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Abstract

Anti-spoofing attack detection is critical to guarantee the
security of face-based authentication and facial analysis
systems. Recently, a multi-modal face anti-spoofing dataset,
CASIA-SURF, has been released with the goal of boosting
research in this important topic. CASIA-SURF is the largest
public data set for facial anti-spoofing attack detection in
terms of both, diversity and modalities: it comprises 1, 000
subjects and 21, 000 video samples. We organized a chal-
lenge around this novel resource to boost research in the
subject. The Chalearn LAP multi-modal face anti-spoofing
attack detection challenge attracted more than 300 teams
for the development phase with a total of 13 teams qualify-
ing for the final round. This paper presents an overview of
the challenge, including its design, evaluation protocol and
a summary of results. We analyze the top ranked solution-
s and draw conclusions derived from the competition. In
addition we outline future work directions.

1. Introduction
As an important branch of biometric recognition, face

recognition (FR) is being increasingly used in our daily
life for tasks such as phone unlocking, access authentica-
tion and control, and face-payment [5, 34]. Because of its
wide applicability and usage, FR systems can be an attrac-
tive target for identity attacks. For instance, unauthorized
people trying to get authenticated via face presentation at-
tacks (PAs), such as a printed face photograph (print attack),
displaying videos on digital devices (replay attack), or 3D
masks attack. These PAs make face recognition system-
s vulnerable, even if they achieve near-perfect recognition
performance [1]. Therefore, face presentation attack detec-
tion (PAD), commonly called face anti-spoofing, is a critical
step to ensure that FR systems are safe against face attacks.
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Ranking Team Name Affiliation
1 VisionLabs VisionLabs
2 ReadSense ReadSense
3 Feather Intel
4 Hahahaha Megvii
5 MAC-adv-group Xiamen University
6 ZKBH Biomhope
7 VisionMiracle VisonMarcle
8 GradiantResearch Gradiant
9 Vipl-bpoic ICT, CAS
10 Massyhnu Hunan University
11 AI4all BUPT
12 Guillaume Idiap Research Institute

invited team Vivi Baidu

Table 1. Team and affiliations name are listed in the final ranking
of this challenge.

State-of-the-art face PAD algorithms [17, 15] have
achieved high recognition rates in the intra-testing (i.e.,
training and testing with the same dataset). However, they
generally show low performance when a cross-testing (i.e.,
training and testing data come from different datasets) sce-
nario is considered. Therefore, face PAD remains a chal-
lenging problem, mainly due to lack of generalization capa-
bilities of existing methods. This is largerly due to the fact
that current face anti-spoofing databases have not enough
subjects (≤ 170), or lack from fruitful samples (≤ 6, 000
video clips) [25] compared with image classification [8] or
face recognition databases [34], which severely limits the
type of methods that can be used to approach the PAD prob-
lem (e.g. deep learning models). Another missing feature
in existing datasets (e.g., [9, 5]) is the availability of multi-
modal information. This sort of extended information may
be very helpful for developing more robust anti-spoofing
methods. The above mentioned problems seriously hinder
novel technology developments in the field.
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Figure 1. A processed Attack 5 sample, more shown in [25]

In order to deal with previous drawbacks, a large-scale
multi-modal face anti-spoofing dataset, called CASIA-
SURF [25], has been collected. The data set consists of
1, 000 different subjects and 21, 000 video clips with 3
modalities (RGB, Depth, IR). Based on this dataset, we or-
ganized the Chalearn LAP multi-modal face anti-spoofing
attack detection challenge collocated with CVPR2019. The
goal of this competition was to boost research progress on
the PAD, in a scenario where plenty of data and differen-
t modalities are available. The challenge was run in the
Codalab1 platform. More than 300 academic research and
industrial institutions worldwide participated in this chal-
lenge, and finally thirteen teams entered at the final stage.
A summary with the names and affiliations of teams that
entered the final stage are shown in Table 1. Interestingly,
compared with the previous challenges [4, 6, 2], the ma-
jority of the final participants (ten out of thirteen) of this
competition come from the industrial community, which in-
dicates the increased importance of the topic for daily life
applications.

To sum up, the contributions of this paper are summa-
rized as follows: (1) We describe the design of the Chalearn
LAP multi-modal face anti-spoofing attack detection chal-
lenge. (2) We organized this challenge around the CASIA-
SURF datsaset, proving the suitability of such resource for
boosting research in the topic. (3) We report and analyze
the solutions developed by participants. (4) We point out
critical points on the face anti-spoofing detection task by
comparing essential differences between a real face and a
fake one from multiple aspects, discussing future lines of
research in the field.

2. Challenge Overview
In this section we review the organized challenge, in-

cluding a brief introduction of the CASIA-SURF dataset,
the evaluation metric, and the challenge protocol.
CASIA-SURF. The CASIA-SURF dataset is, to the best of
our knowledge, the largest existing one in terms of subjects
and videos [25]. Each sample of the dataset is associated
to three modalities captured with an Intel RealSense SR300

1https://competitions.codalab.org/competitions/
20853

camera. Each sample comprises 1 live video clip, and 6
fake video clips under different attacks (one attack way per
fake video clip, shown in 1). A total of 1, 000 subjects and
21, 000 videos were captured for building this dataset.

We relied on this dataset for the organization of the
ChaLearn Face Anti-spoofing Attack Detection Challenge.
Accordingly, the CASIA-SURF data set was processed as
follows. (1) The dataset was split in three partitions: train-
ing, validation and testing sets, with 300, 100 and 600 sub-
jects, respectively. This partitioning corresponds to 6,300
(2,100 per modality), 2,100 (700 per modality), 12,600
(4,200 per modality) videos for the corresponding partition-
s. (2) For each video, we retained 1 out every 10 frames to
reduce its size. This subsmapling strategy results in: 148K,
48K, 295K frames for training, validation and testing sub-
sets, respectively. (3) The background except face areas
from original videos was removed to increase the difficulty
of the task.
Evaluation. In this challenge, we selected the recently s-
tandardized ISO/IEC 30107-32 metrics: Attack Presenta-
tion Classification Error Rate (APCER), Normal Presenta-
tion Classification Error Rate (NPCER) and Average Classi-
fication Error Rate (ACER) as the evaluation metrics, these
are defined as follows:

APCER = FP/ (FP + TN) (1)

NPCER = FN/ (FN + TP ) (2)

ACER = (APCER+NPCER) /2 (3)

where TP, FP, TN and FN corresponds to true positive,
false positive, true negative and false negative, respective-
ly. APCER and BPECER are used to measure the error rate
of fake or live samples, respectively. Inspired by face recog-
nition, the Receiver Operating Characteristic (ROC) curve
is introduced for large-scale face Anti-spoofing detection in
CASIA-SURF dataset, which can be used to select a suit-
able threshold to trade off the false positive rate (FPR) and
true positive rate (TPR) according to the requirements of
real applications. Finally, The value TPR@FPR=10−4 was
the leading evaluation measure for this challenge. APCER,
NPCER and ACER measures were used as additional eval-
uation criteria.
Challenge protocol. The challenge was run in the CodaL-
abplatform, and comprised two stages as follows:

Development Phase: (Started: Dec. 22, 2018 - Ended:
in March 6, 2019). During this phase participants had ac-
cess to labeled training data and unlabeled validation sam-
ples. Participants could use training data to develop their
models, and they could submit predictions on the valida-
tion partition. Training data was made available with sam-
ples labeled with the genuine and 3 forms of attack (4,5,6).

2https://www.iso.org/obp/ui/iso
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Whereas samples in the validation partition were associat-
ed to genuine and 3 different attacks (1,2,3). For the latter
dataset, labels were not made available to participants. In-
stead, participants could submit predictions on the valida-
tion partition and receive immediate feedback via the leader
board. The main reason for including different attack type-
s in the training and validation dataset was to increase the
difficulty of FAD challenge.

Final phase: (Started: March 6, 2019 - Ended: March
10, 2019). During this phase, labels for the validation sub-
set were made available to participants, so that they can
have more labeled data for training their models. The unla-
beled testing set was also released, participants had to make
predictions for the testing partition and upload their solu-
tions to the challenge platform. The considered test set was
formed by examples labeled with the genuine label and 3 at-
tack types (1,2,3). Participants had the opportunity to make
3 submissions for the final phase, this was done with the
goal of assessing stability of their methods. Note that the
CodaLab platform defaults to the result of the last submis-
sion.

The final ranking of participants was obtained from the
performance of submissions in the testing sets. To be eli-
gible for prizes, winners had to publicly release their code
under a license of their choice and provide a fact sheet de-
scribing their solution.

3. Description of solutions
The face anti-spoofing problem has been studied for

decades. Some previous work [20, 29] attempted to detect
evidence of liveness in samples (i.e., eye-blinking). Oth-
er works were based on contextual information [21, 16]
(i.e., attack material and screen moir). As deep learning
has proven to be very effective in many computer vision
problems, CNN-based methods are also present now in the
face PAD community [10, 17, 15]. They treat face PAD as a
binary classification problem, achieving remarkable perfor-
mance in intra-testing evaluation.

For the organized challenge, no team used traditional
methods for FAD, such as detecting physiological signs of
life, like eye blinking, facial expression changes and mouth
movements. Instead, all submitted face PAD solutions re-
lied on model-based feature extractors, such as ResNet [12],
VGG16 [26], etc. In the rest of this section we describe the
methods based on the ranking order (except Baseline and
Vivi) on the testing data set developed by the participants
that made it to the final stage; a summary is provided in
Table 2.
Baseline. Before the challenge, we built a strong baseline
for approaching the task, our goal was to have a method
of competitive performance for this datast. A detailed de-
scription of the baseline in provided in [25]. In short, we
considered the face anti-spoofing problem as a binary clas-

sification task (fake v.s real) and conducted the experiments
based on the ResNet-18 [12] classification network. In or-
der to make full use of the characteristics between differ-
ent modalities, inspired by [13], we proposed the squeeze
and excitation fusion method that uses the “Squeeze-and-
Excitation” branch to enhance the representational ability
of the different modalities’ feature by explicitly modelling
the interdependencies among different convolutional chan-
nels.
VisionLabs. This method used a modified network archi-
tecture as in [25]. As shown in Figure 2, the RGB, Depth
and IR inputs were processed by separate streams followed
by concatenation and fully-connected layers. Unlike [25],
they used aggregation blocks (AGG res2, AGG res3, AG-
G res4) to aggregate outputs from multiple layers of the
network. Then, they pre-train network weights on four d-
ifferent tasks for face and gender recognition, and fine-tune
these networks separately on the training set of the CASIA-
SURF. It is worth noting that they split the training set in-
to three folds according to different attacks present in the
training subset to increase robustness to unknown attack-
s. Finally, the outputs of three networks were combined by
averaging to produce results on the final validation and test
sets.
ReadSense. This team relied on local features. They used a
shallow SEresnext [13] to classify the multi-modal face im-
ages based on image patches in variant scale. To further im-
prove the performance, a multi-stream fusion network with
three-modal images was utilized. The fusion network was
trained from scratch with RGB, Depth and IR data at the
same time. Moreover, data augmentation was applied and
modalities were randomly dropped during training. For op-
timization, they followed a cyclic cosine annealing learning
rate schedule[14] which yielded better performance.
Feather. The main idea of this team’s solution was to pro-
cess multi-modal images sequentially in a cascaded net-
work, as shown in Figure 3. Participants considered that
depth information plays a key role between live and spoof
faces based on the fact that live faces have face-like depth,
e.g., the nose is closer to the camera than the cheek in
frontal-view faces, while faces in print or replay attacks
have flat or planar depth, e.g., all pixels on the image of
a paper have the same depth to the camera. Furthermore,
IR data was adopted in at end of network which measures
the amount of heat radiated from a face which can provides
strong error correction for reducing FP (false positive) sam-
ples greatly. Therefore, the process is divided into the fol-
lowing two stages: Stage 1: Four ensemble networks with
depth modal as input respectively and output the scores of
classification by voting. Stage 2: A MobileLiteNet fol-
lowed by stage 1 which takes the IR modal as input to judge
the fake samples further. The basic networks of these two
phases are Fishnet [27] and MobileNetv2 [24] respectively.
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Figure 2. Provided by VisionLabs team. Deep layer aggregation architecture of VisionLabs.

Figure 3. Provided by Feather team. The network structure of
Feather team, in which the FeatherNet and MobileLiteNet are
modified by Fishnet [27] and MobileNetv2 [24] respectively.

Hahahaha. Their base model is a Resnext [33] which was
pre-trained with the ImageNet dataset [8]. Then, they fine-
tune the network on aligned images with face landmark and
use data augmentation to strengthen the generalization abil-
ity.
MAC-adv-group. This solution used the Resnet-34 [12] as
base network. To overcome the influence of illumination
variation, they convert RGB image to HSV color space.
Then, they sent the features extracted from the network into
a fully-connected layer and a binary classification layer.
ZKBH. Analyzing the training, valid and test sets, partici-
pants assumed that the eye region is promising to get good
performance in FAD task based on an observation that the
eye region is the common attack area. After several trials,
the input of the final version they submitted adopted quarter
face containing the eye region. Different from prior works
that regard the face anti-spoofing problem as merely a bina-
ry (fake v.s real) classification problem, this team construct-
ed a regression model for differentiating the real face and
the attacks.
VisionMiracle. This solution was based on the modified
shufflenet-V2[18]. The feature-map was divided into two
branches after the third stage, and connected in the fourth

Figure 4. Provided by GradiantResearch team. General diagram
of the GradiantResearch team.

stage.
GradiantResearch. The fundamental idea behind this so-
lution was the reformulation of the face presentation at-
tack detection problem (face-PAD) following an anoma-
ly detection strategy using deep metric learning. The ap-
proach can be split in four stages (Figure 4): Stage 1:
using a pre-trained model for face recognition and apply
a classification-like metric learning approach in GRAD-
GPAD dataset [7] using only RGB images. Stage 2: they
fine-tune the model obtained in Stage 1 with the CASIA-
SURF dataset using metric learning for anomaly detection
(semi-hard batch negative mining with triplet focal loss)
adding Depth and IR images to the input volume. Once
the model converged, they trained an SVM classifier using
the features of the last fully connected layer (128D). Stage
3: they trained an SVM classifier using the normalized his-
togram of the depth image corresponding to the cheek re-
gion of the face (256D). Stage 4: they performed a simple
stacking ensemble of both models (Stage 2 and Stage 3) by
training a logistic regression model with the scores in the
training split.
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Team Name Method Model Pre-trained data Modality Pre-process Additional
FAD dataset

Fusion
and Loss function

VisionLabs
Fine-tuning

Ensembling

Resnet-34 [12]

Resnet-50 [12]

Casia-WebFace [34]

AFAD-Lite [19]

MSCeleb1M [11]

Asian dataset [35]

RBG

Depth

IR

Resize No

Squeeze and
Excitation Fusion

Score fusion

SoftmaxWithLoss

ReadSense

Bag-of-local
feature

Ensembling

SEresnext [33] No

RBG

Depth

IR

Crop image
patches

Image
augmentation

No

Squeeze and
Excitation Fusion

Score fusion

SoftmaxWithLoss

Feather Ensembling
Fishnet [27]

MobileNetv2 [24]
No

Depth

IR

Resize

Image adjust

Private FAD
data

Score fusion

SoftmaxWithLoss

Hahahaha Only using
depth images Resnext [33] Imagenet [8] Depth

Data
augmentation

Aligned faces

No SoftmaxWithLoss

MAC-adv-group Features
fusion Resnet-34 No

RBG

Depth

IR

Transfer
color space No

Features fusion

SoftmaxWithLoss

ZKBH
Using

regression
model

Resnet-18 No

RBG

Depth

IR

Crop image

Image
augmentation

No
Data fusion

Regression loss

VisionMiracle Modified
shufflenet-V2 Shufflenet-V2 [18] No Depth Image

augmentation No SoftmaxWithLoss

Baseline [25] Features
fusion Resnet-18 No

RBG

Depth

IR

Resize

Image
augmentation

No SoftmaxWithLoss

GradiantResearch
Deep
metric

learning

Inception
resnet v1 [28]

VGGFace2 [3]

GRAD-GPAD [7]

RBG

Depth

IR

Crop image

Image
augmentation

No

Stacking
ensemble

Logistic
regression

Vipl-bpoic Attention
mechanism [31] ResNet-18 No

RBG

Depth

IR

Control
positive and

negative sample
ratio

No

Data fusion

Center loss [30]

SoftmaxWithLoss

Massyhnu Ensembling 9 Softmax
classifiers No

RBG

Depth

IR

Resize

Transfer
color space

No

Color
information fusion

SoftmaxWithLoss

AI4all Only using
depth images Vgg16 [26] No Depth

Resize

Image
augmentation

No SoftmaxWithLoss

Guillaume Multi-Channel
CNN LightCNN [32] Yes

Depth

IR
Resize No

Data fusion

SoftmaxWithLoss

Vivi
A dense-

cross-modality-
attention model

Densenet [36] Yes

RBG

Depth

IR

Image
augmentation

Transfer
color space

Private FAD
data

Features fusion

Score fusion

SoftmaxWithLoss
Table 2. Summary of the methods for all participating teams.

Vipl-bpoic. This team focused on improving face anti-
spoofing generalization ability by proposing an end-to-end
trainable face anti-spoofing model with attention mechanis-
m. Due to the sample imbalance, they assign the weight of
1:3 according to the number of genuine and spoof faces in
Training set. Subsequently, they fuse the three modal im-

ages including RGB, Depth and IR into 5 channels as the
input of ResNet-18 [12] which integrated with the convo-
lutional block atttention module. The center loss [30] and
cross-entropy loss are adopted to constrain the learning pro-
cess in order to get more discriminative cues of FAD finally.

Massyhnu. This team paid attention to color information
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Val Test
NN1 NN1a NN2 NN3 NN4 TPR TPR

@FPR=10e-4 @FPR=10e-4

X 0.9943 -
X 0.9987 -

X 0.9870 -
X 0.9963 -

X 0.9933 -
X X 0.9963 -
X X X 0.9983 -
X X X 0.9997 -
X X X X 1.0000 -

X X X X 1.0000 0.9988

Table 4. Provided by VisionLabs team. The results on the valid and
test sets of the VisionLabs team, different NN modules represent
different pre-trained Resnet [12].

fusion and ensemble learning [23, 22].
AI4all. This team used VGG16 [26] as the backbone for
face PAD.
Guillaume. Their method consists in a Multi-Channel con-
volutional Neural Network (MC-CNN) taking a face images
of different modalities as input. Near-infrared and depth im-
ages only have been used in their approach. The architec-
ture of the proposed MC-CNN is based on the second ver-
sion of the LightCNN [32] containing 29 layers. Also, the
pretrained LightCNN model is used as a starting point for
their training procedure. The training consists in the fine-
tuning of the low-level convolutional layers of the network
in each modalities, and in learning the final fully connected
layers.
Vivi. A dense-cross-modality-attention model was trained
by using the Depth, RGB and IR dataset. In this net-
work, a dense connected structure was used in every single
modality and the cross-modality attention mechanism was
designed to transfer information from different modalities.
After the cross-modality backbone was designed, they used
the paddle-auto-ml 3 tool to search for the hyperparameters
of the network such as channel numbers and kernel sizes.
In addition, they collected a large amount of data in three
modalities same with CASIA-SURF.

4. Challenge Results

In this section, we present the results obtained by the
thirteen teams that qualified to the final phase. Then, the
effectiveness of proposed algorithms are analyzed. Finally,
we point out some limitations of the algorithms proposed
by participating teams.

4.1. Challenge Results Report

In order to evaluate the performance of solutions, we
adopted the following metrics: APCER, NPCER, ACER

3http://www.paddlepaddle.org/paddle/ModelAutoDL

Figure 5. ROC curves of final stage teams on test set.

and TPR in the case of FPR=10−2, 10−3, 10−4 respec-
tively, and the scores retained 6 decimal places for all re-
sults. The scores and ROC curves of participating teams
on the testing partitions are shown in Table 3 and Figure 5
respectively. Please note that although we report perfor-
mance for a variety of evaluation measures, the leading met-
ric was TPR@FPR=10−4. It can be observed that the best
result (VisionLabs) achieves TPR=99.9885%, 99.9541%,
99.8739% @FPR=10−2, 10−3, 10−4, respectively, and the
TP = 17430, FN = 28, FP = 1, TN = 40251 respectively on
the test data set. In fact, different application scenarios have
different requirements for each indicator, such as in higher
security access control, the FP is required to be as small as
possible. While, a small FN value is more important in the
case of troubleshoot suspects. Overall, the results of the first
eight teams are better than the baseline method [25] when
FPR = 10−4 on test data set.

4.2. Challenge Results Analysis

As shown in Table 3, the results of the top three teams
on test data set are clearly superior to other teams, reveal-
ing that ensemble learning has an exceptional advantage in
deep learning compared to single model solutions under the
same conditions, such as in Table 4 and Table 2. Simulta-
neously, analyzing the stability of the results of all partici-
pating teams’ submission from the ROC curve 5, the three
teams are significantly better than other teams on testing
set (e.g., TPR@FPR=10−4 values of these three teams are
relatively close and superior to other teams). The team of
ReadSense applies the image patch as input to emphasize
the importance of local features in FAD task. The result
of FN = 1 shows that the local feature can effectively pre-
vent the model from misclassifying the real face into an at-
tack one, shown in the blue box of Figure 6. Similarly, Vivi
and Vipl-bpoic introduce the attention mechanism into FAD

6
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Team Name FP FN APCER(%) NPCER(%) ACER(%) TPR(%) data set@FPR=10e-2 @FPR=10e-3 @FPR=10e-4
VisionLabs 3 27 0.0074 0.1546 0.0810 99.9885 99.9541 99.8739

test

ReadSense 77 1 0.1912 0.0057 0.0985 100.0000 99.9427 99.8052
Feather 48 53 0.1192 0.1392 0.1292 99.9541 99.8396 98.1441

Hahahaha 55 214 0.1366 1.2257 0.6812 99.6849 98.5909 93.1550
MAC-adv-group 825 30 2.0495 0.1718 1.1107 99.5131 97.2505 89.5579

ZKBH 396 35 0.9838 0.2004 0.5921 99.7995 96.8094 87.6618
VisionMiracle 119 83 0.2956 0.4754 0.3855 99.9484 98.3274 87.2094

GradiantResearch 787 250 1.9551 1.4320 1.6873 97.0045 77.4302 63.5493
Baseline 1542 177 3.8308 1.0138 2.4223 96.7464 81.8321 56.8381

Vipl-bpoic 1580 985 3.9252 5.6421 4.7836 82.9877 55.1495 39.5520
Massyhnu 219 621 0.5440 3.5571 2.0505 98.0009 72.1961 29.2990

AI4all 273 100 0.6782 0.5728 0.6255 99.6334 79.7571 25.0601
Guillaume 5252 1869 13.0477 10.7056 11.8767 15.9530 1.5953 0.1595

Vivi∗ 7 15 0.0173 0.0859 0.0516 99.9828 99.9484 99.8282
Table 3. Results and rankings of the final stage teams, the best indicators are bold. Note that the results on the test set are tested by the
model we trained according to the code submitted by the participating teams.(∗ indicates Vivi is affiliated with the sponsor and does not
participate in the final ranking).

Figure 6. Mistaken samples of the top three teams on the Testing
data set, including FP and FN. Note that the models were trained
by us.

task. Since different modalities have different advantages:
the RGB data have rich details, the Depth data is sensitive to
the distance between the image plane and the corresponding
face, and the IR data measures the amount of heat radiated
from a face. Based on this characteristic, Feather uses a cas-
caded architecture with two subnetworks to study CASIA-
SURF with two modalities, in which Depth and IR data are
learnt subsequently by each network. Some teams consid-
er face landmark (e.g., Hahahaha) into FAD task, and other

teams (e.g., MAC-adv-group, Massyhnu) focus on the col-
or space conversion. In stead of binary classification model,
ZKBH constructs a regression model to supervise the model
to learn effective cues. GradiantResearch reformulates the
face-PAD as an anomaly detection using deep metric learn-
ing.

Although these methods have their own advantages,
there are still some shortcomings in the code reproduction
stage of the challenge. As described before, CASIA-SURF
is characterized by multi-modal data (i.e., RGB, Depth and
IR) and the main research point is how to fuse the comple-
mentary information between these three modalities. How-
ever, many teams apply ensemble learning that is a way of
Naive Halfway Fusion [25] in fact, which cannot make full
use of the characteristics between different modalities. In
addition, most of the ensemble methods use greedy manner
for model fusion, including constantly increase the model
if the performance does not decrease on the valid set in Ta-
ble 4, which inevitably brings additional time consumption
and instability. In order to demonstrate the shortcomings
of the algorithm visually, we randomly selected 6 misclas-
sified samples for each of the top three teams on the test
set, of which the FP and FN are 3 respectively, as shown
in Figure 6. Notably, the fake sample in the red box was si-
multaneously misclassified into real face by the three teams,
where the clues were visually seen in the eye portion of the
color modality. From the misclassification samples of the
VisionLabs team, face pose is the main factor leading to FN
samples (marked by a yellow box). As for the FP samples
of ReadSense, the main clues are concentrated in the eye
region (shown in the purple box). However, image patch-
es applied by this team as the input of network, which is
easy to cause misclassification if the image block does not
contain an eye region. Only Depth and IR modal data sets
were used by Feather team, resulting in misclassified sam-
ples that can be recognized by the human eyes easily. As
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shown in green box, obvious clues which attached on the
nose and eyes region in the color modal data sets are dis-
carded by their algorithm. Overall analysis, the three teams
have better recognition performance than Attack 1, 3, 5 for
Attack 2, 4, 6 (performing a bending operation on the corre-
sponding former) [25]. It shows that the bending operation
used by simulating the depth information of the real face
is easily detected by the algorithms. Last but notable, from
the FP samples of the three teams, the misclassified samples
are mainly caused by Attack 1, indicating that the sample
with some regions are cut from the printed face can bring
the depth information of the real face, but introducing more
cues which can prove itself is fake one.

5. Open Issues and Opportunities

5.1. Critical Issues and Breakthrough Point

Face PAD remains a challenging problem due to lack
of generalization and far from meeting the requirements of
practical applications, mainly in the following aspects:

Intra-testing. Results vary greatly across different test-
ing set scales, such as the performance gap between the
same team on validation and test set (except the top three
teams) listed in Table 3.

Inter-testing. Existing PAD algorithms rely heavily on
the data used in training phase, and is easily affected by dif-
ferent attack types, acquisition devices and spoofing medi-
ums presented in other datasets.

An important reason for the poor generalization abili-
ty is also used by most of the participating teams in this
challenge (see Table 2). It is a CNN with softmax loss
might discover arbitrary cues, such as spot or screen bezel
of the spoof medium, that are not the faithful spoof pattern-
s. When these cues disappear during testing, these models
will fail to distinguish fake v.s real faces and result in poor
generalization [17].

Therefore, the supervision should be designed from the
essential differences between live and spoof faces, such as
the rPPG signals (i.e., heart pulse signal) which can reflect
human physiological signs. From the perspective of image
imaging, the depth information of face image has essential
differences between real and fake face due to the real face
is taken from one shot, while the fake one belongs to sec-
ond imaging from a print or replay attack which has flat or
planar depth. From the perspective of light reflection, the
imaging light of real and fake face image comes from dif-
fuse and specular reflection respectively, which may result
a difference in the noise distribution between the real and
fake images. Finally, from the perspective of multi-frame,
information between video frames of a live sample is dif-
ferent from a fake video clip, especially in the face of static
images or print attacks.

5.2. Future Work and Opportunities

In order to take full advantage of this multi-modal
dataset, as future work, we plan to define a series of cross-
modal testing protocols that are different from this chal-
lenge, e.g., training on RGB images, and testing on Depth
or IR modal data sets. The original intention of cross-modal
protocol design is to guide the model to learn the relevant
information between different modalities for the same cate-
gory, e.g., real or fake. Further, we will focus on improving
the generalization ability of face PAD algorithms by design-
ing supervision information that mentioned in section 5.1.

In addition, as the attack techniques are constantly up-
graded, some new types of PA have emerged, e.g. 3D masks
or custom-made silicone masks, which are more realistic in
terms of texture and depth information than traditional 2D
PAs, such as photos or video-replay attacks. In fact, a sub-
stantial portion of 2D PAD methods are rendered inopera-
tive when 3D facial masks are introduced for attacks [1].
Therefore, we plan to collect a 3D masks dataset including
head-mounted mask and face silicone models to push the
research for countering 3D face mask attack.

6. Conclusion

We organized the Chalearn LAP multi-modal face anti-
spoofing attack detection challenge based on the CASIA-
SURF dataset and running on the CodaLab platform. Three
hundred teams registered for the competition and thirteen
teams made it to the final stage. Among the latter, teams
were formed by ten companies and three academic insti-
tutes/universities. We described the associated dataset, and
the challenge protocol including evaluation metrics. We re-
viewed in detail the proposed solutions and reported the re-
sults from both development and final phases. We analyzed
the results of the challenge, pointing out the critical issues
in FAD task and presenting the shortcomings of the existing
algorithms. Future lines of research in the field have been
also discussed.
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