subjects.

3.4. Evaluation protocol

Intra-testing. For the intra-testing protocol, the live faces
and Attacks 4, 5, 6 are used to train the models. Then, the
live faces and Attacks 1, 2, 3 are used as the validation and
testing sets. The validation set is used for model selection
and the testing set for final evaluation. This protocol is used
for the evaluation of face anti-spoofing methods under con-
trolled conditions, where training and testing sets belong
to the CASIA-SURF dataset. The main reason behind this
selection of attack types in the training and testing sets is
to increase the difficulty of the face anti-spoofing detection
task. In this experiment, we show that there is still a big
space to improve the performance under the ROC evalua-
tion metric, especially, how to improve the true positive rate
(TPR) at the small value of false positive rate (FPR), such
as FPR=10−5.
Cross-testing. The cross-testing protocol uses the training
set of CASIA-SURF to train the deep models, which are
then fine-tuned on the target training dataset (e.g., the train-

ing set of SiW [32]). Finally, we test the fine-tuned model
on the target testing set (e.g., the testing set of SiW [32]).
The cross-testing protocol aims at simulating performance
in real application scenarios involving high variabilities in
appearance and having a limited number of samples to train
the model.

4. Method
Before showing some experimental analysis on the

dataset, we first built a strong baseline method. We aim
at finding a straightforward architecture that provides good
performance in our CASIA-SURF dataset. Thus, we de-
fine the face anti-spoofing problem as a binary classification
task (fake v.s real) and conduct the experiments based on the
ResNet-18 [18] classification network. ResNet-18 consists
of five convolutional blocks (namely res1, res2, res3, res4,
res5), a global average pooling layer and a softmax layer,
which is a relatively shallow network with high classifica-
tion performance.

4.1. Naive halfway fusion

CASIA-SURF is characterized by multi-modality (i.e.,
RGB, Depth, IR) and a key issue is how to fuse the com-
plementary information between the three modalities. We
use a multi-stream architecture with three subnetworks to
study the dataset modalities, in which RGB, Depth and IR
data are learnt separately by each stream, and then shared
layers are appended at a point to learn joint representations
and perform cooperated decisions. The halfway fusion is
one of the commonly used fusion methods, which combines
the subnetworks of different modalities at a later stage, i.e.,
immediately after the third convolutional block (res3) via
the feature map concatenation. In this way, features from
different modalities can be fused to perform classification.
However, direct concatenating these features cannot make
full use of the characteristics between different modalities.

4.2. Squeeze and excitation fusion

The three modalities provide with complementary infor-
mation for different kind of attacks: RGB data have rich
appearance details, Depth data are sensitive to the distance
between the image plane and the corresponding face, and
the IR data measure the amount of heat radiated from a
face. Inspired by [19], we propose the squeeze and excita-
tion fusion method that uses the “Squeeze-and-Excitation”
branch to enhance the representational ability of the differ-
ent modalities’ feature by explicitly modelling the interde-
pendencies between their convolutional channels.

As shown in Figure 6, our squeeze and excitation fusion
method has a three-stream architecture and each subnet-
work is feed with the image of different modalities. The
res1, res2 and res3 blocks from each stream extract fea-
tures from different modalities. After that, these features



Figure 6. Diagram of the proposed fusion method. Each stream
uses ResNet-18 as backbone, which has five convolution blocks
(i.e., res1, res2, res3, res4, res5). The res1, res2, and res3 blocks
extract features of each modal data (i.e., RGB, Depth, IR). Then,
these features from different modalities are fused via the squeeze
and excitation fusion module. Next, the res4 and res5 block are
shared to learn more discriminative features from the fused one.
GAP means the global average pooling.

are fused via the squeeze and excitation fusion module. This
module newly adds a branch for each modal and the branch
is composed of one global average pooling layer and two
consecutive fully connected layers. The squeeze and exci-
tation fusion module performs modal-dependent feature re-
weighting to select the more informative channel features
while suppressing less useful features from each modality.
These re-weighted features are concatenated to define the
fused multi-modal feature set.

5. Experiments

This section describes the implementation details, evalu-
ates the effectiveness of the proposed fusion method, and
presents a series of experiments to analyze the CASIA-
SURF dataset in terms of modalities and number of sub-
jects. Finally, the generalization capability of a base-
line model trained with the CASIA-SURF dataset is
evaluated/fine-tuned when tested on standard face anti-
spoofing benchmarks.

5.1. Implementation details

We resize the cropped face region to 112 × 112, and
use random flipping, rotation, resizing, cropping and color
distortion for data augmentation. For the CASIA-SURF
dataset analyses, all models are trained for 2, 000 iterations
with 0.1 initial learning rate, and decreased by a factor of 10
after 1, 000 and 1, 500 iterations. All models are optimized
via Stochastic Gradient Descent (SGD) algorithm on 2 TI-
TAN X (Maxwell) GPU with a mini-batch 256. Weight de-
cay and momentum are set to 0.0005 and 0.9, respectively.

5.2. Model analysis

We carry out an ablation experiment on the CASIA-
SURF dataset to analyze our proposed fusion method. For
evaluation, we use the same settings except for the fusion
strategy to examine how the proposed method affects fi-
nal performance. From the results listed in Table 3, it
can be observed that the proposed fusion method achieves
TPR=96.7%, 81.8%, 56.8% @FPR=10−2, 10−3, 10−4, re-
spectively, which are 7.6%, 48.2% and 39.0% higher than
the halfway fusion method, especially at FPR=10−3, 10−4.
Besides, the APCER, NPCER and ACER are also improved
from 5.6%, 3.8% and 4.7% to 3.8%, 1.0% and 2.4%, re-
spectively. Compared with halfway fusion method, we
show the effectiveness of the proposed squeeze and exci-
tation fusion method.

5.3. Dataset analysis

The proposed CASIA-SURF dataset has three modalities
with 1, 000 subjects. In this subsection, we analyze modal-
ities complementarity when training with a large number of
subjects.

Effect on the number of modalities. As shown in
Table 4, only using the prevailing RGB data, the results
are TPR=49.3%, 16.6%, 6.8% @FPR=10−2, 10−3, 10−4,
8.0% (APCER), 14.5% (NPCER) and 11.3% (ACER), re-
spectively. In contrast, simply using the IR data, the
results can be improved to TPR=65.3%, 26.5%, 10.9%
@FPR=10−2, 10−3, 10−4, 1.2% (NPCER) and 8.1%
(ACER), respectively. Notably, from the numbers, one can
observe that the APCER of the IR data increases by a large
margin, from 8.0% to 15.0%. Among these three modal-
ities, the Depth data achieves the best performance, i.e.,
TPR=88.3%, 27.2%, 14.1% @FPR=10−2, 10−3, 10−4, and
5.0% (ACER), respectively. By fusing the data of arbi-
trary two modalities or all the three ones, we observe an
increase in performance. Specifically, the best results are
achieved by fusing all the three modalities, improving the
best results of single modality from TPR=88.3%, 27.2%,
14.1% @FPR=10−2, 10−3, 10−4, 5.1% (APCER), 1.2%
(NPCER) and 5.0% (ACER) to TPR=96.7%, 81.8%, 56.8%
@FPR=10−2, 10−3, 10−4, 3.8% (APCER), 1.0% (NPCER)
and 2.4% (ACER), respectively.

Effect on the number of subjects. As described in [41],
there is a logarithmic relation between the amount of train-
ing data and the performance of deep neural network meth-
ods. To quantify the impact of having a large amount of
training data in PAD, we show how the performance grows
as training data increases in our benchmark. For this pur-
pose, we train our baselines with different sized subsets of
subjects randomly sampled from the training set. This is,
we randomly select 50, 100 and 200 from 300 subjects for



Method
TPR (%)

APCER (%) NPCER (%) ACER (%)
@FPR=10−2 @FPR=10−3 @FPR=10−4

Halfway fusion 89.1 33.6 17.8 5.6 3.8 4.7

Proposed fusion 96.7 81.8 56.8 3.8 1.0 2.4
Table 3. Effectiveness of the proposed fusion method. All models are trained in the CASIA-SURF training set and tested in the testing set.

Modal
TPR (%)

APCER (%) NPCER (%) ACER (%)
@FPR=10−2 @FPR=10−3 @FPR=10−4

RGB 49.3 16.6 6.8 8.0 14.5 11.3

Depth 88.3 27.2 14.1 5.1 4.8 5.0

IR 65.3 26.5 10.9 15.0 1.2 8.1

RGB&Depth 86.1 49.5 10.6 4.3 5.6 5.0

RGB&IR 79.1 50.9 26.1 14.4 1.6 8.0

Depth&IR 89.7 71.4 24.3 1.5 8.4 4.9

RGB&Depth&IR 96.7 81.8 56.8 3.8 1.0 2.4
Table 4. Effect on the number of modalities. All models are trained in the CASIA-SURF training set and tested on the testing set.

Figure 7. ROC curves of different training set size in the CASIA-
SURF dataset.

training. Figure7 shows the ROC curves for different num-
ber of subjects. We can see that when FPR is between 0
to 10−4, the TPR is better when more subjects are used for
training. Specially, when FPR=10−2, the best TPR of 300
subjects is higher about 7% than the second best TPR result
(ID=200), showing the more data is used, the better perfor-
mance will be. In Figure 8, we also provide with the per-
formance of APCER when a different number of subjects is
used for training. The performance of ACER (average value
of the fake and real error rates) is getting better when more
subjects are considered.

Figure 8. Performance vs. training set size in the CASIA-SURF
dataset.

5.4. Generalization capability

In this subsection, we evaluate the generalization capa-
bility of a model trained using the proposed dataset when
tested/fine-tuned on the SiW [32] and CASIA-MFSD [53]
datasets. The CASIA-SURF dataset contains not only
RGB images, but also the corresponding Depth informa-
tion, which is indeed beneficial for Depth supervised face
anti-spoofing methods [32, 47]. Thus, we adopt FAS-TD-
SF [47] as our baseline for the experiments.
SiW dataset. Two state-of-the-art methods (FAS-BAS [32]
and FAS-TD-SF [47]) on the SiW dataset are selected for
comparison. We use the RGB and Depth images from the
proposed CASIA-SURF dataset to pre-train the FAS-TD-



SF CNN model, and then fine-tune it in the SiW dataset.
Table 5 shows the comparison of these three methods. FAS-
TD-SF generally achieves better performance than FAS-
BAS, while our pre-trained FAS-TD-SF in CASIA-SURF
(FAS-TD-SF-CASIA-SURF) can further improve the per-
formance of PAD on both protocols1 1, 2 and 3. Concretely,
the performance of ACER is superior about 0.25%, 0.14%
and 1.38% when using the proposed CASIA-SURF dataset
in Protocol 1, 2, and 3, respectively. The improvement indi-
cates that pre-training in the CASIA-SURF dataset supports
the generalization on data containing variabilities in terms
of (1) face pose and expression, (2) replay attack mediums,
and (3) cross presentation attack instruments (PAIs), such
as from print attack to replay attack. Interestingly, it also
demonstrates our dataset is also useful to be used for pre-
trained models when replay attack mediums cross PAIs.

Prot. Method APCER(%) BPCER(%) ACER(%)

1
FAS-BAS [32] 3.58 3.58 3.58

FAS-TD-SF [47] 1.27 0.83 1.05
FAS-TD-SF-CASIA-SURF 1.27 0.33 0.80

2
FAS-BAS [32] 0.57±0.69 0.57±0.69 0.57±0.69

FAS-TD-SF [47] 0.33±0.27 0.29±0.39 0.31±0.28
FAS-TD-SF-CASIA-SURF 0.08±0.17 0.25±0.22 0.17±0.16

3
FAS-BAS [32] 8.31±3.81 8.31±3.80 8.31±3.81

FAS-TD-SF [47] 7.70±3.88 7.76±4.09 7.73±3.99
FAS-TD-SF-CASIA-SURF 6.27±4.36 6.43±4.42 6.35±4.39

Table 5. Evaluation results in three protocols of SiW.

CASIA-MFSD dataset. Here, we perform cross-testing
experiments on the CASIA-MFSD dataset to further evalu-
ate the generalization capability of models trained with the
proposed dataset. State-of-the-art models [12, 1, 39, 49]
used for comparison used Replay-Attack [7] for training.
We then train the FAS-TD-SF [47] in the SiW and CASIA-
SURF datasets. Results in Table 6 show that the model
trained in the CASIA-SURF dataset performs the best.

Method Training Testing HTER (%)

Motion [12] Repaly-Attack CASIA-MFSD 47.9
LBP [12] Repaly-Attack CASIA-MFSD 57.6

Motion-Mag [1] Repaly-Attack CASIA-MFSD 47.0
Spectral cubes [39] Repaly-Attack CASIA-MFSD 50.0

CNN [49] Repaly-Attack CASIA-MFSD 45.5
FAS-TD-SF [47] SiW CASIA-MFSD 39.4
FAS-TD-SF [47] CASIA-SURF CASIA-MFSD 37.3

Table 6. Cross testing results on different cross-testing protocols.

6. Discussion
As shown in Table 3 and Table 4, accurate results were

achieved in the CASIA-SURF dataset for traditional met-
rics, e.g. APCER=3.8%, NPCER=1.0%, ACER=2.4%.

1For more details of the protocols, please refer to [32].

However, this shows an error rate of fake samples of 3.8%
and an error rate of real samples of 1.0%. Thus, 3.8 fake
samples from 100 attackers will be treated as real ones. This
is below the accuracy requirements of real applications, e.g.,
face payment and phone unlock. Table 5 also demonstrates
a similar performance in the SiW dataset. In order to push
the state-of-the-art, in addition to large datasets, new evalu-
ation metrics would be beneficial. The ROC curve is widely
used in academic and industry for face recognition [31]. We
consider the ROC curve to be also appropriated to be used
as evaluation metric for face anti-spoofing.

As shown in Table 3 and Table 4, although the value of
ACER is very promising, the TPR at different values of FPR
is dramatically changing, being far from the standard re-
quired in real applications, e.g. when FPR=10−4 the TPR
is 56.8%. Similar to the evaluation of face recognition al-
gorithms, the TPR when FPR is about 10−4 or 10−5 would
be meaningful for face anti-spoofing [21].

7. Conclusion

In this paper, we presented and released a large-scale
multi-modal face anti-spoofing dataset. The CASIA-SURF
dataset is the largest one in terms of number of subjects,
data samples, and number of visual data modalities. We
believe this dataset will push the state-of-the-art in face
anti-spoofing. Owing to the large-scale learning, we found
that traditional evaluation metrics in face anti-spoofing (i.e.,
APCER, NPECR and ACER) did not clearly reflect the util-
ity of models in real application scenarios. In this regard,
we proposed the usage of the ROC curve as the evaluation
metric for large-scale face anti-spoofing evaluation. Fur-
thermore, we proposed a multi-modal fusion method, which
performs modal-dependent feature re-weighting to select
the more informative channel features while suppressing
the less informative ones. Extensive experiments have been
conducted on the CASIA-SURF dataset, showing high gen-
eralization capability of models trained on the proposed
dataset and the benefit of using multiple visual modalities.
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André Anjos, and Sébastien Marcel. Complementary coun-
termeasures for detecting scenic face spoofing attacks. In
ICB, 2013.

[28] Neslihan Kose and Jean-Luc Dugelay. Countermeasure for
the protection of face recognition systems against mask at-
tacks. In FG, 2013.

[29] Jiangwei Li, Yunhong Wang, Tieniu Tan, and Anil K Jain.
Live face detection based on the analysis of fourier spectra.
Biometric Technology for Human Identification, 2004.

[30] Lei Li, Xiaoyi Feng, Zinelabidine Boulkenafet, Zhaoqiang
Xia, Mingming Li, and Abdenour Hadid. An original face
anti-spoofing approach using partial convolutional neural
network. In IPTA, 2016.

[31] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha
Raj, and Le Song. Sphereface: Deep hypersphere embedding
for face recognition. In CVPR, 2017.

[32] Yaojie Liu, Amin Jourabloo, and Xiaoming Liu. Learning
deep models for face anti-spoofing: Binary or auxiliary su-
pervision. In CVPR, 2018.

[33] Jukka Maatta, Abdenour Hadid, and Matti Pietikainen. Face
spoofing detection from single images using texture and local
shape analysis. IET biometrics, 2012.

[34] Amir Mohammadi, Sushil Bhattacharjee, and Sébastien
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