
Large-scale Isolated Gesture Recognition Using a Refined Fused Model based on
Masked Res-C3D Network and Skeleton LSTM

Chi Lin†, Jun Wan‡, Yanyan Liang∗§, Stan Z. Li‡§
†University of Southern California, Los Angeles, California 90089-0911, USA

‡National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, BeiJing, China
§Faculty of Information Technology, Macau University of Science and Technology, Macau SAR, China

Abstract—In this paper, we present a novel refined fused
model combining Masked Res-C3D Network and Skeleton
LSTM for large-scale isolated gesture recognition in RGB-D
videos. The key of our design is to learn a compact and effective
presentation of gesture sequences and integrate multiple models
together. First, deep spatio-temporal features are well extracted
by 3D Convolutional Neural Networks (CNNs) with residual
architecture (Res-C3D). As gestures are mainly derived from
the arm or hand movements, a masked Res-C3D network is
built to decrease the effect of background and other variations
via exacting the skeleton of body and reserving arm regions
with discarding other regions via a mask. And then, relative
positions and angles of different keypoints are extracted and
used to build a time-series model by Long Short Term Memory
network (LSTM). Based the above representations, a fusion
scheme for blending classification results via a convolution layer
(called fused layer) is developed, in which the weights of each
voting sub-classifier being of advantage to a certain class in
our ensemble model are adaptively obtained by training in
place of fixed weights. Our experimental results show that the
proposed method has obtained a state-of-the-art performance
with accuracy 0.6842 in the IsoGD dataset.

Keywords-Large-scale Isolated Gesture Recognition; Multi-
Modal Fusion Model; Res-C3D Network;

I. INTRODUCTION

Gesture recognition is a fast expanding field with applica-
tions beyond gaming, consumer electronics UI, automotive,
sports training and etc. The main task of gesture recognition
is to extract features from an image or a video and then
classify or determine each sample to a certain label.

At present, although most existing models have reached
a high performance for isolated gesture recognition, there
are still a lot of insufficiencies and restrictions in practical
applications. Firstly, most ensemble models [1][2] are used
to extract different features to improve performance, in
which the model size and its training/inference time may
be unacceptable in most practical uses. For example, our
rebuilt implementations indicate that each sub-model needs
more than ten hours or even several days to be trained and to
be integrated into a ensemble model. Moreover, the inference
cost is relative high as the testing data needs to be propagated
through all the sub-model to obtain the feature in inference
stage. Secondly, although lots of skeleton data in favor of

classification have been used [3], their valuable potential
information have not yet been fully excavated. Finally, in
most of current ensemble models, different weights of each
voting sub-classifier being of advantage to a certain class
have been noticed and used [4][5], however, they are still
fixed values throwing away flexibility. Intuitively, it does not
make sense for setting fixed weights of voting sub-classifier
for each task.

To solve these problems above, we proposed a relatively
simple model to reduce computational cost but more ef-
fectively extracting features from videos and skeleton data,
and employed adaptive weights of each voting sub-classifier
to improve performance. The pipeline of our method is
depicted in Figure 1, and the main contribution can be
summarized as following:

• We built a relatively simple model and obtained
state-of-the-art performance on the large-scale iso-
lated gesture dataset (IsoGD). Most of existing high-
performance methods adopt ensemble strategy to merge
a large number of models for extracting and blending
features. Our approach is more simpler but achieves
better performance.

• We developed an adaptive scheme for setting weights
of each voting sub-classifier via a convolution layer
(called fused layer). Unlike traditional methods [4][5]
with the fixed-weighted values among different models,
the weights can be learned in training stage via common
BP method.

• We excavated more potential information of skeleton
data in favor of classification. Beyond the current works
[1][2], we used masked res-C3D network and proposed
skeleton LSTM to use a variety of information, such
as angle, relative displacement, skeleton information,
to more thoroughly dig out the efficient features for
gesture recognition.

The remainder of this paper is organized as follows:
Section 2 is a review of related works. Section 3 illustrates
our method and section 4 validates our results respectively.
And finally the section 5 is the conclusion.

∗Corresponding Author
978-1-5386-2335-0/18/$31.00 c©2018 IEEE

Figure 1. The pipeline of our method. Left: The preprocessing of
training data, including extracting skeleton data, reducing the influence of
background via OpenPose and masking the RGB videos and Depth videos;
Middle: The training phase, the data need to be normalized and augmented,
and then be fed into the models for training; Right: Fusion phase, the
features extracted from two Res-18 C3D Networks and LSTM model are
fused and classification results are output.

II. RELATED WORKS

Many hand-crafted features have been proposed and
widely used in early traditional gesture recognition methods,
such as histogram of oriented gradients (HOG), finite-state
machine, hidden Markov model (HMM) [6]. Other typical
works include novel spatial-temporal feature named MFSK
[7], SIFT-like descriptors on 3D gradient and motion spaces
respectively for action recognition in RGB-D videos [8].
Besides, Klaser et al. [9] treat videos as spatio-temporal
volumes and proposed a novel spatial-temporal descriptor
based on HoG-based descriptors used in pattern recognition
for static images.

Recently, convolutional neural networks (CNNs) [10]
have made a great breakthrough on computer vision related
tasks by their powerful feature extraction ability, thus the
features extracted by CNNs are widely used in many action
classification tasks instead of hand-crafted features for better
performance. Features are extracted by 2D-CNN from the
start. Wang et al. [11][2] used bi-directional rank pooling
[12] to encode the spatial and temporal information of
videos. L. Pigou et al. [13] introduced temporal convolutions
for gesture recognition in videos. On the other hand, C3D
[14] model is deveploed and provides a better performance.
Li and Miao et al. [1] use C3D model and won the first
place twice in ChaLearn LAP Multi-modal Isolated Gesture
Recognition Challenges 2016 [15] and 2017 [16]. Cangoz
et al. [17] and Liu et al. [3] used also C3D model for
continuous gesture recognition.

Regarding the temporal information of the video se-
quences, Long Short Term Memory (LSTM) networks is a
common choice to gesture recognition. For instance, Zhu et
al. [18] introduced convolutional LSTM for spatio-temporal
feature maps. Chai et al. [19] used 2S-RNN (RGB and
Depth) for continuous gesture recognition.

Moreover, traditional N-shot learning approaches are ex-
tended to one shot gesture learning. Wan et al. introduced
simulation orthogonal matching pursuit (SOMP) [20] and
HJ Escalante et al. [21] introduced principal motion compo-

Figure 2. The structure of Res-18 C3D Network.

nents (PMC) for one shot learning. ME Cabrera et al. [22]
proposed to deal with gesture perception and production as
part of the recognition problem. There is a trend using kine-
matic, cognitive and biomechanic characteristics of human
interaction.

III. THE PROPOSED METHOD

A. Model

As main contribution, our fusion model is mainly com-
posed of three parts: two Res-18 3D Convolutional Network
[14] (for RGB and Depth video feature extraction), an LSTM
Network is to extract skeleton features, and a fused layer
blending all the model.

1) Res-C3D Model: We implemented a C3D Network
[14] with the residual network architecture for this task. The
model consists of 8 residual units. Each residual unit has two
convolutional layers, and each layer contains 3×3×3 filters.
Batch normalization [23] layer follows convolutional layer
which accelerates the training process. Similar to [24], the
number of filters are set to 64, 64, 128, 128, 256, 256, 512,
512. Different form [1], two global average pooling layers
with kernel size 4× 1× 1 and 1× 7× 7 are performed and
replaced the fully-connected layer. The output of different
average pooling layer will be simply added together to get
the final result.

2) Skeleton LSTM Network: We feed more data than the
others [16] to improve the accuracy of the model, which
including body keypoints, hands keypoints, and the angle
information. Each frame of videos is converted to a vector
with 241 elements, and each video is normalized with
32 frames. The bi-directional LSTM has four inter-middle
hidden layers with 60 (or 120) size. The dropout rate is set
to 0.1, with the 0.001 learning rate and 256 batch size is.

Figure 3. There are three different fusion models. From the left to right: Strategy 1: w 0, w 1 and w 2 were fixed; Strategy 2: the fusion weights are
adaptive but unified for each model; Strategy 3: each class has its own voting weight.

B. Fused Layer

Result fusion usually uses 1:1 voting directly to obtain an
ensemble result. Wang et al. [4] first set voting weights as 1:2
to improve accuracy, and Duan et al. [5] first use this strategy
to deal with depth and RGB videos. We name it Strategy
1. Another strategy (Strategy 2) is that the voting weights
of each model can be adjusted, however, they are unified
for each model, so that it is hardly suitable for various
cases. Noticed that each model has its own advantages or
disadvantages for each class (it means it does not make sense
to share the weight for all classes), our key idea here is to
train adaptive weights of each voting sub-classifier being of
advantage to a certain class in place of fixed weights via a
convolution layer, namely fused layer. We name it (Strategy
3) (see Fig 3).

Denote the fusion input and output by xi and yi, where i
is the index of classes. There are three different models in
our model, let xi = x1i, x2i, x3i, thus we have output

yi = fi({x1i, x2i, x3i}),

where fi is a 1 × 1 convolutional kernel with 3 channels,
and the fusion layer consists of n 1×1 convolutional kernels
with 3 channels, such that the number of fusion weights is
n× 3. Each fi() will be determined in the training phase.

In implementation details, we concatenate the result on
a additional dimension and then connect to a 1-dimension
convolutional layer which the kernel size is 1. We obtain
different weights for each class by training the fused layer
that consists of n convolutional kernels without biases. The
fused layer has s simpler structure than a fully connected
(FC) layer, although it is more complex than strategy 2. The
advantage to FC layer is that we use our prior knowledge, in
special, we know exactly the meaning of each value, so that
we know that if there is relationship between the input and
output, and how reduce the weights of the FC layer. This
helps us to improve the accuracy and limit the complexity

Figure 4. An example of our indicator to a RGB gesture video. Orange:
The importance indicator obtained by the moving distance of the Skeleton
in each frame; Blue: The sampled frame number by the weight sampler;
as illustrated, the sampler chooses more frame in the video section which
has higher importance.

of our model. The difference between these two structures
can be illustrated in Figure 3.

C. Data Preparation, Preprocessing and Augmentation

1) Skeleton Data Excavation: We use convolutional pose
machines [25] to generate the skeleton data. However, Open-
pose may fail to detect person because some keypoints are
occlusive. We first extract the same keypoints at different
times and concatenate them to a sequence in chronological
order. Then, linear interpolation is employed to generate the
keypoints in the middle missing points of time sequence.
Furthermore, we explore some extra significant features from
skeleton data, including the relative position and the angle of
keypoints. Inspired by Guo et al. [26], we subtract the mean
of the keypoints’ position from all the keypoints’ position to
extract the relative displacement for micro emotion recogni-
tion. We further obtain the relative angle of the skeleton. We
pick 121 terms to concatenate with the position vector. The
121 dimensional vector includes 10 fingers, which should
be the most important part of the gesture, each one has 10
(C2

5) value to represent the angle. The remaining 21 (C2
7)

items are made by 7 keypoints of the upper body, including
wrist, elbow, shoulder, and chest.

2) Data Normalization: A fixed dimension of input data
is required in the C3D model and LSTM model, in details,

Figure 5. From left to right: 1. Raw RGB video data; 2. Raw depth
video data; 3. Skeleton data derived from Openpose (it is visualized by a
RGB image); 4. RGB video data after masking; 5. Depth video data after
masking.

all the input examples should be 32 frames as the average
number of frames is 32 for each IsoGD example, and it is
really the best choice validated by tuning testing. Besides, it
is fixed 32 to accommodate the GPU memory of Nvidia
Titan X. Thus data normalization is necessary. For the
videos in which frames are less or more than 32, uniform
normalization with upsampling and downsampling is used
to uniform the number of frames.

A given video V with n frames needs to be compressed
or extended to k frames. There are two situations as follows:

1) For case n > k, we split the video V into a
k section video set VS averagely, where VS =
{V1, V2, V3..., Vk}. For each piece in the video set VS ,
we randomly choose one frame as the representation
of the sub-video fragment. Finally we concatenate all
the represent frames and make them as the result of
the normalization.

2) For case n < k, we randomly choose k − n frame in
the video, then repeat them follow by themselves.

Although the frame distribution remains unchanged, it
may not be a suitable to train the model directly. For most
of the videos with a single gesture, the frames in different
phases share different importance. For example, in Figure 4,
the section which the performer throws his hand out and the
section he put down his hand on his belly should be more
noticed by the model because they include the key frame
of the gesture. For this case it is unfair to perform uniform
sampling for the normalization but necessary to use different
weights for non-uniform sampling.

We split the video V into a m section video set Vset

averagely, where Vset = {V1, V2, V3..., Vm}. For each i− th
piece Vi in the video set Vset, we define a importance
function F to indicate the importance of Vi, and randomly
choose n frame using uniform sampling method as men-
tioned above, such n can be obtained by

n = N(
F (Vi) · k∑m

j=1 F (Vj) ·m
),

where N rounds float number to an integer. Inspired by
Miao et al. [1] who use average optical flow as the im-
portance for detecting the key frames of the video, we
first use the displacement of the skeleton keypoints as the
indicator. As discussed above, skeleton keypoints (include
18 body keypoints, 21 left-hand keypoints, and 21 right-
hand keypoints) are extracted by Openpose, denote key point

set kpset = OP (f) for each frame f where kpset =
{kp1, kp2, kp3..., kp60}. Define a distance function D as
below:

D(kp1set, kp2set) =

len∑
i=1

(|kp1ix − kp2ix|+|kp1iy − kp2iy|),

so the indicator function F can be define as

F (V) = ln

len−1∑
i=1

D(OP (fi), OP (fi+1)).

The nature logarithm function ensures the distance of a
pair of sections is not too big. Figure 4 shows the distinct
relationship between our indicator and the keyframe position
in the video and how the sampler chooses sample number
via our skeleton keypoints indicator.

3) Data Augmentation: In this chapter, masking, re-
sampling, and horizontal flipping are used for video data
augmentation, and re-sampling, horizontal flipping, and ran-
dom perturbation are used for skeleton data augmentation.

I. Masking
A difficulty for gesture recognition is that the videos are

very easy to be affected by the negative influence of the
distractors, such as the background, cloth and the body and
so on. One way to resolve this problem is to mask [27]
the location except important information such as hands.
The masking area of the hands (in details, the keypoints of
the elbow and wrist) is calculated by the skeleton data. We
drew a rectangle using these two keypoints for each hand
and block the other region of the image in each frame of
depth videos and RGB videos.

II. Re-sampling
Data need to be normalized before being fed into our mod-

els. However, weight (non-uniform) sampling and uniform
sampling have their respective advantage and disadvantage.
For uniform sampling, it may miss some of the keyframes
and get more frames on the section which does not include
any useful features. For weight sampling, some action pauses
in temporal dimension may be ignored because there are not
enough importance. We do re-sampling before training the
model in every epoch, and randomly choose one method to
implement normalization. This makes sure that our models
can learn the feature both in the keyframes and in temporal
dimension.

III. Flipping and shifting
To augment the training dataset, horizontal flipping and

shifting are used for skeleton sequence and video data
augmentation. For the video data, we flip each frame in
the video and randomly choose a small range to do the
shifting. As fig 5, the images after masking exist black
meaningless borders, thus we can do the shifting to let
the convolutional kernel in the Res-C3D network learn
better. For the skeleton data, we flip both the key point
coordination and the keypoints index, which achieve the
effect of horizontal flipping.

Table I
C3D AUGMENTATION STRATEGY

Data Masking&Perturbation Accuracy Promotion
RGB

√
0.5903 0.04

RGB × 0.5563 -
Depth

√
0.6447 0.06

Depth × 0.5814 -
Skeleton

√
0.3539 0.03

Skeleton × 0.3278 -

IV. Perturbation
Because one skeleton training sample has only 32 vectors

of 241 dimension (it means the number of data has been
considerably reduced), we use another way to augment the
amount of training data. We randomly set some keypoints
coordination in the sequence to the invalid state, then use the
fixed point approach as mentioned above to fill the invalid
value. After that, we calculate the angle as we have done
before. This guarantees there are sufficient data for training,
such that the performance of skeleton LSTM model can be
improved.

IV. EXPERIMENT

A. Dataset

Two public datasets are used to evaluate our proposed
model: the ChaLearn LAP large scale isolated gesture
dataset (IsoGD) [28] and RGBD-HuDaAct dataset (HuDa)
[29].

1) IsoGD: IsoGD is a large-scale isolated gesture dataset
derived from the ChaLearn Gesture Dataset (CGD). IsoGD
contains 47,933 RGBD gesture videos divided into 249
kinds of gestures performed by 21 individuals.

2) HuDa: HuDa includes 30 different humans and each
performing the same 12 activities, e.g. ’eat a meal’. Also, it
includes a random ’background’ activity. All performed in
a lab environment. Around 5,000,000 frames in total.

B. Implementation

All of our models are implemented by pyTorch. Three
NVIDIA TITAN XP GPUs are employed for training. There
are some tricks, we pre-trained RGB Res-C3D data and
Depth video data respectively to obtain two pre-trained mod-
els, and then tuned these two models based on Depth video
data and RGB Res-C3D data respectively. The learning rate
is initialized to 1e-3 and decayed by 10 every 30 epochs.
The weight decay is set to 5e-5 and the momentum is 0.9.
The spatial size of the inputs is restricted to 112× 112. For
the skeleton LSTM model, we use Adam for training, and
the learning rate is initialized to 1e-3.

C. Experimental result

1) Data Augmentation on IsoGD: Table I gives the results
with/without data augmentation, which are evaluated on the
dataset of IsoGD. Masking is used in RGB and Depth C3D

Figure 6. The Comparisons on different fusion model. The left y-axis
indicated the accuracy while the right one indicated the loss. In the case
of convergence, the adaptive weight can achieve better accuracy.

Table II
COMPARISONS WITH THE ISOLATED GESTURE RECOGNITION

CHALLENGE

Team Valid Test Model Number
1 ASU [1] 0.6440 0.6771 7 (4*C3D+2*TSN+1*SVM)
2 SYSU ISEE 0.5970 0.6702 6 (5*VGG16+1*LSTM)
3 Lostoy 0.6202 0.6597 2 (2*C3D)
4 AMRL [2] 0.6081 0.6559 12 (8*CNN+4ConvLSTM)
5 XDETVP [18] 0.5800 0.6047 3 (3*ConvLSTM)
- Baseline [5] 0.4917 0.6726 6 (4*CNN+2C3D)
- Ours 0.6437 0.6842 3 (2*C3D+1*LSTM)

models and the perturbation is used for Skeleton data. Our
strategy gained performance improvements 0.04, 0.06 and
0.03 for RGB, Depth, and Skeleton respectively.

2) Fusion result on IsoGD: Tabel III shows the compar-
isons with different fusion strategy on IsoGD dataset. As
illustrated, skeleton LSTM did not perform well in IsoGD
dataset, thus we did not use it for 1:1:1 fusion directly. All
single models’ accuracy is less than 0.65, and the fusion
strategy allowed them to increase by 0.01 to 0.03. 1:2
(proposed by Duan [5]) and achieved the accuracy 0.66, and
our voting strategy 2 verified that we can train the voting
rate and reach the same level. Our final model shows that
this strategy can get more improvement if we use different
weights rather than a fixed weights.

3) Comparison on IsoGD: Our proposed method ob-
tained 0.6842 accuracies on the IsoGD dataset, and this
result is better than the best result (ranks 1st) in the
2017 Chalearn LAP isolated gesture recognition challenge.
Besides, our model is simpler than the other state-of-the-
art model, in other words, we obtained the same accuracy
with simpler models. The comparison of the result and the
model complexity are illustrated in Table II. Compared with
their methods, we successfully reduce the model number and
obtain a better accuracy in this dataset.

4) Fusion result on HuDaAct: Table IV shows the com-
parisons with different fusion strategy on HuDaAct dataset.
Since HuDaAct dataset only has 13 classes, the Skeleton
LSTM model perform better than C3D models. Compare

Table III
COMPARISONS WITH DIFFERENT FUSION STRATEGY ON ISOGD

Fusion Method Valid Test
Skeleton LSTM 0.3178 0.3539

RGB Res-net 0.5621 0.5903
Depth Res-net 0.5635 0.6447

2:1 (RGB+Depth) 0.5991 0.6349
1:1 (RGB+Depth) 0.6189 0.6580
1:2 (RGB+Depth) 0.6112 0.6605

Strategy 2 [Fig.3.2] 0.6253 0.6669
Strategy 3 [Fig.3.3] 0.6437 0.6842

Table IV
COMPARISONS WITH DIFFERENT FUSION STRATEGY ON HUDAACT

Fusion Method Accuracy
Skeleton LSTM 0.9138

RGB Res-net 0.7672
Depth Res-net 0.7759
1:1:1 [Fig.3.1] 0.8621

Strategy 2 [Fig.3.2] 0.9310
Strategy 3 [Fig.3.3] 0.9569

with the result on the IsoGD dataset, intuitively, it does not
make sense to set fixed weights of voting for every task.
Voting strategy 2 improves 0.02 accuracy compared with
the best single model, the skeleton LSTM. Voting strategy
3 finally reaches accuracy 0.9569, which is better than the
voting strategy 2.

5) Comparison on HuDaAct: Table V shows the com-
parison on HuDaAct Dataset. As illustrated, our proposed
approach outperforms other old competing algorithms by a
large margin with over 0.1 and 0.15 accuracy and catching
up with the state-of-the-art model. This also verified that our
model has strong generalization capacity–it is not only be
used on gesture recognition but also on some other video-
based classification tasks. Furthermore, as the median of
frames in each HUDAACT example is 256 , we cannot
normalize all the examples to 256 frames as it would lead to
huge GPU memory demands that would be in excess of the
memory of Nvidia Titian XP (total 12GB) used in exper-
iments. Hence, each HUDAACT example was normalized
to 32 frames such that this experiment can be completed,
whereas 32 frames are insufficient for HUDAACT examples
feature exaction and learning. In contrast, the median of
frames in each IsoGD example is 32 such that we proposed
method can achieve state-of-the-art performance. For this

Table V
COMPARISONS ON RGBD-HUDAACT DATASET

Method Accuracy
STIPs(K=512) [Laptev and Lindeberg] [30] 0.7977

DLMC-STIPs(M =8) [Ni] [29] 0.7949
DLMC-STIPs(K=512,SPM) [Ni] [29] 0.8148

2SCVN-3DDSN [Duan et al.] [5] 0.9783
Ours 0.9569

reason, the performance of our method is little lower than
the approach [5].

V. CONCLUSION

In this paper, we proposed a relatively simple model for
gesture recognition and achieved state-of-the-art accuracy in
the IsoGD dataset. We chiefly developed a fusion scheme for
blending features via a convolution layer (called fused layer)
to improve fusion performance. Besides, we introduced
some ways for extraction of the potential information of
training data with a variety of data enhancement technology
for both skeleton and RGB-D videos.

However, our model is still not an end-to-end model and
has to be trained step by step. Meanwhile, ChaLearn LAP
IsoGD still have a large room for improvement, we still have
a lot of work to enhance the accuracy of the model.

ACKNOWLEDGMENT

This work was partially supported by Science and Tech-
nology Development Fund of Macau (No. 112/2014/A3,
151/2017/A, 152/2017/A), the National Key Research and
Development Plan (Grant No. 2016YFC0801002), the
Chinese National Natural Science Foundation Projects
]61502491,]61473291,]61572501,]61572536,]61673052.

REFERENCES

[1] Q. Miao, Y. Li, W. Ouyang, Z. Ma, X. Xu, W. Shi, X. Cao,
Z. Liu, X. Chai, Z. Liu et al., “Multimodal gesture recognition
based on the resc3d network,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2017, pp. 3047–3055.

[2] H. Wang, P. Wang, Z. Song, and W. Li, “Large-scale mul-
timodal gesture recognition using heterogeneous networks,”
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 3129–3137.

[3] Z. Liu, X. Chai, Z. Liu, and X. Chen, “Continuous gesture
recognition with hand-oriented spatiotemporal feature,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 3056–3064.

[4] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang,
and L. Van Gool, “Temporal segment networks: Towards
good practices for deep action recognition,” in European
Conference on Computer Vision. Springer, 2016, pp. 20–
36.

[5] J. Duan, J. Wan, S. Zhou, X. Guo, and S. Z. Li, “A uni-
fied framework for multi-modal isolated gesture recognition,”
ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM), vol. 14, no. 1s, p. 21, 2018.

[6] J. Wan, Q. Ruan, G. An, and W. Li, “Gesture recognition
based on hidden markov model from sparse representative
observations,” in Signal Processing (ICSP), 2012 IEEE 11th
International Conference on, vol. 2. IEEE, 2012, pp. 1180–
1183.

[7] J. Wan, G. Guo, and S. Z. Li, “Explore efficient local features
from rgb-d data for one-shot learning gesture recognition,”
IEEE transactions on pattern analysis and machine intelli-
gence, vol. 38, no. 8, pp. 1626–1639, 2016.

[8] J. Wan, Q. Ruan, W. Li, G. An, and R. Zhao, “3d smosift:
three-dimensional sparse motion scale invariant feature trans-
form for activity recognition from rgb-d videos,” Journal of
Electronic Imaging, vol. 23, no. 2, p. 023017, 2014.

[9] A. Klaser, M. Marszałek, and C. Schmid, “A spatio-temporal
descriptor based on 3d-gradients,” in BMVC 2008-19th British
Machine Vision Conference. British Machine Vision Asso-
ciation, 2008, pp. 275–1.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

[11] P. Wang, W. Li, S. Liu, Z. Gao, C. Tang, and P. Ogunbona,
“Large-scale isolated gesture recognition using convolutional
neural networks,” in Pattern Recognition (ICPR), 2016 23rd
International Conference on. IEEE, 2016, pp. 7–12.

[12] B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and
T. Tuytelaars, “Rank pooling for action recognition,” IEEE
transactions on pattern analysis and machine intelligence,
vol. 39, no. 4, pp. 773–787, 2017.

[13] L. Pigou, A. Van Den Oord, S. Dieleman, M. Van Her-
reweghe, and J. Dambre, “Beyond temporal pooling: Recur-
rence and temporal convolutions for gesture recognition in
video,” International Journal of Computer Vision, pp. 1–10,
2015.

[14] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri,
“Learning spatiotemporal features with 3d convolutional net-
works,” in Computer Vision (ICCV), 2015 IEEE International
Conference on. IEEE, 2015, pp. 4489–4497.

[15] H. J. Escalante, V. Ponce-López, J. Wan, M. A. Riegler,
B. Chen, A. Clapés, S. Escalera, I. Guyon, X. Baró,
P. Halvorsen et al., “Chalearn joint contest on multimedia
challenges beyond visual analysis: An overview,” in Pattern
Recognition (ICPR), 2016 23rd International Conference on.
IEEE, 2016, pp. 67–73.

[16] J. Wan, S. Escalera, X. Baro, H. J. Escalante, I. Guyon,
M. Madadi, J. Allik, J. Gorbova, and G. Anbarjafari, “Results
and analysis of chalearn lap multi-modal isolated and con-
tinuous gesture recognition, and real versus fake expressed
emotions challenges,” in ChaLearn LaP, Action, Gesture,
and Emotion Recognition Workshop and Competitions: Large
Scale Multimodal Gesture Recognition and Real versus Fake
expressed emotions, ICCV, vol. 4, no. 6, 2017.

[17] N. C. Camgoz, S. Hadfield, O. Koller, and R. Bowden, “Using
convolutional 3d neural networks for user-independent con-
tinuous gesture recognition,” in Pattern Recognition (ICPR),
2016 23rd International Conference on. IEEE, 2016, pp.
49–54.

[18] L. Zhang, G. Zhu, P. Shen, J. Song, S. A. Shah, and M. Ben-
namoun, “Learning spatiotemporal features using 3dcnn and
convolutional lstm for gesture recognition,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 3120–3128.

[19] X. Chai, Z. Liu, F. Yin, Z. Liu, and X. Chen, “Two streams
recurrent neural networks for large-scale continuous gesture
recognition,” in Pattern Recognition (ICPR), 2016 23rd In-
ternational Conference on. IEEE, 2016, pp. 31–36.

[20] J. Wan, Q. Ruan, W. Li, and S. Deng, “One-shot learning
gesture recognition from rgb-d data using bag of features,”
The Journal of Machine Learning Research, vol. 14, no. 1,
pp. 2549–2582, 2013.

[21] H. J. Escalante, I. Guyon, V. Athitsos, P. Jangyodsuk, and
J. Wan, “Principal motion components for one-shot gesture
recognition,” Pattern Analysis and Applications, vol. 20,
no. 1, pp. 167–182, 2017.

[22] M. E. Cabrera, N. Sanchez-Tamayo, R. Voyles, and J. P.
Wachs, “One-shot gesture recognition: One step towards
adaptive learning,” in Automatic Face & Gesture Recognition
(FG 2017), 2017 12th IEEE International Conference on.
IEEE, 2017, pp. 784–789.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,”
in International conference on machine learning, 2015, pp.
448–456.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[25] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh,
“Convolutional pose machines,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2016, pp. 4724–4732.

[26] J. Guo, S. Zhou, J. Wu, J. Wan, X. Zhu, Z. Lei, and S. Z.
Li, “Multi-modality network with visual and geometrical
information for micro emotion recognition,” in Automatic
Face & Gesture Recognition (FG 2017), 2017 12th IEEE
International Conference on. IEEE, 2017, pp. 814–819.

[27] Z. Liu, X. Chai, Z. Liu, and X. Chen, “Continuous gesture
recognition with hand-oriented spatiotemporal feature,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 3056–3064.

[28] J. Wan, Y. Zhao, S. Zhou, I. Guyon, S. Escalera, and S. Z.
Li, “Chalearn looking at people rgb-d isolated and continuous
datasets for gesture recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, 2016, pp. 56–64.

[29] B. Ni, G. Wang, and P. Moulin, “Rgbd-hudaact: A color-
depth video database for human daily activity recognition,”
in Consumer Depth Cameras for Computer Vision. Springer,
2013, pp. 193–208.

[30] I. Laptev, “On space-time interest points,” International jour-
nal of computer vision, vol. 64, no. 2-3, pp. 107–123, 2005.

