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Abstract

Decoupling spatiotemporal representation refers to
decomposing the spatial and temporal features into
dimension-independent factors. Although previous RGB-D-
based motion recognition methods have achieved promis-
ing performance through the tightly coupled multi-modal
spatiotemporal representation, they still suffer from (i) op-
timization difficulty under small data setting due to the
tightly spatiotemporal-entangled modeling; (ii) informa-
tion redundancy as it usually contains lots of marginal
information that is weakly relevant to classification; and
(iii) low interaction between multi-modal spatiotemporal
information caused by insufficient late fusion. To allevi-
ate these drawbacks, we propose to decouple and recou-
ple spatiotemporal representation for RGB-D-based mo-
tion recognition. Specifically, we disentangle the task of
learning spatiotemporal representation into 3 sub-tasks: (1)
Learning high-quality and dimension independent features
through a decoupled spatial and temporal modeling net-
work. (2) Recoupling the decoupled representation to es-
tablish stronger space-time dependency. (3) Introducing
a Cross-modal Adaptive Posterior Fusion (CAPF) mech-
anism to capture cross-modal spatiotemporal information
from RGB-D data. Seamless combination of these novel
designs forms a robust spatiotemporal representation and
achieves better performance than state-of-the-art methods
on four public motion datasets. Our code is available at
https://github.com/damo-cv/MotionRGBD.

1. Introduction
The RGB-D-based motion recognition has attracted

much attention in computer vision due to its broad applica-

tion scenarios such as video surveillance and human-object
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Figure 1. Illustration of the proposed multi-modal spatiotempo-

ral representation learning framework. The RGB-D-based motion

recognition can be described as cross-modal representation inter-

active learning based on decoupled and recoupled spatiotemporal

information. Wherein DSN and DTN represent decoupled spatial

and decoupled temporal feature learning networks, respectively;

And
⊕

represents the element-wise add operation.

interfaces. Recently, the CNN and RNN based methods

greatly improve the performance of recognition on both

gesture [1, 27, 37, 43, 45] and action [7, 17, 38, 41] through

fully exploring the color and depth cues. Meanwhile, in-

spired by the transformer scaling success in vision tasks,

Transformer-based methods [10,21] also achieve surprising

results on RGB-D-based motion recognition by introducing

the cross-attention module for multi-modality fusion.

Although these works make great progress, we find they

are still problematic in the following three aspects. (i) Op-
timization difficulty exists in the case of limited RGB-D

data due to the tightly spatiotmporal entangled modelling

(e.g., C3D [33] and I3D [3]). (ii) Redundant informa-
tion is hard to deal with in the entangled space-time space.

To address the above two issues, some decoupled networks

(i.e., 2D CNN+LSTM/Transformer [19,34]) are proposed to

learn the spatiotemporal independent representation. How-

ever, we argue that these methods are not conducive to com-

pact representation as they somewhat weaken or even de-
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Figure 2. Illustration of proposed decoupling and recoupling saptiotemporal representation learning network. The whole network mainly

consists of a decoupled spatial and temporal representation learning networks namely DSN and DTN, as well as a spatiotemporal recoupling

module (RCM). The FRP indicates a fast regional positioning module; SMS and TMS indicate the space- and time-centric multi-scale

Inception Module respectively.
⊙

,
⊗

and
⊕

indicate element-wise product, 1D convolution and element-wise add operation respectively.

stroy the original spatiotemporal coupling structure. Con-

sidering that a certain number of human action classes have

strong correlations between time and space, the recoupling

process after spatiotemporal decoupling is still necessary.

(iii) Insufficient interaction occurs between multi-modal

spatiotemporal information. Several works [45, 47] adopt

independent branches for unimodal spatiotemporal repre-

sentations learning followed by late fusion, resulting in in-

sufficient cross-modal information communication. Thus,

it is still a challenge to explore high quality multi-modal

spatiotemporal features.

Given the aforementioned concerns, as illustrated in Fig-

ure 1, we introduce a new method of multi-modal spa-

tiotemporal representation learning for RGB-D-based mo-

tion recognition. It mainly consists of a decoupled spatial

representation learning network (DSN), a decoupled tem-

poral representation learning network (DTN) and a cross-

modal adaptive posterior fusion module (CAPF). For each

unimodal branch, as shown in Figure 2, we propose a

decoupling and recoupling spatiotemporal feature learn-

ing method, wherein a spatiotemporal recoupling module

(RCM) is designed as a bonding of DSN and DTN. RCM

acts as feature selection for DSN and knowledge integra-

tion for DTN. The entire framework can be decomposed

into 3 steps: (1) Spatiotemporal decoupling learning. In

the DSN, the video clips are first fed into stack of inception-

based spatial multi-scale features learning (SMS) modules

to extract hierarchical spatial features. Meanwhile, they are

also input into a bypath network, called fast regional po-

sitioning module (FRP), to generate visual guidance map,

which guides the network to focus on local important ar-

eas in the video frame. Then the integrated spatial features

from SMS and FRP are fed into RCM for feature selec-

tion. After that, we sample several sub-sequences at dif-

ferent frame rates from the enhanced spatial features as in-

put to the DTN. The DTN is configured as a multi-branch

structure with an inception-based temporal multi-scale layer

(TMS) and multiple Transformer blocks for hierarchical lo-

cal fine-grained and global coarse-grained temporal feature

learning. (2) Spatiotemporal recoupling learning. To

rebuild the space-time interdependence, a self-distillation-

based recoupling strategy is developed. As shown by the red

dashed line in Figure 2, the recoupling method is designed

as an inner loop optimization mechanism to distill the inter-

frame correlations from time domain into the space domain,

to enhance the quality of the spatial features via RCM. (3)

Cross-modal interactive learning. For multi-modal repre-

sentation learning from RGB-D data, as shown in Figure 1,

we propose an interactive cross-modal spatiotemporal rep-

resentation learning method. Specifically, the cross-modal

spatial features derived from unimodal branches firstly in-

teract at the spatial level and are mapped to a joint spatial

representation. Then it is separately integrated with the two

unimodal spatial feature streams through the residual struc-

ture. After that, the two spatial feature streams are input

into their respective temporal modeling networks to capture

temporal features. Similar to the spatial feature interaction,

a joint temporal representation can also be obtained through

interaction at the temporal level. Combined with the joint

temporal representation, the two temporal feature streams

are fed into the CAPF, which is based on a multi-loss joint

optimization mechanism, to conduct deep multi-modal rep-

resentation fusion.

Through the above design, our method not only effec-

tively achieves the spatiotemporal information decoupling

and recoupling learning within each modality, but also re-

alizes the deep communication and fusion of multi-modal

spatiotemporal information. The proposed method achieves

state-of-the-art performance on four public RGB+D ges-

ture/action datasets, namely NvGesture [26], Chalearn
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IsoGD [36], THU-READ [32], and NTU-RGBD [28].

2. Related Work
2.1. Motion Recognition based on RGB-D Data

Recently, with the availability of low-cost RGB-D sen-

sors, RGB-D-based motion recognition has attracted exten-

sive attention. To effectively encode the robust multi-modal

spatiotemporal information for motion recognition, Zhu et
al. [46] presents a pyramidal-like 3D convolutional network

structure for spatiotemporal representation extraction and

fusion. Kong et al. [20] propose to compress and project the

RGB-D data into a shared space to learn cross-modal fea-

tures for effective action recognition. Yu et al. [43] employ

NAS to search for modal-related network structures and op-

timal multi-modal information transmission path for RGB-

D data. Different from the modal-separated multi-branch

networks, scene flow is adopted in [39] for compact RGB-

D representation learning. Wang et al. [41] propose to use a

single network c-ConvNet for multi-modal spatiotemporal

representation learning and aggregation. Unlike previous

methods that interact with the cross-modal information on

coupled spatiotemporal information, we focus on the inter-

action of multi-modal features in two independent dimen-

sions of space and time.

2.2. Decoupled Spatiotemporal Feature Learning

Considering the importance of decoupled spatiotempo-

ral feature learning in sequence, Shi et al. [31] present a de-

coupled spatiotemporal attention network (DSTA-Net) for

skeleton-based action recognition. Liu et al. [22] present

a decoupled spatiotemporal Transformer (DSTT) architec-

ture to improve video inpainting tasks. He et al. [14] pro-

pose an effective spatiotemporal network StNet, which em-

ploys separated channel-wise and temporal-wise convolu-

tion operations for decoupled local and global representa-

tion learning. Zhang et al. [44] present a hierarchically

decoupled spatiotemporal contrastive learning method for

self-supervised video representation learning. They capture

the spatial and temporal features by decoupling the learning

objective into two contrastive sub-tasks, and perform it hier-

archically to encourage multi-scale understanding. In con-

trast, in this work, we target to learn recoupled features due

to strong correlations between time and space for some hu-

man actions. Thus, a distillation-based recoupling process

is introduced on the decoupled spatiotemporal features.

3. Proposed Method
In this paper, we assume the spatiotemporal represen-

tation can be decomposed into two sub-domains: the spa-

tial domain that correlates with the visual information, and

the temporal domain that describes the time-related con-

cept. Based on this, for unimodal spatiotemporal represen-

tation learning, we first decouple the spatiotemporal mod-

eling process to learn domain-independent representations

(Sec. 3.1). Then a recoupling method is introduced based

on the inner loop optimization mechanism during the train-

ing stage (Sec. 3.2), to strengthen the spatiotemporal con-

nection. For multi-modal features interactive learning, we

first separately integrate the cross-modal spatiotemporal in-

formation into the spatial and temporal domains, and then

employ an adaptive posterior fusion mechanism to further

fuse the multi-modal features (Sec.3.3).

3.1. Decoupling Spatiotemporal Representation

3.1.1 Decoupled Spatial Feature Learning (DSN)

As shown in Figure 2, the DSN is composed of fast re-

gional positioning module (FRP) and stack of inception-

based spatial multi-scale features learning (SMS) modules.

Let [I1, I2, . . . , IT ] denote the input with length T sampled

from the video. It is fed into the SMS and FRP modules

in parallel to capture the hierarchical spatial features and

generate visual guidance maps.

SMS Module. The SMS module is composed of a space-

centric 3D Inception Module1 [3] and a Max Pooling layer.

It extracts the multi-scale features of m-th frame at layer

l-th by:

f l
m =

{
Maxpool(CS−Inc(Im,W )), l = 1

Maxpool(CS−Inc(f
l−1
m ,W )), l > 1

(1)

where f l−1
m represents the output of the previous layer;

CS−Inc(·,W ) indicates the Inception Module with learn-

able parameter matrix W ; Maxpool is the Max Pooling

layer. Meanwhile, to guide each SMS module to focus on

local important areas in the image, a visual guidance map

is embedded in parallel to it to further enhance its visual

perception, which is the proposed FRP module.

Figure 3. Overview of the proposed fast regional positioning mod-

ule FRP. In each sliding window, the FRP module locates im-

portant areas in the last frame according to the successive video

frames before it.

FRP Module. The FRP module is designed to generate

the visual guidance map to rapidly locate important areas

1The size of the convolution kernel in the temporal dimension is 1.
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in an image for motion recognition. The visual guidance

map is obtained directly by combining static and dynamic

guidance maps. Specifically, as shown in Figure 3, within

a sliding window from the n-th to the m-th frame, we first

calculate the dynamic image DI(n,m) [45]:

DI(n,m) =DI(n− 1,m− 1) + (m− n)×

(In−1 + Im)− 2

m−1∑
l=n

Il, s.t. m > n
(2)

where DI(n−1,m−1) represents the dynamic image from

the previous sliding window. Then the dynamic guidance

map on m-th frame can be obtained by:

Dm = δ(DI(n,m))× λ (3)

where δ and λ indicate activation function and signal ampli-

fication factor respectively, herein we use GELU [15] and

λ = 2 in all of experiments. However, we find that Dm is

sensitive to lighting as it only considers the motion informa-

tion between multiple frames. To mitigate this problem, we

introduce the static guidance map Sm, which can be defined

as:

Sm = dilate(erode(D̂m), (k × k)))

D̂m =

{
Dm,(i,j) Dm,(i,j) >= Dm,mean

0 otherwise

(4)

where dilate(erode(·, (k × k))) indicates the dilation and

erosion operations with a kernel size of k × k in binary

mathematical morphology. D̂m is an attention matrix, in

which all elements except for these higher than the mean

value are set to zero, as we empirically observe that the re-

sponse value at the region affected more by lighting is gen-

erally below average. After that, combining the Eq.3 and 4,

the visual guidance map of m-th frame at the l-th layer of

the network can be derived by:

Gl
m = Maxpool((Dm + Sm)× Sm) (5)

where the Max Pooling operation is used to scale the size of

the current guidance map Gl
m to match the feature map f l

m.

In addition, we also perform the normalization and align-

ment operations for the guidance map Gl
m, which have been

discussed in detail in the supplementary material. Finally,

the spatial features O ∈ R
T×d with length T and dimension

d output from the DSN can be simply formulated as:

O = [Ol
1, O

l
2, . . . , O

l
T ], ∀l = 1, 2, . . . ,M

s.t. Ol
m = (f l

m �Gl
m)⊗ f l

m + f l
m

(6)

where M represents the number of total network layers used

in DSN; � and ⊗ represent element-wise product and 1D

convolution operations respectively; And Ol
m means the re-

sult of fusing the raw feature stream f l
m with the visual

guidance map Gl
m. It is then enhanced via RCM module

for decoupled temporal representation learning.

3.1.2 Decoupled Temporal Feature Learning (DTN)

The temporal representation learning network DTN takes

the enhanced spatial features Ô ∈ R
T×d/2 (formal defini-

tion in Sec.3.2) as the input. As shown in Figure 2, the DTN

is configured as a multi-branch and two-stage structure to

progressively learn the hierarchical temporal representation

at local fine-grained level and global coarse-grained level.

Specifically, for a single sub-branch k, we first sample a

sub-sequence of features Ôk ∈ R
Tn×d/2 of length Tn from

Ô by a discrete sampling strategy:

Ôk = {Ôτ |τ = R[� T

Tn
�×t−1, � T

Tn
�×t], t = 1, 2, . . . , Tn}

(7)

where the R[a, b] represents randomly selecting an integer

x, s.t. a � x � b; Ôk serves as the input of temporal multi-

scale features learning module (TMS).

TMS Module. The TMS is composed of a time-centric

3D Inception Module2 CT−Inc(·,Wk) and Max Pooling

layer. We only use one layer TMS to capture the local fine-

grained spatial features ÔL
k :

ÔL
k = Maxpool(CT−Inc(Ôk,Wk)) (8)

After that, ÔL
k is fed into stack of Transformer blocks to

learn the coarse-grained temporal representation.

Transformer block. To reduce the redundant marginal

information in captured temporal features, we utilize a

Transformer structure based on k-NN multi-head self-

attention layer [42]. Thus the modeling process of each

Transformer block can be formulated as:

ÔG
k = MLP(LN(MSAkNN (ÔL

k ))) + ÔG−1
k (9)

where ÔG−1
k indicates the output feature of the previous

layer; MSAkNN (·) indicates the k-NN multi-head self-

attention layer and LN represents layer normalization. Fur-

thermore, to avoid overfitting to one of the sub-branches, we

introduce a temperature parameter τ to control the sharp-

ness of the output distribution of each sub-branch and im-

pose a constraint loss on it. Therefore, the output of the

DTN network can be formulated as:

OCLS =

K∑
k=1

MLP(OCLS
k )/τ , ∀k = 1, 2, 3, . . . ,K (10)

where OCLS is the class token vector embedded in the

Transformer block and K indicates the number of sub-

branches. τ follows a cosine schedule from 0.04 to 0.07

during the training. We analytically demonstrate in Sec.5.1

that the tactics of k-NN Attention, sharpness and multi-loss

can bring performance gains for the proposed network.

2The size of the convolution kernel in the spatial dimension is 1× 1.
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Figure 4. Overview of the proposed recoupling module RCM.

Based on spatial features O from DSN and temporal fea-

tures OCLS from DTN, we propose a recoupling strategy

to strengthen the space-time connection during training, be-

cause the spatiotemporal decoupled learning method weak-

ens the original coupled structure.

3.2. Recoupling Spatiotemporal Representation

The recoupling strategy is developed to rebuild the

space-time interdependence, which reversely applies the

distilled inter-frame correlations from time domain into the

space domain through a self-distillation-based inner loop

optimization mechanism during the training. Specifically,

the spatial feature stream O ∈ R
T×d derived from the spa-

tial features learning network DSN is first linearly mapped

into a low-dimensional space. Then the mapped features

Ō ∈ R
T×d/2 is transposed and fed into the recoupling mod-

ule RCM.

RCM module. The RCM module is configured as dual

pathway to enhance the spatial features from the X (fea-

ture dimension) and Y (sequence dimension) directions, as

shown in Figure 4. For X direction (intra-frame), inspired

by self-attention [8], we utilize a set of learnable matrices:

WQ ∈ R
T×T and WK ∈ R

T×T to calculate the attention

map AX (Note that if multiple heads are configured, they

will be concatenated and mapped to a fixed dimension).

Q = ŌTWQ, K = ŌTWK ,

AX = δ(GAP(
QKT

√
d

)), AX ∈ R
1×d/2

(11)

where Q and K denote the queries and keys, δ is the Sig-

moid activation function, and GAP indicates the adaptive

global average pooling operation. The attention map AX

describes the correlation of the intra-frame in the sequence.

For Y direction (inter-frame), the Ō is first compressed

along the channel dimension through GAP operation to ob-

tain a feature vector with a dimension of 1 × T . Then it

passes through an MLP block with two hidden layers to ob-

tain a weight embedding Wembed.

Wembed = MLP(GAP(ŌT )), Wembed ∈ R
1×T (12)

Figure 5. Adaptive fusion module CAPF. LC , LB , LM indicate

cross entropy, binary cross entropy and mean square error loss

functions, respectively; traget represents ground-truth; E and D

indicate the Encoder and Decoder respectively.

Finally, it is combined with a Sigmoid activation function to

describe the correlation of the inter-frame in the sequence.

AY = δ(Wembed), AY ∈ R
1×T (13)

However, the MLP layer cannot effectively learn the

inter-frame correlation from the captured spatial features

Ō. Therefore, we employ a self-distillation loss function

Cd to introduce additional supervision for the MLP block to

distill inter-sequence correlation knowledge from temporal

domain into Wembed. The distillation process can be for-

mulated as:

Cd = Ld(CLS,F(Wembed)), CLS =
K∑

k=1

OCLS
k

s.t. Ld(x, y) =
1

NB

NB∑
i=1

KL(xi/T − yi/T )

(14)

where T is the distillation temperature parameter, NB is the

batch size, KL indicates Kullback-Leibler divergence [16]

and F indicates linear mapping function. Combining Eq.11

and 13, the attention map for spatial feature enhancement

can be derived as:

AXY =
I∑

i=1

J∑
j=1

AT
X,i ×AY,j , AXY ∈ R

T×d/2 (15)

where I and J indicate the element index in AX and AY

respectively. It is then applied to the raw spatial feature

stream O by the element-wise product operation:

Ô = O �AXY (16)

where Ô represents the enhanced spatial feature, which is

used for temporal representation learning.

3.3. Cross-modal Interactive Learning

For the RGB-D multi-modal spatiotemporal features

separately extracted from the two network branches, we
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propose to interact them at the spatial and temporal dimen-

sions respectively at first, as shown in Figure 1. Take the

RGB modality as an example, the two spatial features from

the RGB-D modalities are first interacted through the MLP

layer to generate a joint spatial representation. It is then in-

tegrated with raw spatial features of the RGB modality by a

residual structure:

ÖS
R = LN(MLP([ÔS

R||ÔS
D])) +OS

R (17)

where ÔS
R and ÔS

D denote the enhanced spatial features

of RGB-D modalities respectively; And || represents con-

catenation. Similar to the interactive way of spatial fea-

tures, after obtaining a joint temporal representation ÖT ∈
R

1×d/2, it is fed into the cross-modal adaptive posterior fu-

sion (CAPF) module for deep multi-modal features fusion.

CAPF module. As shown in Figure 5, the CAPF module

contains an Encoder and Decoder, which are composed of

MLP blocks with multiple hidden layers. The ÖT is first

fed into the Encoder to generate the encoded embedding

ÖE ∈ R
1×d/4 which can be used for classification. Then

ÖE passes through the Decoder to obtain a decoded em-

bedding ÖD ∈ R
1×d/2 which can be used to supervise the

Encoder. Therefore, the final classification score of the en-

tire network can be obtained by:

C = Argmax(f1(OCLS
R ) + f2(OCLS

D ) + f3(ÖE)) (18)

where f∗ denotes the linear classifier and Argmax is used to

take the index of the maximum value in score vector. Mean-

while, considering the challenge of optimizing the MLP

layer, the entire network is trained by a multi-loss collab-

orative optimization strategy as shown in Figure 5.

4. Experiments
4.1. Implementation Details

The proposed method is implemented with Pytorch. The

input sequences are randomly/center cropped into 224×224
during training/inference. We employ SGD as the optimizer

with the weight decay of 0.0003 and momentum of 0.9. The

learning rate is linearly ramped up to 0.01 during the first 3

epochs, and then decayed with a cosine schedule [23]. The

training lasts for 100 epochs. The data augmentation only

includes random clipping and rotation. Similar to [43], all

of our experiments except NTU-RGBD are pre-trained on

20BN Jester V1 dataset [24]. Moreover, three sub-branches

are configured in DTN. The number of spatial and temporal

feature learning blocks in DSN and DTN are M = 6 and

N = 6, respectively. We refer to this setting as the basic

configuration of our network, unless otherwise specified.

4.2. Comparison with State-of-the-art Methods

The proposed method achieves state-of-the-art (SOTA)

performance on four gesture and action datasets. It is noted

that we only list some of the SOTA methods for compari-

son, and more comparison results can be found in the sup-

plementary material.

Method Modality Accuracy(%)

Transformer [11] RGB 76.50

MTUT [1] RGB 81.33

NAS [43] RGB 83.61

Ours RGB 89.58
Transformer [11] Depth 83.00

MTUT [1] Depth 84.85

NAS [43] Depth 86.10

Ours Depth 90.62
Transformer [11] RGB+Depth 84.60

MTUT [1] RGB+Depth 85.48

MMTM [18] RGB+Depth 86.31

MMTM [18] RGB-D+Flow 86.93

PointLSTM [25] point clouds 87.90

NAS [43] RGB+Depth 88.38

human RGB+Depth 88.40

Ours(Multiplication) RGB+Depth 90.89

Ours(Addition) RGB+Depth 91.10

Ours(CAPF) RGB+Depth 91.70

Table 1. Comparison of the SOTA methods on the NvGesture.

Similar to [21], wherein Multiplication and Addition are the

score-level feature fusion methods.

4.2.1 NvGesture Dataset

The NvGesture [26] dataset focuses on human-car interac-

tion. It in total contains 1532 dynamic gesture videos (1050

for training and 482 for testing) in 25 classes. As can be

seen in Table 1, the proposed method significantly boosts

performance (RGB: ↑ 5.97%, depth: ↑ 4.52% and RGB-

D: ↑ 3.3%) on this dataset for both single- and multi-modal

configuration, which demonstrates its generalization abil-

ity in the field of human-computer interaction and small

dataset. This might be because spatiotemporal decoupled

modeling method prevents overfitting of the network to

some extent.

4.2.2 THU-READ Dataset

The THU-READ [32] dataset consists 1920 videos with 40

different actions performed by 8 subjects. This dataset is

challenging due to small-scale and background noise. For a

fair comparison with other SOTA methods, we follow the

released leave-one-split-out cross validation protocol uti-

lized in [21]. As illustrated in Table 2, our method exceeds

the SOTA results and achieves the best average accuracy

(87.40%) in this protocol, which further demonstrates that
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our method is also robust to complicated background. We

conjecture that this is mainly attributed to the proposed FRP

module.

Method Modality Accuracy(%)

SlowFast [13] RGB 69.58

NAS [43] RGB 71.25

Trear [21] RGB 80.42

Ours RGB 81.25
SlowFast [13] Depth 68.75

NAS [43] Depth 69.58

Trear [21] Depth 76.04

Ours Depth 77.92
SlowFast [13] RGB+Depth 76.25

NAS [43] RGB+Depth 78.38

Trear [21] RGB+Depth 84.90

Ours(Multiplication) RGB+Depth 86.10

Ours(Addition) RGB+Depth 86.25

Ours(CAPF) RGB+Depth 87.04

Table 2. Comparison of the SOTA methods on the THU-READ.

4.2.3 IsoGD Dataset

The Chalearn IsoGD [35,36] dataset contains 47,933 RGB-

D gesture videos divided into 249 kinds of gestures and is

performed by 21 individuals. It is a much harder dataset

because (1) it covers gestures in multiple fields and differ-

ent motion scales from subtle fingertip movements to large

arm swings, and (2) many gestures have a high similarity.

However, as shown in Table 3, our method also performs

well on this dataset, possibly due to the hierarchical and

compact features learned from the multi-scale network with

the recoupling structure that can capture subtle differences

from similar gestures.

4.2.4 NTU-RGBD Dataset

The NTU RGB-D [28] is a large-scale human action

dataset, which contains more than 56,000 multi-view videos

of 60 actions performed by 40 subjects. This dataset is chal-

lenging due to large intra-class and viewpoint variations. As

the skeleton information is available, many recent works

tend to perform 2D/3D skeleton-based action recognition

on this dataset since skeleton inherently highlights the key

information of human body, whilst being robust to various

illuminations and complex backgrounds. However, the gen-

eralization ability and robustness of skeleton-based meth-

ods are limited. In this paper, we only use the modalities of

color and depth for action recognition. As shown in Table 4,

we achieve the SOTA performance on both released proto-

cols: Cross-view (CV) and Cross-subject (CS). Comparing

Method Modality Accuracy(%)

3DDSN [9] RGB 46.08

AttentionLSTM [47] RGB 57.42

NAS [43] RGB 58.88

Ours RGB 60.87
AttentionLSTM [47] Depth 54.18

3DDSN [9] Depth 54.95

NAS [43] Depth 55.68

Ours Depth 60.17
AttentionLSTM [47] RGB+Depth 61.05

NAS [43] RGB+Depth 65.54

Ours(Multiplication) RGB+Depth 66.71

Ours(Addition) RGB+Depth 66.68

Ours(CAPF) RGB+Depth 66.79

Table 3. Comparison of the SOTA methods on the IsoGD.

Method Modality CS(%) CV(%)

Directed-GNN [30] Skeleton 89.9 96.1

Shift-GCN [6] Skeleton 90.7 96.5

DC-GCN+ADG [5] Skeleton 90.8 96.6

CTR-GCN [4] Skeleton 92.4 96.8

Chained Multi-stream [48] RGB 80.8 -

SLTEP [2] Depth 58.2 -

DynamicMaps+CNN [38] Depth 87.1 84.2

DSSCA-SSLM [29] RGB+Depth 74.9 -

Cooperative CNN [40] RGB+Depth 86.4 89.1

Deep Bilinear [17] RGB-D+Skeleton 85.4 90.7

P4Transformer [12] point 90.2 96.4

Ours RGB 90.3 95.4

Ours Depth 92.7 96.2

Ours(Multiplication) RGB+Depth 93.6 96.6

Ours(Addition) RGB+Depth 93.9 96.7

Ours(CAPF) RGB+Depth 94.2 97.3

Table 4. Comparison of the SOTA methods on the NTU-RGBD.

with the skeleton-based SOTA method CTR-GCN [4], the

proposed method achieves about 2% improvement on CS

protocol and 0.5% on CV protocol. The performance of

depth modality can be on par or even better, which further

demonstrates the robustness of our method to noisy back-

ground and its strong motion perception abilities.

5. Ablation Study

NvGesture and THU-READ(CS2) are employed for the

ablation study. All of experiments are conducted on RGB

data modality except Sec.5.3. We refer the reader to supple-

mentary material for more ablation studies.
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FRP Multi-loss Sharpness
k-NN

Attention

Accuracy(%)

Nv THU

× × × × 85.21 75.24

� × × × 86.67 78.33

� � × × 87.08 80.53

� � � × 89.13 80.91

� � � � 89.58 81.67

Table 5. Impacts of some introduced components. The Multi-loss

means that we impose constraint loss on each sub-branch in DTN.

5.1. Impacts of Embedded Components

In Table 5, we show the impacts by introducing differ-

ent components on the proposed network. First, we ob-

serve that in the absence of FRP module, the network does

not work well either on NvGeture or THU-READ datasets,

which shows that the early guidance of the network to focus

on some local significant regions is beneficial to prevent the

model from being trapped into the local optimum. We also

demonstrate its robustness to lighting by visualization in

supplementary material. In addition, imposing a constraint

to each branch of the network can prevent the model from

overfitting to one of the branches. Sharpening of the output

distribution can encourage each sub-branch to learn more

discriminative features. Finally, removing some of redun-

dant information through k-NN Attention in the temporal

representation can also bring certain performance gains.

5.2. Effect of Recoupling Representation Learning

As shown in Figure 6 (a), recoupling learning can boost

the performance (Nv: ↑ 3%, THU: ↑ 2%). This is because

distilling the knowledge from the temporal domain to en-

hance the spatial representation can help the network focus

more on the informative features during training. The idea

behind it may be that the inner loop optimization mecha-

nism based on self-distillation can help the network deviate

from the local optima as soon as possible and move toward

the global optimal solution. Figure 6 (b) shows the influ-

ence of distillation temperature T on network performance.

We observe that different data domains enjoy different tem-

peratures T during training: 0.4 for gesture dataset and 0.5

for action dataset.

Dataset Baseline (Add) CmSI CmTI CmSTI

NvGesture 91.10 91.32 91.53 91.70

THU-READ 86.35 87.34 88.75 90.00

Table 6. Effects of cross-modal spatiotemporal information inter-

action. CmSI: Cross-modal Spatial information Interaction only.

CmTI: Cross-modal Temporal information Interaction only. Cm-

STI: Cross-modal spatiotemporal information Interaction.

Figure 6. The ablation study of the recoupling learning. (a) The

effect of recoupling strategy on network performance. (b) The

effect of distillation temperature on network performance.

5.3. Cross-modal Information Interaction

As shown in Table 6, the communication of spatial or

temporal information can boost the performance, wherein

the information exchange at the spatial or temporal level

alone can also bring performance gains, which reflects that

the interaction of cross-domain knowledge can help learn

discriminative features. The last experiment shows that

the joint effective cross-domain information interaction at

the spatial and temporal levels can bring the largest perfor-

mance gains (Nv: ↑ 0.6%, THU: ↑ 3.7%), verifying that

multi-modal feature learning can benefit from spatiotempo-

ral independent information transformation.

6. Conclusion
We propose a method for unimodal decoupling and re-

coupling learning as well as a cross-modal interactive learn-

ing and fusion. Firstly, we observe that spatiotemporal re-

coupling learning is very effective as it can lower the opti-

mization difficulty, especially under small dataset settings.

Secondly, guiding the network to focus on the local impor-

tant areas helps boost the performance. Finally, we prove

that interacting with the cross-modal spatiotemporal infor-

mation in two independent dimensions of space and time,

respectively, can encourage the network to extract and fuse

multi-modal spatiotemporal features.

7. Acknowledgment
This work was supported by the Alibaba Group

through Alibaba Research Intern Program, the External

cooperation key project of Chinese Academy Sciences

173211KYSB20200002, the Chinese National Natural Sci-

ence Foundation Projects 61876179 and 61961160704,

the Science and Technology Development Fund of

Macau (0025/2019/AKP, 0008/2019/A1, 0010/2019/AFJ,

0004/2020/A1 0070/2020/AMJ), Guangdong Provincial

Key R&D Programme: 2019B010148001, the InnoHK pro-

gram, and the open Research Projects of Zhejiang Lab No.

2021PF0AB01.

20161



References
[1] Mahdi Abavisani, Hamid Reza Vaezi Joze, and Vishal M. Pa-

tel. Improving the performance of unimodal dynamic hand-

gesture recognition with multimodal training. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019. 1, 6

[2] Ji Xiaopeng A B C, Cheng Jun A B C, Tao Dapeng D,

Wu Xinyu A B C, and Feng Wei A B C. The spatial lapla-

cian and temporal energy pyramid representation for hu-

man action recognition using depth sequences - sciencedi-

rect. Knowledge-Based Systems, 122(C):64–74, 2017. 7

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017. 1, 3

[4] Yuxin Chen, Ziqi Zhang, Chunfeng Yuan, Bing Li, Ying

Deng, and Weiming Hu. Channel-wise topology refinement

graph convolution for skeleton-based action recognition. In

Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 13359–13368, 2021. 7

[5] Ke Cheng, Yifan Zhang, Congqi Cao, Lei Shi, Jian Cheng,

and Hanqing Lu. Decoupling gcn with dropgraph module

for skeleton-based action recognition. In Computer Vision–
ECCV 2020: 16th European Conference, pages 536–553.

Springer, 2020. 7

[6] K. Cheng, Y. Zhang, X. He, W. Chen, and H. Lu. Skeleton-

based action recognition with shift graph convolutional net-

work. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020. 7

[7] Alban Main De Boissiere and Rita Noumeir. Infrared and 3d

skeleton feature fusion for rgb-d action recognition. IEEE
Access, 8:168297–168308, 2020. 1

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 5

[9] Jiali Duan, Jun Wan, Shuai Zhou, Xiaoyuan Guo, and Stan

Li. A unified framework for multi-modal isolated gesture

recognition. ACM Transactions on Multimedia Computing,
Communications, and Applications, 14:1–16, 02 2018. 7

[10] Andrea D’Eusanio, Alessandro Simoni, Stefano Pini,

Guido Borghi, Roberto Vezzani, and Rita Cucchiara. A

transformer-based network for dynamic hand gesture recog-

nition. In 2020 International Conference on 3D Vision
(3DV), pages 623–632, 2020. 1

[11] Andrea D’Eusanio, Alessandro Simoni, Stefano Pini,

Guido Borghi, Roberto Vezzani, and Rita Cucchiara. A

transformer-based network for dynamic hand gesture recog-

nition. In 2020 International Conference on 3D Vision
(3DV), pages 623–632. IEEE, 2020. 6

[12] Hehe Fan, Yi Yang, and Mohan Kankanhalli. Point 4d trans-

former networks for spatio-temporal modeling in point cloud

videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages

14204–14213, June 2021. 7

[13] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and

Kaiming He. Slowfast networks for video recognition. In

Proceedings of the IEEE/CVF international conference on
computer vision, pages 6202–6211, 2019. 7

[14] Dongliang He, Zhichao Zhou, Chuang Gan, Fu Li, Xiao Liu,

Yandong Li, Limin Wang, and Shilei Wen. Stnet: Local

and global spatial-temporal modeling for action recognition.

In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 8401–8408, 2019. 3

[15] Dan Hendrycks and Kevin Gimpel. Gaussian error linear

units (gelus). arXiv preprint arXiv:1606.08415, 2016. 4

[16] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 5

[17] Jian-Fang Hu, Wei-Shi Zheng, Jiahui Pan, Jianhuang Lai,

and Jianguo Zhang. Deep bilinear learning for rgb-d action

recognition. In Proceedings of the European Conference on
Computer Vision (ECCV), September 2018. 1, 7

[18] Hamid Reza Vaezi Joze, Amirreza Shaban, Michael L. Iuz-

zolino, and Kazuhito Koishida. Mmtm: Multimodal transfer

module for cnn fusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 6

[19] M Esat Kalfaoglu, Sinan Kalkan, and A Aydin Alatan. Late

temporal modeling in 3d cnn architectures with bert for ac-

tion recognition. In European Conference on Computer Vi-
sion, pages 731–747. Springer, 2020. 1

[20] Yu Kong and Yun Fu. Bilinear heterogeneous information

machine for rgb-d action recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1054–1062, 2015. 3

[21] Xiangyu Li, Yonghong Hou, Pichao Wang, Zhimin Gao,

Mingliang Xu, and Wanqing Li. Trear: Transformer-based

rgb-d egocentric action recognition. IEEE Transactions on
Cognitive and Developmental Systems, 2021. 1, 6, 7

[22] Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei

Lu, Wenxiu Sun, Xiaogang Wang, Jifeng Dai, and Hong-

sheng Li. Decoupled spatial-temporal transformer for video

inpainting. arXiv preprint arXiv:2104.06637, 2021. 3

[23] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-

tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 6

[24] Joanna Materzynska, Guillaume Berger, Ingo Bax, and

Roland Memisevic. The jester dataset: A large-scale video

dataset of human gestures. In Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops,

pages 0–0, 2019. 6

[25] Yuecong Min, Yanxiao Zhang, Xiujuan Chai, and Xilin

Chen. An efficient pointlstm for point clouds based gesture

recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5761–

5770, 2020. 6

[26] Pavlo Molchanov, Xiaodong Yang, Shalini Gupta, Kihwan

Kim, Stephen Tyree, and Jan Kautz. Online detection

and classification of dynamic hand gestures with recurrent

3d convolutional neural network. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4207–4215, 2016. 2, 6

20162



[27] Xuan Son Nguyen, Luc Brun, Olivier Lézoray, and Sébastien
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