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Abstract

Since the Generative Adversarial Network (GAN) was
proposed, facial image generation used for face recogni-
tion has been studied in recent two years. However, there
are few GAN-based methods applied for fine-grained fa-
cial attribute analysis, such as face generation with pre-
cise age. In this paper, fine-grained multi-attribute GAN
(FM-GAN) is presented, which can generate fine-grained
face image under specific multiply attributes, such as 30-
year-old white man. It shows that the proposed FM-GAN
with fine-grained multi-label conditions is better than con-
ditional GAN (cGAN) in terms of image visual fidelity. Be-
sides, synthetic images generated by FM-GAN are used for
data augmentation for face attribute analysis. Experiments
also demonstrate that synthetic images can assist the CNN
training and relieve the problem of insufficient data.

1. Introduction
Facial attributes analysis is an active research topic in

the pattern recognition for many years. However, for a long
time lack of sufficient training data was one of the main
challenges, especially in age estimation [3]. At that time,
collecting face images of each age in the human lifetime
from the same people is quite difficult. So many aging
datasets appear to exist serious imbalanced problem [11]
and lack of samples. Recently most methods proposed fo-
cus on learning label distribution, local regions of faces
from limited samples and generating new data. Although
there has been quite a few methods of generating face im-
ages to supply data, more precise generation of fine-grained
attributes is precious. Besides, in real life age is not an in-
dependent attribute and has some relevance to other facial
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attributes (e.g. gender, ethnicity and so on). Generation and
modification of these attributes require combination of lo-
cal changes and global changes. The presented traditional
face generation of different attributes is limited to model-
ing of progressing pattern without considering global fa-
cial changes. So jointly analyzing face generation of multi-
attributes and focusing on synthesis of fine-grained ages are
necessary for lots of facial works in the future.

In recent two years, natural image generation has been
developed to a new height by Generative Adversarial Net-
works(GAN) proposed by Ian Goodfellow [4] which will
be introduced in Section 2 for details. This model has been
verified to be able to produce images with fairly high visual
fidelity [10] and learn abundant representations from train-
ing samples [7], like learning pose representation for frontal
facial synthesis [6]. After that, lots of works focus on em-
ploying GAN to face applications. However, on the face
aging and generation of different ages problem, most meth-
ods simplify the problems by only making generated face
older or younger [9], or dividing the range of ages into sev-
eral groups to generate face images in different stages [1].

In contrast, we propose a novel method for face genera-
tion of fine-grained multi-attribute. Our model could gener-
ate realistic face images of multi-attribute including gender,
ethnicity and fine-grained ages according to the provided
conditions. Meanwhile, we use synthetic samples as sup-
plement for original dataset and solve data augmentation
problem to some extent.

The summary of contributions of our work is the follow-
ing:

• We propose a novel FM-GAN for face generation of
multi-attribute including fine-grained synthesis of dif-
ferent ages. Synthetic images perform great visual fi-
delity, and representations of gender, ethnicity and age
are perfectly disentangled from other variations.

• We propose to enlarge the MORPH Album II
dataset [11] with our generated samples and apply the



new dataset to assist age estimation training, which
achieves good performance on MORPH Album II
dataset. Synthetic dataset could be used as supplement
data to augment other dataset without influencing its
performance.

The rest of the paper is organized as follows. Related
works are reviewed in Sec. 2. Sec. 3 will emphasize on our
proposed method. Then, experiments are performed in Sec.
4 to evaluate our method. Finally, conclusion and future
works are drawn in Sec. 5.

2. Related Work

Generative Adversarial Networks (GAN) As intro-
duced by Ian Goodfellow et al. [4], vanilla GAN consists of
a generator D and a discriminator G that compete with each
other in a two-player minimax game. G learns a mapping
from probability distribution Pz(z) of latent vectors in low-
dimensional manifold to data Pdata(x) in high-dimensional
manifold and synthesizes face images x̂ = G(z), where
z ∼ N(0, 1) is random latent vector, as real as possible
to fool D while D tries to distinguish the generated images
x̂ from training images x. When G outputs images that D
could not judge whether it’s real or fake, then a good enough
GAN model gets trained. The adversarial functions can be
described as below:

argmin
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] +

Ez∼pz(z) [log(1−D(G(z)))]
(1)

More recent works on GAN focus on face applications,
such as Face aging [1], Face modification [9], Frontal face
synthesis for recognition [6, 5]. In contrast. we propose an
extended GAN mainly for studying face generation of fine-
grained multi-attribute. By synthesizing facial attributes
dataset, synthetic images could supply other dataset from
the perspective of data augmentation.

cGAN versus AC-GAN Most proposed methods about
adding extra information to GAN are based on two mod-
els: conditional GAN (cGAN) [7] and auxiliary classifier
GAN (AC-GAN) [8]. The former is implemented by sup-
plying both generator and discriminator with class labels in
order to learn conditional distribution. The latter tasks dis-
criminator as an auxiliary classifier to output the predicted
conditions, and the generator could be seen as an decoder
to map current conditional vector and noise vector to a syn-
thetic face image. So the whole process is a conditional
reconstruction. Both methods have its own advantages on
conditional face generation. Considering both methods, our
FM-GAN is proposed and modified from AC-GAN for face
generation of fine-grained multi-attribute.
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Figure 1. The overall architecture of our FM-GAN.

3. The Proposed Method
The overall architecture of our FM-GAN can be seen in

Fig. 1. In the following content, we will focus on introduc-
ing the implementations of FM-GAN and describe it in the
form of an algorithm.

3.1. Fine-grained Multi-attribute GAN (FM-GAN)

The aim of multi-attribute facial synthesis is to produce
realistic and sufficient face samples based on MORPH-II
dataset [11] and assist age estimation classifier training. In
order to achieve such networks, we adopt a extension of
the generative adversarial networks to multi-attribute set-
ting. The crucial problem is how to lead fine-grained side
information into GAN. Compared with cGAN [7] which
directly insert labels into discriminator, tasking GAN with
conditional reconstruction is the better way. In the process
of conditional reconstruction, the discriminator D is tasked
as an multi-attribute classifier networks to output the pre-
dicted conditional information [8].

Given sufficient training faces {xi, yig, yie, yiai =
1...n}, where n is the number of images in our training set,
g, e, a represent the gender, ethnicity and age label, respec-
tively. Before being supplied to generator, age should be
transformed to a one-hot vector with Na dimensions. Na

means the number of fine-grained categories.
The discriminator should not only learn to distinguish

synthetic face images from real face images, but also learn
multiple labels distribution and classify real face images
to its corresponding multiply classes through training. Its
parameters are optimized by minimizing adversarial loss
and softmax cross-entropy loss. For any training sample
(x, ya, yg, ye) and synthetic sample x̂ = G(z, a, g, e), the
optimization problem can be formulated as below:

max
D

VD(D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z),g∼pg(g),

e∼pe(e),a∼pa(a)

[log(1−D(G(z, g, e, a)))]

+ Ex,y∼pdata(x,y)[logD
ŷa

ya (x) + logD
ŷg

yg (x) + logD
ŷe

ye (x)]

(2)

where z is the random noise, g, e, a respectively stands for
class of gender, ethnicity and age sampled from label dis-



tribution as the input to generator. Adversarial loss is in-
troduced to distinguish real face images xini=1 from synthe-
sized ones x′i

n
i=1. ŷa, ŷg, ŷe are the output of discriminator

for training images as a auxiliary classifier .
Following the training pace of discriminator, generator

G is updated to synthesize realistic face x̂ of specific gen-
der g, ethnicity e and age a specified in the input of gener-
ator which could fool discriminator to classify them to the
real images. The optimization formulations of generator are
listed as followed:

max
G

VG(D,G) = Ez∼pz(z),g∼pg(g),
e∼pe(e),a∼pa(a)

[log(D(G(z, g, e, a)))]

+ Ez∼pz(z),g∼pg(g),
e∼pe(e),a∼pa(a)

[logDa′

a (G(z, g, e, a))

+ logDg′

g (G(z, g, e, a)) + logDe′

e (G(z, g, e, a))]

(3)

where a′, g′, e′ are the output of discriminator for generated
images as a auxiliary classifier.

3.2. Learning Strategy

The Algorithm 1 summarizes the training procedure.
After initializing the input of generator and discriminator
(lines 2,3), we generate faces of specific multiple attributes.
The generated images and real images are input into dis-
criminator. yg ′, ye′, ya′ encode real images to predicted
gender, ethnicity and age. sr estimates real samples’ prob-
ability. g′, e′, a′ encode generated images to predicted gen-
der, ethnicity and age. sf estimates synthetic samples’
probability. Lines 8,10,11 indicate taking a gradient step
to optimize GAN.

Algorithm 1 The FM-GAN with gender, ethnicity and age
representations learning strategy
Input: Minibatch Images: x = {xi, y

g
i , y

e
i , y

a
i }

m−1
i=0 , Latent Representation

vector: z = {zi}m−1
i=0 Gender, Ethnicity and Age Representation vector batch:

g = {gi}m−1
i=0 , e = {ei}m−1

i=0 , a = {ai}m−1
i=0 , Batchsize: m, learning rate

λ = 0.0002.
Output: Generated Images: x′ = {xi

′}m−1
i=0

1: while not converge do
2: z ∼ U(−1, 1)Z , {Draw sample of random noise}
3: (g, r, a) ∼ pdata(g, r, a), {Draw specific label from labels distribution}
4: x′ ← G(z, g, r, a), {Decode vector forward through generator}
5: (sr, y

g ′, ye′, ya′)← D(x)
6: (sf , g

′, e′, a′)← D(x′)
7: LD ← log(sr) + log(1 − sf ) + logyg (yg ′) + logye (ye′) +

logya (ya′)

8: D ← D − λ · ∂LD
∂D , {update discriminator}

9: LG ← log(sf ) + logg(g
′) + loge(e

′) + loga(a
′)

10: G← G− λ · ∂LG
∂G , {update generator}

11: G← G− λ · ∂LG
∂G , {update generator twice}

12: end while

4. Experiment
In this section, we will introduce three datasets on which

all of our following experiments are carried out and describe
the implementation details during training GAN, especially
some tricks to optimize the training process. Last is to
evaluate the performance of our FM-GAN and verify our
demonstration.

4.1. Dataset

MORPH Album II [11] is one of largest datasets widely
used for human facial age estimation. All samples of dataset
are under age, gender and ethnicity variations in controlled
environment, containing 55244 images of 19598 subjects in
which most are nearly frontal faces or some having poses
within ±30◦. During the stage of training GAN, we find
that sufficient samples are necessary. Lack of training data
severely influence the generative results. So the whole
dataset is fully used for training GAN. The whole database
is split into three subsets S1, S2 and S3. Then they are as-
sembled to two couples of non-overlapped subsets S1 and
S2+S3 as Test set, S2 and S1+S3 as Test set. The details
of these subsets are described in the test protocols1 provided
by Yi et al [14] and Tan et al. [12]. Before training, we
first align and crop all samples (xi, yi)

n
i=1 to resolution of

128× 128 according to the distance between eyes and nose
to keep whole head with hair. The final samples are shown
in Fig. 2. Details of three attributes y in the MORPH II
dataset used illustrate as followed: age labels ya are from
16 to 77, gender yg with only two labels (e.g.male, female),
ethnicity labels ye are Black or White.

Figure 2. Some MORPH II examples of resolution 128 × 128 af-
ter being preprocessed. Each couple of faces are of the different
gender, ethnicity, age and identity.

Besides Morph Album II, our method has also been run
on CACD [2] and FG-NET databases. The Cross-Age
Celebrity Dataset(CACD) is the largest public cross-age
database, which contains more than 160 thousand images
from 2000 celebrities, with age ranging from 14 to 62. The
FG-NET database contains 1002 color or grayscale face im-
ages of 82 subjects, with ages from 0 to 70. These images
are taken in a totally uncontrolled environment with large
variations of lighting, poses and expressions. Both two
datasets have only age labelled. So only the performance of
age attribute is experimented on these two databases. When
evaluating on FG-NET, leave-one-person-out(LOPO) cross
validation strategy is taken and averaging performance over
the 82 splits is reported. When evaluating on CACD, the

1http://www.cbsr.ia.ac.cn/users/dyi/agr.html



database is split into three subset: 1800 noisy celebrities
for training; 80 cleaned celebrities for validation and 120
cleaned celebrities for testing.

4.2. Implementation details

In this work, we set the size of a batch to Na = 64 and let
the input of generator be the same as the label distribution of
training samples imported into discriminator. It will greatly
stabilize the training process of GAN by balancing the up-
date speed of generator and discriminator when updating
the cross entropy loss of multiple attributes. It’s not recom-
mended to control age distribution of training samples for
generator and discriminator. There exists high probability
of over-fitting in the severely imbalanced condition. The
structure of generator and discriminator being built sym-
metrically will stabilize the training process when updat-
ing the adversarial loss for both models. In addition, ow-
ing to lack of samples for training in FG-NET, some oper-
ations like images flipping, rotating and noising are applied
to face images for data augmentation before training GAN.
For both CACD and FG-NET, all face images are aligned
and cropped to a view of size 128× 128 like MORPH II.

Figure 3. Labels distribution with three attributes in MORPH II
dataset. The distribution of gender, ethnicity and age is all ex-
treme. In the left sub table, [0, 1] stands for [male, female]. In
the mid table, [0, 1] stands for [Black,White].

Our model is extensively modified from a publicly avail-
able implementation of DC-GAN using Tensorflow2. The
random noise z is set to a 100-dim Uniform vector. Images
intensities are also linearly scaled to the range of [−1, 1].
Following the optimization strategy in [10], all weights in
the networks are initialized from a zero-centered normal
distribution with a standard deviation of 0.02. Adam op-
timizer is used with a learning rate of 0.0002 and momen-
tum 0.5 in initial training. At the stage of representation
learning during which network parameters need subtle ad-
justment, learning rate is reset to a little smaller. The detail
of the networks for 128 × 128 generation is presented in
Tab. 1.

2https://github.com/carpedm20/DCGAN-tensorflow

Table 1. FM-GAN network architecture
Generator Discriminator

Layer Filter Size Output Size Layer Filter Size Output Size
FC1 4x4x1024 Conv1 5x5/2 64x64x64

Fconv1 5x5/2 8x8x512 Conv2 5x5/2 32x32x128
Fconv2 5x5/2 16x16x256 Conv3 5x5/2 16x16x256
Fconv3 5x5/2 32x32x128 Conv4 5x5/2 8x8x512
Fconv4 5x5/2 64x64x64 Conv5 5x5/2 4x4x1024
Fconv5 5x5/2 128x128x3 FC1 Ng+Nr+Na+1

4.3. Model Evaluation

Besides synthesizing realistic face images of specific at-
tributes, the main goal of our FM-GAN is to supply the gen-
erated images to original MORPH II dataset and assist its
training on the task of age estimation. The visual quality
of synthetic samples directly affect the performance on age
estimation to a great extent. Therefore, in this following
content, we firstly compare cGAN with our FM-GAN, and
then concentrate on measuring the quality of synthesized
samples and evaluating demonstration of assisting MORPH
II dataset training.

4.3.1 cGAN versus FM-GAN

We conduct the comparative experiments based on the same
network structure mentioned in Sec. 4.2 to compare our
FM-GAN with cGAN [7]. Their comparison is shown in
Fig. 4.
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Figure 4. Comparison of generative performance between FM-
GAN and cGAN during training. In the training process, one
epoch equals to 1000 iterations.

Although both methods quickly converge at nearly the
same pace, where green and yellow lines stand for the dis-
criminative and generative loss curve of FM-GAN, red and
blue lines stand for the corresponding loss curve of cGAN,
with the training process proceeds FM-GAN has a clear pro-
cess of face generation and synthesize photorealistic face
images. However as for cGAN, no matter how to adjust
hyperparameters in the training, the model can only gener-
ate the blurry outline of faces. It can be summed up that
compared with cGAN, the implementation of FM-GAN is
more suitable for achieving face generation of find-grained
multi-attribute.



4.3.2 Face Synthesis by FM-GAN

Fig.5 illustrates some representative synthetic samples
drawn from different attributes. Each sample corresponds
to a latent vector z sampled randomly and specific labels,
gender yg , ethnicity ye and age ya. Our results display out-
standing effect in terms of images’ diversity and quality.

Figure 5. Examples of 128 × 128 synthetic images generated by
our FM-GAN with the noise data randomly sampled for all faces
and varying gender g sampled in [Male,Female], ethnicity e sam-
pled in [Black, White], and age sampled with aging process.

By assigning initial latent approximations z arbitrary
fixed value, varied gender, ethnicity and ages could be ob-
served. Except for gender, ethnicity and age, all the other
facial features we have not considered and even the back-
ground factors like illumination and scene are controlled by
latent noise vector z. Fig. 6 shows that image informa-
tion encoded by conditions determining gender, ethnicity
and age is perfectly disentangled and shows appealing ef-
fect to human eyes. In each row faces are listed in order of
aging from younger to older with fixed identity, gender and
ethnicity. In each column shifts are applied to gender and
ethnicity with same identity and fixed age. The shifts cause
noticeable effect on facial features meanwhile it is evident
that slightly shifted conditions of gender and ethnicity have
not influenced generation of similar-looking faces.

Figure 6. Examples of 128 × 128 samples with fixed iden-
tity(noise) and varying g, e ∈ [0, 1] respectively in the vertical
,and a ∈ [16, 24, 32, 40, 48, 56, 64] in the horizon

In order to objectively measure quality of synthetic face
images and accuracy of corresponding attributes generation,
we respectively use S1 and synthetic dataset of the same
amount and attributes distribution with S1 (named G1 in
the following paper) to train two classifiers based on modi-
fied AlexNet provided by Tan et al. [12] and evaluate their
performance on corresponding test set. Tab. 2 shows the
comparison of performance between MORPH II samples
and synthetic samples at the resolution of 128× 128.

Table 2. Synthetic Performance on Morph-II test set
Synthetic Resolution 128x128

Criteria MAE Accuracy
Attribute age gender race

MORPH-II (baseline) 3.851798 0.985435 0.970392
Synthetic images 7.369065 0.941347 0.973449

As shown in Tab. 2, the estimation accuracy of gender
and ethnicity is close to the performance of real images,
respectively reaching 94.1% and 97.3%. The result of age
is not satisfied. Observing the generated images of each
age, we make assumptions that poor generated images of
older ages may be responsible for this results. These poor
generated faces bring lots of noise to the training process.

By analyzing the performance of synthetic dataset on
each age, it is found that MAE in the range of young ages
show better performance than in the range of old ages which
nearly approaches the performance of original MORPH II
dataset. The average MAE before the age of 40 is 6.139406
while MAE behind the age of 40 gets 10.331515. From the
perspective of synthetic quality, older faces perform worse
visual fidelity than young faces. On the whole, There is still
plenty of room for improving fine-grained generation.

4.3.3 Data Augmentation with Synthetic Images

To further verify our demonstration that largening MORPH
II dataset with synthetic samples could improve the per-
formance of age estimation, different scales of samples in
accordance with the distribution of age are taken out from
G1 set(Our generated dataset) and added to S1 set for joint
training. In fact, most samples taken out are from young
categories having larger proportion than others. So this ex-
periment mainly emphasizes on the contribution from gen-
erated faces in the range of young ages.

Tab. 3 shows the performance comparison of different
scale of G1 set added to S1 set. All results are tested on
corresponding test set. Baseline is the performance of orig-
inal train set without additional generated samples trained
on AlexNet. Except for the experiment of baseline be-
ing trained individually from the beginning, the following
experiments of different scales are implemented by fine-
tuning the pre-trained model of baseline. Final results show
that augmenting original MORPH II dataset with generated



Table 3. Performance of different numbers of synthetic images
added to MORPH Album II

Method Age Race Gender
Base(AlexNet) 3.851798 0.985435 0.970392

scale:0.2 3.821998 0.979125 0.962331
scale:0.4 3.790397 0.980650 0.959916
scale:0.6 3.786226 0.977389 0.962496
scale:0.8 3.787912 0.977389 0.964794
scale:1.0 3.773675 0.980181 0.959235
CNN[13] 4.60 - -

Multi-Scale CNN[14] 3.63 - -
Soft softmax[12] 3.14 - -

images obviously improve its performance on age estima-
tion and has scarcely little impact on gender and ethnicity
estimation. With the increase of supplementary synthetic
images, MAE keeps decreasing and becomes better. These
results are sufficient to prove that generated faces can be
used to solve data augmentation. Some models like Multi-
scale CNN[14] and Soft softmax[12] which have been pro-
posed and trained before have images with larger resolu-
tions as input which could not be used for fine-tuning but
becomes our works in the future.

The same process of verification is applied to FG-NET
and CACD. The results are shown in the Tab.4 below. It
should be noted that the results of CACD and FG-NET are
directly using datasets for training VGGNet and AlexNet on
age estimation without any other pre-trained initialization.
The performance on CACD is not ideal for the reason of bad
generation of face samples. Some databases like CACD and
FG-NET could get better performance on age estimation if
experimented on some pre-trained models.

Table 4. Performance of age on CACD and FG-NET datasets
Method CACD FG-NET
Baseline 5.605837 6.402655
scale:0.5 5.805193 6.149355
scale:1.0 5.964726 6.075456

5. Conclusions and Future Works
In this paper, we proposed an novel model for face gen-

eration of multiple attributes gender, ethnicity and fine-
grained age and verify the demonstration that generated im-
ages can be supplied to MORPH dataset and greatly im-
prove its performance. Realistic synthetic images from
FM-GAN could solve the data augmentation problem to
some extent. Generated data could not be only employed
to MORPH II dataset. It could be expanded to any dataset
which is restricted to missing data.

Our work largely depends on generation of high-quality
face image of fine-grained multi-attribute. In the future, on
the one hand, face images with larger resolutions, especially
e.g 224 × 224, are essential because many existing models
in age estimation are experimented on the input of resolu-
tion 224 × 224. Fine-tuning on these models and compare

the performance with them are the final goal. On the other
hand, face images should be generated with higher quality
and precise age. while generating complete faces, changes
on face should be more consistent with the process of aging.
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