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Abstract—Face Anti-spoofing aims to determine whether the
captured face from a face recognition system is real or fake.
However, the facial pose and local significant spoofing traces
(i.e., the boundary and reflection spot in presentation attack
instruments) seriously affects the performance and stability of
the current algorithms. Due to they regard the face image as
an indivisible unit, and process it holistically, rarely consider
excluding these liveness-irrelated factors. Unlike it, we design
a Pose-Independent Face Anti-Spoofing (PIFAS) framework to
disentangle face into an appearance information and a pose
code to capture liveness and liveness-irrelated features, respec-
tively. Specifically, the PIFAS consists of an Unsupervised Pose
Switching (UPS) module and a Mutual Information Averaged
Defense (MIAD) module, which are used to control the facial pose
and suppress the local significant attack traces by averaging the
local and global knowledge. Extensive experimental evaluations
on multiple face anti-spoofing datasets verify that the proposed
method can improve the generalization and stabilize the perfor-
mance of each testing video through alleviating the interference
from liveness-irrelated factors.

I. INTRODUCTION

Face anti-spoofing (FAS) is critical to prevent the face
recognition system from malicious attacks, such as print
attack [1], replay attack [2], or 3D attacks [3]. It has become
an increasingly concerns [4], [5], [6], [7], [8], [9], [10] recently
due to the widespread application of face recognition in
financial payment, access control, and phone unlocking.

Some early CNN based Presentation Attack Detection
(PAD) methods [12], [13], [14] regard the FAS as a binary
classification task. It might discover arbitrary clues that can
separate the two classes (live or fake), such as facial pose,
local bright spot, and screen bezel, but not the faithful spoofing
patterns [11]. Inspired by this, some recent works [11], [4],
[15] leverage the physical-based depth information instead of
binary softmax loss as supervision, and aim to predict the
true depth of the faces with the supervision of the depth
maps and flat masks. Although these methods achieve good
performances in many benchmarks [16], [11], [17], [18], [19],
[20], [21], there are still some shortcomings. For example,

Fig. 1. Same detection model [11] makes different judgments for different
frames in one testing video. These samples are drawn from SiW dataset. The
‘Red Fork’ indicates that the model misclassifies the samples. For example,
the ‘Red Fork’ in the first line means that the live face is misclassified into
the attack face, and the attack face in the second line is misclassified into the
live face. The ‘Blue checkbox‘ indicates that the model classifies the samples
correctly.

one model is extremely sensitive to the facial poses and
significant local spoofing traces. It is difficult to meet the
actual deployment of a FAS system, especially when the
model judges different frames in the same video as different
categories. The predicted stability among these methods are
rarely considered. As shown in Fig. 1, for live sequences, the
model [11] may mistakenly live frame as fake ones based
on local reflected light spots, shadows or pose, while for
fake sequences, the model misclassifies the fake frame as live
ones due to these clues were not detected. Therefore, how
to effectively eliminate the interference of the facial poses
and significant local spoofing traces is an effective strategy
to improve these algorithms.

There are two limitations that lead to the defects of the
above model. (1) From the perspective of face composition,
almost all the prior works process the face image as an
independent unit, and ignore subtle spoofing clues that are
highly susceptible to the facial poses. (2) From the perspective
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of face structure, almost all the prior works process the
face image as a complete unit, and lack the consideration
of the relationship between local patches and global face. It
induces the model to pay much attention to some significant
local spoofing traces, and ignore the other paths or global
characteristics of fake faces during the training time.

For the first limitation, one possible solution is to separate
the face into different components by the disentangled rep-
resentation learning [22], [23]. Zhang et al. [6] disentangle
latent space of face into two sub-spaces: liveness space and
content space that integrates remaining liveness-irrelated infor-
mation. Other works disentangle the spoofing clues from the
input faces, such as the noise patterns [24], [25] or spoofing
traces [26], and these clues is further used for classification.
However, on the one hand, these liveness features or spoofing
clues are so subtle, and difficult to peel off from the face
image. On the other hand, they are sensitive to facial poses,
and leading to unstable performance even for the same testing
video. Motivated by [27], [28], we disentangle the face into
an appearance information and a pose code, and randomly
replace the facial pose in an unsupervised manner to alleviate
the model’s bias. For the second limitation, one reasonable
solution is to split the facial images into some local subsets,
and to learn the liveness features by exploring relationships
between the global and local subsets. Thus the model’s bias
to some local spoofing clues is alleviated under the guidance of
category consistency. Prior work [29] has explored the fusing
patch-based and holistic depth-based clues for extracting the
local features and global depth maps. However, it neither stud-
ies the interaction between local and global representations,
or does it make good use of the auxiliary supervision that
the category consistency of each locality and complete face.
In fact, global representations plays a stronger guiding role
for the model’s attention on effective liveness features instead
of local arbitrary clues. Inspired by [30], we split the global
representations of facial images into some local subsets, and
learn the liveness features by averaging mutual information
between local and global representations.

To sum up, the contributions are summarized as follows:

• We propose a simple yet effective framework, namely
Pose-independent Face Anti-spoofing (PIFAS), against
the inferences of liveness-irrelated factors by disentan-
gling face into appearance information and pose codes.

• An Unsupervised Pose Switching (UPS) module is intro-
duced as the first stage in the PIFAS. It completes the
facial pose replacement through a generative way under
the guidance of facial geometric maps.

• A Mutual Information Averaged Defense (MIAD) module
is adopted as the second stage in the PIFAS. It incorpo-
rates knowledge about locality in the face into a score
map under the category consistency with the global input.

• Extensive experiments demonstrate that the proposed
method achieves competitive results on several bench-
marks, especially for stabilizing the performance without
being affected by liveness-irrelated factors.

II. PROPOSED METHOD

A. Pose-independent Face Anti-spoofing

As shown in Fig. 1, we analyze that the bias to liveness-
irrelated factors (such as facial pose) and the overfitting
to some local spoofing clues (such as local reflected light
spots and shadows) are two main reasons for the unstable
performance of the current algorithms. In order to tackle the
above problems, as shown in Fig. 2, we propose a PIFAS
framework with two stages: an Unsupervised Pose Switching
(UPS) stage (light green) and a Mutual Information Averaged
Defense (MIAD) stage (light yellow).

Specially, in the first stage for a mini-batch, any input
sample (whether live or fake face, denoted as S ∈

{
Sl ∪ Sf

}
)

is arrived at where it started with an unsupervised manner
by being disentangled through Enc-A module (appearance
encoder Ea) and reconstructed through Dec module (face
decoder De). Simultaneously, the according geometric map
(denoted as D) of each sample is utilized as the pose guidance
in Enc-P module (pose encoder Ep) to tell Enc-A what
liveness-irrelated factor is and to disentangle it from liveness
features. After the first stage, any input face S will generate
a counterpart that is consistent with its category but has a
different facial pose, denoted as Ŝ.

While in the second stage, inspired by [30], we first encode
the image S (or Ŝ) to a representation map of M ×M feature
vectors corresponding to M×M local patches through Enc-R
module (representation extractor Er). We further summarize
this representation map into a global feature vector G, and
add G with the lower-level feature L(i, j) at every location
(represents position coordinate) to form a local-global feature
pair. Subsequently, we calculate a score for each local-global
pair through a Depth Estimator (abbreviated as Dep). After
the second stage, any input face will generate a score map
with size of M × M that used to decide its final category
under the supervision of a pre-defined feature-level label.

B. Unsupervised Facial Pose Switching

Directly disentangling facial pose from a given face is
a sub-optimal choice, since it may be still entangled with
liveness features [6]. Therefore, how to accurately describe
the facial pose and completely disentangle it are the two main
tasks of UPS model. Inspired by recent 3D reconstruction
methods [31] which are widely used to estimate the pseudo-
depth information in face anti-spoofing, we find that they are
also very accurate in portraying facial poses [28].

In this work, we disentangle face into an appearance in-
formation and a pose code to capture the liveness features
and reflect the liveness-irrelated factor respectively, where the
3D geometric maps that are utilized as the pose guidance for
accurately describing the facial pose. As shown in Fig. 2,
our UPS module consists of an appearance encoder Ea, a
pose encoder Ep, which extract the appearance information
Ea(S) and pose code Ep(D), respectively. As for the de-
coder De, inspired by recent works [32], [27] that use affine
transformation parameters in normalization layers to represent
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Fig. 2. The overall architecture of the Pose-independent Face Anti-spoofing (PIFAS). It is completed in two stages: an Unsupervised Pose Switching (UPS)
stage (light green) and a Mutual Information Averaged Defense (MIAD) stage (light yellow). The former aims to disentangle the facial pose from the whole
face, and replace it with agnostic poses randomly to alleviate the bias of the defense model on specific facial poses. And the latter aims to alleviate the bias
of defense model on local spoofing traces by suppressing the significant effects of its representations. Note that all Enc-R modules that in the light green box
share weights.

styles, we equip the residual blocks with Adaptive Instance
Normalization (AdaINRes) [32] layers whose parameters are
dynamically generated by a multilayer perceptron (MLP) from
the appearance information. Therefore, our decoder recon-
structs the original input S from its pose code Ep(D) and
appearance information Ea(S). Since no supervision is used
in the process, our UPS module is trained in an unsupervised
way.

Given an image S with its 3D geometric map D form a
mini-batch, we should be able to reconstruct it after encoding
by Ea, Ep and decoding by De, sequentially. Such as: S/D→
Ea(S)/Ep(D) → De(AdaINRes(Ea(S), Ep(D))) = Ŝ ≈
S.

Limage
Recon = ES,Ŝ

[∥∥∥Ŝ− S
∥∥∥
1

]
(1)

where S and Ŝ have the same pose at this time. While given
latent codes, such as appearance information and pose code
which are encoded from Ea and Ep at translation time, we
should be able to reconstruct them after decoding by De and
encoding by Ea and Ep again.

Lappearance
Recon = ES,Ŝ

[∥∥∥Ea(Ŝ)− Ea(S)
∥∥∥
1

]
(2)

Lpose
Recon = EŜ,D

[∥∥∥Ep(Ŝ)− Ep(D)
∥∥∥
1

]
(3)

In order to make the reconstructed sample Ŝ by our UPS
module that is indistinguishable from input sample S, we
employ GANs to align their distribution at the image level.

LImage
GAN = ES [logDism(S)] + EŜ

[
log(1−Dism(Ŝ))

]
(4)

where Dism is multi-scale discriminator that tries to dis-
tinguish between generated image Ŝ and original image in
S. Similar to [27], we train the encoders (Ea and Ep),
decoder (De), and discriminator (Dism) to optimize the final
objective for UPS module, which is a weighted sum of the
reconstruction loss terms and adversarial loss.

LUPS = λ1

(
Limage
Recon + Lappearance

Recon + Lpose
Recon

)
+ LImage

GAN

(5)

C. Mutual Information Averaged Defense

How to incorporate knowledge about locality in the input
into the global feature and determine the classification score
are the two main tasks of MIAD module.

In this work, instead of maximizing mutual information [30]
between a local input and the output from a deep neural
network encoder, we average the mutual information for
monitoring the unexpected local spoofing clues under the
reference of global representation. Then, we further control
score distributions of the averaged local-global representation
by matching to a pre-defined feature-level map. Specifically,
we use the feature-level supervision by computing the prob-
ability distribution for each local-global pair through a depth
estimator.

Given an image S with its one counterpart Ŝ that is
consistent with its pose but has a different category, we will get
their score map by passing both the global-level feature vector
(G), and the local-level M ×M feature map (L), through a
depth estimator Dep, i.e., S → Er (S) → G ∼ L (i, j) →
Dep (.) → map(i,j), ‘∼’ means averaging operation. The
score map for Ŝ is obtained similarly. The training of MIAD is
completed under the supervision of pre-provided feature-level
label. For live faces, map should be 1, and for fake faces as
well as synthesized fake faces, map should be 0. We apply
the L2 norm on this loss as:

LMIAD = ES∈Sl ‖mapS − 1‖22 + EŜ∈Sf

∥∥mapŜ∥∥22 (6)

where Sl, Sf are sample sets of live and fake faces, respec-
tively. In the testing phase, we use the average of the output
from map for classification:

score = 1/M2 ‖map‖1 (7)

where M is the size of map which ideally is a scale within
(0, 1] for live faces and 0 for fake faces. we calculate the
score by normalizing the norm (L1 norm) of fitted score map,
and then judge the class of the testing face based on a given
threshold.
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III. EXPERIMENTS

In this section, we conduct a series of experiments on three
widely used face anti-spoofing datasets, including OULU-
NPU [16], SiW [11], and CASIA-SURF CeFA (briefly named
CeFA) [33], to visually and quantitatively demonstrate the
effectiveness of the proposed approach.

A. Experimental Setup

Datasets & Protocols. OULU-NPU [16] is a high-resolution
dataset, consisting of 4, 950 real access and spoofing videos
with many real-world variations. It contains 4 protocols to as-
sess the effect of methods in one previously unseen condition.
Similar, SiW [11] defines 3 protocols by introducing another
three unknown testing conditions. CeFA [33] is a cross-
ethnicity face anti-spoofing dataset, covering 3 ethnicities, 3
modalities, 1, 607 subjects. It consists of print, video-replay,
and 3D mask attacks. Three protocols are reported in our
experiments according to the official definition. It is worth
mentioning that SiW and CeFA have subjects with much
variations in poses, illuminations, expressions (PIE), which are
more suitable for us to study how to improve the performance
instability caused by changes in facial pose and lighting
environment.

Evaluation metrics. For a fair comparison with prior methods,
the following metrics are used in experimental results. Espe-
cially, Attack Presentation Classification Error Rate (APCER),
Bona Fide Presentation Classification Error Rate (BPCER),
Average Classification Error Rate (ACER) describe the perfor-
mance given a predetermined threshold, which is used for the
metrics of OULU-NPU, SiW, and CeFA. In which the decision
threshold is found from the development sets by minimizing
the Equal Error Rate (EER).

B. Implementation Details

Training details. The proposed framework is implemented
on a single NVIDIA TITAN X GPU. We resize the cropped
face region to 256× 256. In the training stage, all models are
trained with a batch seize of 2 (one live and one fake face)
and an initial learning rate of 0.0001. We train models with
40 epochs from scratch via Adam solver, and keep the same
learning rate for the first 20 epochs and linearly decay it to 0
over the next 20 epochs. The λ1 in Eq.5 is set to 10 according
to the suggestion in [27]. The size M of the representation
map in UPS module is set to 32, and the number of channel
C for global and local features is 384. In the testing stage,
only the feature extractor Er and depth estimator Dep are
used to inference and final score calculate in Eq.7.

Network Architecture. The UPS module consists of a gen-
erator and a multi-scale discriminator Dism with the same
backbone with MUNIT [27]. In which the generator consists
of two encoders Ea and Ep, a decoder De. For the feature
extractor Er in MIAD module, we employ the same architec-
ture with Aux.(Depth) [11]. Our depth estimator Dep contains
3 convolutions to estimate the depth map by reducing the
channel from 384 to 128, 64, and finally to 1.

TABLE I
EVALUATION RESULTS ON FOUR PROTOCOLS OF OULU-NPU.

P. Method APCER(%) BPCER(%) ACER(%)

1

STASN [34] 1.2 2.5 1.9
Auxiliary [11] 1.6 1.6 1.6

STDN [26] 0.8 1.3 1.1
CDCN [5] 0.4 1.7 1.0

PIFAS 1.0 1.7 1.4

2

Auxiliary [11] 2.7 2.7 2.7
STASN [34] 4.2 0.3 2.2
STDN [34] 2.3 1.6 1.9
CDCN [5] 1.5 1.4 1.5

PIFAS 1.1 1.1 1.1

3

Auxiliary [11] 2.7±1.3 3.1±1.7 2.9±1.5
STASN [34] 4.7±3.9 0.9±1.2 2.8±1.6
STDN [34] 1.6±1.6 4.0±5.4 2.8±3.3
CDCN [5] 2.4±1.3 2.2±2.0 2.3±1.4

PIFAS 1.5±1.7 2.2±1.2 2.0±2.2

4

Auxiliary [11] 9.3±5.6 10.4±6.0 9.5±6.0
STASN [34] 6.7±10.6 8.3±8.4 7.5±4.7
STDN [34] 2.3±3.6 5.2±5.4 3.8±4.2
CDCN [5] 4.6±4.6 9.2±8.0 6.9±2.9

PIFAS 2.6±1.4 4.4±2.4 3.5±2.7

C. Experimental Comparison

Results on OULU-NPU. We compare the results of four
protocols provided by OULU-NPU with four competitive
methods, i.e., Auxiliary [11], STASN [34], STDN [26] and
CDCN [5].

As shown in Tab. I, our PIFAS achieves the best perfor-
mance on Protocol 2, 3 and 4, respectively. Such as ACER
values are 1.1%, 2.0%, and 3.5%. Since the collection environ-
ment of the OULU-NPU is relatively harmonious, compared
with the baseline method Auxiliary [11], the performance
improvement of our approach is not very obvious, such as
the ACER is reduced by 0.2%, and 0.9 in Protocol 1, and
3 respectively. However, our method achieves significant im-
provements compared to Auxiliary in protocols 2 and 4, i.e.,
the ACER is reduced by 1.6%, and 6.0%, respectively.

In fact, the Protocol 1 and Protocol 3 [16] introduce various
image domains by setting up multiple acquisition sessions
(illumination variation) and devices (camera variation). While
the Protocol 2 and Protocol 4 mainly explore the generalization
of the algorithm against unknown attacks. Compared with
the baseline method, we attribute performance improvement
mainly benefits from the UPS module that introduces two
high-quality counterparts for each input during the training
process: one is with different pose but same category, and the
other is with different category but same pose, which alleviate
the model’s overfitting by enriching the diversity of face poses
and samples.

Results on SiW. SiW brings great challenges to the face anti-
spoofing task due to it covers much larger variations in facial
poses, illuminations, expressions, and other practical factors.
Tab. II lists the comparison results for the defined three proto-
cols with five competitive methods, including Auxiliary [11],
STASN [34], MetaFAS-DR [35], STDN [26], and CDCN [5].
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TABLE II
EVALUATION RESULTS ON THREE PROTOCOLS OF SIW DATASET.

P. Method APCER(%) BPCER(%) ACER(%)

1

Auxiliary [11] 3.58 3.58 3.58
STASN [34] - - 1.00
MetaFAS-DR 0.52 0.50 0.51

STDN 0.00 0.00 0.00
CDCN [5] 0.07 0.17 0.12

PIFAS 0.00 0.00 0.00

2

Auxiliary [11] 0.57±0.69 0.57±0.69 0.57±0.69
MetaFAS-DR 0.25±0.32 0.33±0.27 0.29±0.28
STASN [34] - - 0.28±0.05

STDN 0.00±0.00 0.00±0.00 0.00±0.00
CDCN [5] 0.00±0.00 0.13±0.09 0.06±0.04

PIFAS 0.00±0.00 0.00±0.00 0.00±0.00

3

STASN [34] - - 12.10±1.50
Auxiliary [11] 8.31±3.81 8.31±3.81 8.31±3.81

STDN 8.30±3.30 7.50±3.30 7.90±3.30
CDCN [5] 1.67±0.11 1.76±0.12 1.71±0.11

PIFAS 5.18±3.62 7.68±2.31 6.43±3.25

Overall, our approach achieves the lowest ACER on Pro-
tocol 1, 2, respectively. For example, the proposed method
outperforms the baseline method Auxiliary [11] with a signif-
icantly margin on Protocol 1 that deals with variations in face
pose and expression, i.e., APCER, BPCER, and ACER are all
reduced by 3.58%.

In Protocol 3, although our method failed to achieve optimal
performance, it still achieved a considerable improvement
compared to the baseline method Auxiliary [11]. Such as the
ACER is reduced from 8.31% to 6.43%. Those improvements
mainly benefit from two aspects: (1) At the sample input level,
the UPS module that can generate a lot of counterparts of being
aligned with input faces, which prompts the model to focus on
spoofing clues in the face region rather than changes in facial
posture and expression. (2) At the feature learning level, the
MIAD module incorporates knowledge about locality in the
face with the global features to alleviate the bias of defense
model on local spoofing clues by suppressing its significant
effects. Finally, we analyze that the our approach is worse
than CDCN [5] on Protocol 3 for it uses central difference
convolution to extract features, which is more suitable for the
environment with unknown attack type.

Results on CeFA. CeFA is another large-scale dataset with
much larger variations in facial poses. We only conduct
experiments on Protocol 1, 2, 4 with RGB modality, which
are related to this work for the research points. The bench-
mark method SD-Net [33] and two competitive methods are
compared with our approach in Tab. III, i.e., BOBO [36] and
VisionLabs [37]. Note that these two methods only report the
experimental results on Protocol 4 used in the Chalearn CeFA
Face Anti-Spoofing challenge [38].

It can be seen that our approach achieves the lowest ACER
in Protocol 1, 2, and second lowest ACER on Protocol 4,
which are 4.6%, 3.1%, and 5.9%, respectively. Concretely, our
approach outperforms the benchmark results by a great advan-
tage in the three protocols, i.e., ACER reduces from 14.1%,

TABLE III
EVALUATION RESULTS ON THREE PROTOCOLS OF CEFA DATASET.

P. Method APCER(%) BPCER(%) ACER(%)

1 SD-Net [33] 15.7±5.3 12.4±2.2 14.1±3.8
PIFAS 3.7±1.7 5.5±2.3 4.6±2.2

2 SD-Net [33] 45.0±39.1 1.6±1.9 23.3±18.6
PIFAS 2.6±1.8 3.6±1.2 3.1±2.5

4

SD-Net [33] 65.8±16.4 8.3±6.5 35.2±5.8
BOBO [36] 7.2±3.7 2.5±0.5 4.8±1.8

VisionLabs [37] 0.1±0.1 5.3±2.4 2.7±1.2
PIFAS 9.7±2.3 2.1±1.2 5.9±1.5

TABLE IV
CROSS TESTING ON CASIA-FASD VS. REPLAY-ATTACK.

Method Train Test Train Test
CASIA-
FASD

Replay-
Attack

Replay-
Attack

CASIA-
FASD

Auxiliary [11] 27.6 28.4
CDCN [5] 15.5 32.6

PIFAS 14.3 26.2

23.3% and 35.2% to 4.6%, 3.1% and 5.9%, respectively. We
analyze that the our approach is worse than VisionLabs [37]
on Protocol 4 for two reasons: (1) VisionLabs is based on the
embedding integration of 4 parallel networks and extracts the
4 kinds of optical flow information of the sample respectively.
(2) The result of VisionLabs is the best one obtained by
submitting testing results to the competition website multiple
times.

By summarizing the above experimental results, they are
consistent with the conclusion on OULU-NPU and SiW
datasets that our method relieves the bias of the model on
facial pose and local spoofing cues from two levels.

D. Cross-dataset Testing

In this experiment, there are two cross-dataset testing pro-
tocols, one is that training on the CASIA-FASD [1] and
testing on Replay-Attack [2], the second one is exchanging
the training dataset and the testing dataset.

See from the Tab. IV, our proposed method reduces the
cross-testing errors on the Replay-Attack and CASIA-FASD
by 13.3% and 2.2% relative to Auxiliary [11], and by 1.2%
and 6.4% relative to CDCN [5], respectively. It shows that our
approach has superior generalization to unknown environments
(domain). We find that although CDCN is superior for the
unknown attack type in Tab. II, its performance in the unknown
data domain is worse than that of the benchmark method
Auxiliary. While, our approach outperforms the Auxiliary in
both cases. We analyze that the proposed method generates
face samples with diverse appearance, which improves the
generalization performance of the model.

E. Ablation Study

In order to evaluate the contribution of each component in
our framework, we introduce two variations according to the
improvements, i.e., the backbone Aux.(Depth) (briefly named
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TABLE V
QUANTITATIVE ABLATION STUDY OF THE EACH COMPONENT.

Method SiW(Protocol 1) CeFA(Protocol 4)
APCER BPCER ACER APCER BPCER ACER

Aux.D [11] 3.58 3.58 3.58 5.9±4.3 12.3±5.2 9.1±3.4
Aux.D w/ MIAD 2.34 2.18 2.26 7.4±3.4 5.6±4.3 6.5±2.7
Aux.D w/ UPS 1.10 1.01 1.05 9.5±4.2 5.3±3.1 7.4±3.6
PIFAS 0.00 0.00 0.00 9.7±2.3 2.1±1.2 5.9±1.5

Aux.D) [11] with MIAD (denoted as Aux.D w/ MIDAD), and
Aux.D with UPS (denoted as Aux.D w/ UPS), and perform
ablation study on the Protocol 1 of the SiW and Protocol 4
of the CeFA dataset. In which the “w” is the abbreviation of
“with”.

Effect of the UPS Module. From the results of SiW dataset in
Tab. V, we can obverse that the most significant contribution
comes from the term of UPS since the performance of Aux.D
drops sharply. Such as, the results of ACER is reduced by
2.53%, and reduced by 1.32% when equipped with UPS and
MIAD, respectively. It indicates that the UPS has the ability
to cope with changes in facial poses and expressions. Finally,
if UPS and MIAD modules are equipped on the backbone at
the same time, the performance will be further improved, i.e.,
all metrics reach 0% on Protocol 1 of SiW.

Effect of the MIAD Module. From the results of CeFA
dataset in Tab. V, we can see that the improvement of Aux.D
w/ MIAD is more obvious than that of Aux.D w/ UPS when
compared with Aux.D, i.e., the value of ACER is reduced form
9.1% to 6.5% and 7.4% for the MIAD and UPS, respectively.
It demonstrates that the MIAD module is better at detecting
unseen types of attacks. Expected conclusions, using UPS and
MIAD modules, that is, to optimize the backbone method
from the input and feature level respectively, our approach
improves the backbone performance and stability at the same
time. We believe that other state-of-the-art methods can be
further improved by equipping with our UPS and MIAD.

Furthermore, we calculate the mean and variance of the
testing results for ten consecutive frames, and measure the
performance and stability of the model, respectively. As shown
in Fig. 3, the performance and stability of the Aux.D are 4.41%
and 0.91% respectively. While our UPS module can greatly
improve its performance and stability, i.e., the mean ACER
reduces to 1.58%, and the variance decreases to 0.28%. When
the MIAD modules are further adopted, our method reaches
the optimal values, and the mean and variance of ACER are
0.23% and 0.19% respectively.

F. Visualization Analysis

In this section, we visually analyze the effectiveness of
improvement from our UPS module in detail. As shown the
first and third rows in Fig. 4, we randomly select some sample
pairs from OULU-NPU, SiW, and CeFA dataset. For each
pair, it contains live face and fake face with different facial
poses. After the first stage of using UPS module, the generated
counterparts are shown in the second and fourth rows of
Fig. 4, respectively. We can see that the UPS module generates

Fig. 3. Comparison of the 4 methods on the Protocol 1 of SiW dataset. It
shows the results of ACER for ten consecutive frames of testing video.

Fig. 4. Sample display on three datasets, where the first and third rows are
fake and live faces respectively. The second and fourth rows are samples of
the same category but different facial poses with the first and third rows,
which the pose is specified by the sample in the lower right or upper left.

high-quality counterparts of the same category as the original
samples but with different poses. Therefore, our UPS can
alleviate the model’s overfitting to some fixed facial poses by
introducing samples with different poses at the input level.

IV. CONCLUSION

In this work, we propose a simple yet effective framework,
namely PIFAS, against the inferences of liveness-irrelated
factors. An UPS module is introduced as the first stage, which
completes the facial pose replacement through a generative
way. A MIAD module is adopted as the second stage, which
incorporates knowledge about locality in the face into a score
map. Extensive experiments demonstrate that the proposed
method achieves competitive results on several benchmarks,
especially for stabilizing the results of each testing video.
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