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Abstract
Face anti‐spoofing is critical to prevent face recognition systems from a security
breach. The biometrics community has achieved impressive progress recently due to
the excellent performance of deep neural networks and the availability of large
datasets. Although ethnic bias has been verified to severely affect the performance of
face recognition systems, it still remains an open research problem in face anti‐
spoofing. Recently, a multi‐ethnic face anti‐spoofing dataset, CASIA‐SURF cross‐
ethnicity face anti‐spoofing (CeFA), has been released with the goal of measuring the
ethnic bias. It is the largest up to date CeFA dataset covering three ethnicities, three
modalities, 1607 subjects, 2D plus 3D attack types and the first dataset including
explicit ethnic labels among the recently released datasets for face anti‐spoofing. We
organized the Chalearn Face Anti‐spoofing Attack Detection Challenge which consists
of single‐modal (e.g. RGB) and multi‐modal (e.g. RGB, Depth, infrared) tracks around
this novel resource to boost research aiming to alleviate the ethnic bias. Both tracks
have attracted 340 teams in the development stage, and finally, 11 and eight teams
have submitted their codes in the single‐modal and multi‐modal face anti‐spoofing
recognition challenges, respectively. All of the results were verified and re‐ran by the
organizing team, and the results were used for the final ranking. This study presents
an overview of the challenge, including its design, evaluation protocol and a summary
of results. We analyse the top‐ranked solutions and draw conclusions derived from the
competition. Besides, we outline future work directions.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
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1 | INTRODUCTION

Face anti‐spoofing aims to determine whether the captured
face from a face recognition system is real or fake. It is
essential to protect face recognition systems from malicious
attacks, such as a printed face photograph (i.e., print attack),
displaying videos on digital devices (i.e., replay attack) or
even 3D attacks (i.e., face mask). Therefore, the presentation
attack detection (PAD) task is a critical stage for visual
face recognition systems which has been widely applied in
financial payment, access control, phone unlocking and
surveillance. Some early temporal‐based face PAD works [1–4]
attempt to detect the evidence of liveness (e.g., eye‐blinking),
which require a constrained human interaction. However,
these methods become vulnerable if someone presents a
replay attack or a print photo attack with cut eye/mouth
regions. Other works are based on static texture analysis [5,6].
However, these algorithms are not accurate enough because
of the use of handcrafted features, such as LBP [7–9], HoG
[8–10] and GLCM [10], that do not necessarily capture the
most discriminative information associated to the data.
Recently, CNN‐based face PAD methods [11–16] have shown
impressive progress due to the excellent performance of deep
neural networks [11,14,15,17] and the availability of large
datasets [15,18–22]. Although these methods achieve
near‐perfect performance in intra‐database experiments, they
are still vulnerable when facing complex authentication
scenarios. In particular, ethnic bias has been verified to
severely affect the performance of face recognition systems
[23–24], representing an open research problem in face anti‐
spoofing.

We have verified in our own previous work [22] that
state‐of‐the‐art (SOTA) PAD algorithms do suffer from se-
vere ethnic bias. For example, the average classification error
rate (ACER) metric values vary widely on the test samples
with different ethnicities for the same algorithm. To alleviate
the ethnic bias and ensure that face PAD methods are in a
safe reliable condition for users of different ethnicities, Liu
et al. [22] introduced the largest up‐to‐date cross‐ethnicity
face anti‐spoofing (CeFA) dataset, covering three ethnicities,
three modalities, 1607 subjects and 2D plus 3D attack types.
Some samples of the CASIA‐SURF CeFA dataset are shown
in Figure 1. Four protocols were defined to measure the
effect under varied evaluation conditions, such as cross‐
ethnicity, unknown spoofs or both of them. To the best of
our knowledge, CeFA is the first dataset including explicit
ethnic labels among the published datasets for face anti‐
spoofing. Additionally, they provided a baseline including two
aspects to alleviate the above bias: (1) a static–dynamic fusion
mechanism applied in each modality (i.e., RGB, Depth,
infrared [IR] image) and (2) a partially shared fusion strategy
is proposed to learn complementary information from mul-
tiple modalities.

Leveraging on the CeFA dataset, we organized theChalearn
Face Anti‐spoofing Attack Detection Challenge comprising
single‐modal (e.g., RGB) and multi‐modal (e.g., RGB, Depth,
IR) tracks collocated with the Workshop on Media Forensics at

CVPR2020. The goal of this challenge was to boost research on
facial PAD aiming to alleviate the ethnic bias. Both tracks, single‐
modal (https://competitions.codalab.org/competitions/
22151) and multi‐modal tracks (https://competitions.codalab.
org/competitions/22036), were run simultaneously on the
Codalab platform. The competition attracted 340 teams in the
development stage, with 11 and 8 teams entering the final eval-
uation stage for the single‐modal and multi‐modal face anti‐
spoofing recognition tracks, respectively. Summaries with the
names and affiliations of teams that entered the final stage are
shown in Tables 1 and 2 for the single‐modal and multi‐modal
tracks, respectively.

Compared to previous challenges on related topics
[25–28], the algorithms of all participating teams were based
on deep learning and did not require external resources (e.g.,
additional datasets and pre‐trained models). This was a rule
established in the challenge that not only provides a fairer
evaluation scenario but also brings benefits for reproducibility
and algorithm implementation in practical applications. To
sum up, the contributions of this study are summarized as
follows:

� We describe the design and organization of both tracks of
the Chalearn Face Anti‐spoofing Attack Detection Chal-
lenge, which is based on the CASIA‐SURF CeFA dataset
and was run on the CodaLab platform

� We provide a complete description of solutions developed
in the context of the challenge

� We point out critical points on face anti‐spoofing detection
by comparing essential differences between a real face and a
fake one from multiple aspects, also discussing future lines
of research in the field

2 | CHALLENGE OVERVIEW

In this section, we describe the organized challenge, including a
brief introduction to the CASIA‐SURF CeFA dataset, evalua-
tion metrics and the challenge protocol.

2.1 | CASIA‐SURF CeFA

CASIA‐SURF CeFA [22] is the largest up‐to‐date CeFA
dataset, covering 3 ethnicities, 3 modalities, 1604 subjects, and
2D plus 3D attack types. More importantly, it is the first public
dataset designed for exploring the impact of cross‐ethnicity in
the study of face anti‐spoofing. Some samples of the CASIA‐
SURF CeFA dataset are shown in Figure 1.

The main motivation of CASIA CeFA dataset is to serve as
a benchmark to allow for the evaluation of the generalization
performance of new PAD methods. Concretely, four protocols
were originally introduced to measure the robustness of
methods under varied evaluation conditions: (1) cross‐ethnicity
(Protocol 1), (2) cross‐PAI (Protocol 2), (3) cross‐modality
(Protocol 3), and (4) cross‐ethnicity and cross‐PAI (Protocol
4). To make the competition more challenging, we adopted
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Protocol 4 in this challenge, which is designed by combining
conditions of Protocols 1 and 2. As shown in Table 3, it has
three data subsets: training, validation and testing sets, which
contain 200, 100 and 200 subjects for each ethnicity, respec-
tively. Note that the remaining 107 subjects are 3D masks. To
fully measure the cross‐ethnicity performance of the algorithm,
one ethnicity is used for training and validation, and the
remaining two other ethnicities are used for testing. Since there
are three ethnicities in CASIA‐SURF CeFA, a total of three
sub‐protocols (i.e., 4 1, 4 2 and 4 3 in Table 3) are adopted in
this challenge. In addition to the ethnic variation, the factor of
PAIs is also considered in this protocol by setting different
attack types in training and testing phases.

2.2 | Evaluation metrics

In this challenge, we selected the recently standardized ISO/
IEC 30107‐3 (https://www.iso.org/obp/ui/iso) metrics for
evaluation: attack presentation classification error rate
(APCER), normal presentation classification error rate
(NPCER) and ACER; these are defined as follows:

APCER¼ FP=ðFPþ TNÞ ð1Þ

NPCER ¼ FN=ðFNþ TPÞ ð2Þ

ACER¼ ðAPCER þNPCERÞ =2 ð3Þ

where TP, FP, TN and FN correspond to true positive, false
positive, true negative and false negative, respectively. APCER
and BPCER are used to measure the error rate of fake or live
samples, respectively. Inspired by face recognition, the receiver
operating characteristic (ROC) curve is introduced for large‐
scale face anti‐spoofing detection in CASIA‐SURF CeFA

F I GURE 1 Samples of the CASIA‐SURF cross‐ethnicity face anti‐spoofing dataset. It contains 1607 subjects and three different ethnicities (i.e., Africa, East
Asia and Central Asia), with four attack types (i.e., print attack, replay attack, 3D print and silica gel attacks). IR, infrared

TABLE 1 Team and affiliations name are listed in the final ranking of
this challenge (single‐modal)

Ranking Team name Leader name, affiliation

1 VisionLabs Alexander Parkin, visionlabs

2 BOBO Zitong Yu, OULU unv.

3 Harvest Jiachen Xue, Horizon

4 ZhangTT Zhang Tengteng, CMB

5 Newland_tianyan Xinying Wang, Newland Inc.

6 Dopamine Wenwei Zhang, huya

7 IecLab Jin Yang, HUST

8 Chuanghwa Telecom Lab. Li‐Ren Hou, Chunghwa Telecom

9 Wgqtmac Guoqing Wang, ICT

10 Hulking Yang, Qing, Intel

11 Dqiu Qiudi

TABLE 2 Team and affiliations name are listed in the final ranking of
this challenge (multi‐modal)

Ranking Team name Leader name, affiliation

1 BOBO Zitong Yu, OULU unv.

2 Super Zhihua Huang, USTC

3 Hulking Qing Yang, Intel

4 Newland_tianyan Zebin Huang, Newland Inc.

5 ZhangTT Tengteng Zhang, CMB

6 Harvest Yuxi Feng, Horizon

7 Qyxqyx Yunxiao Qin, NWPU

8 Skjack Sun Ke, XMU
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dataset, which can be used to select a suitable threshold to
trade off the false positive rate (FPR) and true positive rate
(TPR) according to the requirements of real applications.

2.3 | Challenge protocol

The challenge was run in the CodaLab platform, and
comprised two stages as follows:

2.3.1 | Development phase (started in 13
December 2019 and ended in 1 March 2020)

During this phase, participants had access to the labelled
training subset and unlabelled validation subset. Since the
protocol used in this competition (Protocol 4) comprises
three sub‐protocols (see Section 2.1), participants first need
to train a model for each sub‐protocol, then predict the score
of the corresponding validation set, and finally, simply merge
the predicted scores and submit them to the CodaLab plat-
form and receive immediate feedback via a public leader
board.

2.3.2 | Final phase (started in 1 March 2020
and ended in 10 March 2020)

During this phase, labels for the validation subset and the
unlabelled testing subset were released. Participants can firstly
take the labels of the validation subset to select a model with
better performance, then they can use this model to predict
the scores of the corresponding testing subset samples, and
finally, submit the score files in the same way as the devel-
opment phase. We made public all results of the three sub‐
protocols online; these include the obtained values of
APCER, BPCER and ACER. Like Boulkenafet et al. [20], the
mean and variance of evaluated metrics for these three sub‐
protocols are calculated for the final results.

Note that to fairly compare the performance of partici-
pants' algorithms, this competition does not allow the use of
other training datasets and pre‐trained models. To be eligible
for prizes, winners had to publicly release their code under a
licence of their choice and provide a fact sheet describing
their solution. Besides, the code was re‐run and all of the
results were verified by the organizing team after the final

phase ended, the verified results were used for the final
ranking.

3 | DESCRIPTION OF SOLUTIONS

In the final ranking stage, there were 19 teams submitting their
code and fact sheets (for your reference, these are available in
this link: http://www.cbsr.ia.ac.cn/users/jwan/fact_sheet/
spoofing_fact_sheet-cvprw2020.zip) for evaluation. According
to the information provided, in the following, we describe the
solutions developed by each of the teams, with detailed de-
scriptions for top‐ranked participants in both single‐modal
(RGB) and multi‐modal (RGB, Depth, IR) face anti‐spoofing
recognition challenge tracks.

Tables 1 and 2 show the final ranking for both tracks. It
can be seen from these tables that most participants came from
the industrial community. Interestingly, the VisionLabs team
was not only the winner of the single‐modal track, but also the
winner of the Chalearn LAP multi‐modal face anti‐spoofing
attack detection challenge at CVPR 2019 [28]. In addition, the
BOBO team designed central difference convolution (CDC)
[29] and contrastive depth loss (CDL) [30] for feature learning,
and achieved second and first place in both single‐modal and
multi‐modal tracks, respectively.

3.1 | Single‐modal face anti‐spoofing
challenge track

3.1.1 | Baseline

We provided a baseline for approaching this task via designing
a SD‐Net [22] which takes Resnet18 [31] as the backbone. As
shown in Figure 2, it contains three branches: static, dynamic
and static–dynamic branches, which learn hybrid features from
static and dynamic images. For static and dynamic branches,
each of them consists of five blocks (i.e., conv, res1, res2, res3
and res4) and one global average pooling (GAP) layer, while in
the static–dynamic branch, the conv and res1 blocks are
removed because it takes fused features of res1 blocks from
static and dynamic branches as input.

For dynamic image generation, a detailed description is
provided in [22]. In short, we compute its dynamic image
online with rank pooling using K consecutive frames. Our
selection of dynamic images for rank pooling in SD‐Net is

TABLE 3 Protocols and statistics

Track

Subset Subjects (one ethnicity)

Ethnicity

PAIs

# Num.img (rgb)

S M 4_1 4_2 4_3 4_1 4_2 4_3

Train 1–200 A C E Replay 33,713 34,367 33,152

Valid 201–300 A C E Replay 17,008 17,693 17,109

Test 301–500 C & E A & E A & C Print 105,457 102,207 103,420

Note: A, C and E are short for Africa, Central Asia and East Asia, respectively. Track (S/M) means the single/multi‐modal track. The PAIs means the presentation attack instruments.

LIU ET AL. - 27
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further motivated by the fact that dynamic images have proved
its superiority to regular optical flow [32,33].

3.1.2 | VisionLabs

Due to high differences in the train and test subsets (i.e.,
different ethnics and attack types), the VisionLabs team used a
data augmentation strategy to help train robust models. Similar
to previous works which convert RGB data to HSV and
YCbCr colour spaces [34], or Fourier spectrum [35], they
decided to convert RGB to other ‘modalities’, which contain
more authentic information instead of identity features.
Specially, the Optical Flow and RankPooling are used as shown
in Figure 3.

As shown in Figure 3, the proposed architecture consists of
four branches where two branches are used for dynamic im-
ages via a dynamic pooling algorithm, and the left two
branches are used for the optical flow images. For optical flow
modality, they calculated two flows between the first and last
images of RGB video as well as between the first and second
images. For the rank pooling modality, they used the rank
pooling algorithm [33] where different hyper‐parameters used
to generate two different dynamic images.

Formally, a RGB video with K frames is represented by
fXk

i g, where i¼ 0;…;K � 1 and t ¼ f0; 1g is the label (0 –
fake, 1 – real). Then for each RGB video, they sample L¼ 16
images uniformly, obtaining fXk

j g, where j ¼ 0;…; 15. Then,
they remove black borders and pad image to be square of size
(112, 112). Then they apply intensive equal colour jitter to all
images, emulating different skin colours.

As shown in Figure 3, they apply four ‘modality’ trans-
forms: rank pooling (fXk

j g, C ¼ 1000), rank pooling (fXk
j g,

C ¼ 1), Flow (Xk
0, X

k
15), Flow (Xk

0, X
k
1), where C is the hyper‐

parameter for SVM in the rank pooling algorithm [33]. The
code of rank pooling was released in https://github.com/
MRzzm/rank-pooling-python. These transforms return four
tensors with sizes 3� 112� 112, 3� 112� 112,
2� 112� 112 and 2� 112� 112 respectively. Further, the
features of each modal sample are extracted by an independent
network (namely SimpleNet and its structure depicted in
Figure 3) with size of d ¼ 256 and all features are concatenated

to get a tensor of shape 4� d. Then they apply Max, Avg and
Min pooling among the first dimension and concatenate results
to get 3� d tensor. Finally, a binary cross‐entropy is adopted
in their network. The code of VisionLabs was released in
https://github.com/AlexanderParkin/CASIA-SURF_CeFA.

3.1.3 | BOBO

Most CNN‐based methods [11,12,14,36] only treat face anti‐
spoofing as a binary classification task, and train the neural
network supervised by a softmax loss. However, these methods
fail to explore the nature of spoof patterns [15], which consist
of skin detail loss, colour distortion, moire pattern, motion
pattern, shape deformation and spoofing artefacts. To relieve
the above issues, similar to Wang et al. [30], the BOBO team
adopts depth supervision instead of binary softmax loss for
face anti‐spoofing. Different from Wang et al. [30], they design
a novel CDC [29] and a CDL for feature learning and
representation.

The structure of the depth map regression network based
on CDC is shown in Figure 4. It consists of three blocks, three
attention layers connected after each block and three down‐
sampling layers followed by each attention layer. Inspired by
the residual network, they use a short‐cut connection, which is
concatenating the responses of Low‐level Cell (Block1), Mid‐
level Cell (Block2) and High‐level Cell (Block3), and sending
them to two cascaded convolutional layers for depth estima-
tion. All convolutional layers use the CDC network which is
followed by a batch normalization layer and a rectified linear
unit activation function. The size of input image and regression
depth map are 3� 256� 256 and 1� 32� 32, respectively.
Euclidean distance loss (EDL) is used for pixel‐wise supervi-
sion in this work which is formulated:

LEDL ¼ ‖Dp � DG‖22; ð4Þ

where DP and DG are the predicted depth and ground‐truth
depth, respectively.

EDL applies supervision on the predicted depth based on
pixel one by one, ignoring the depth difference among adjacent

F I GURE 2 The framework of SD‐Net. The figure is provided by the baseline team and ranked NO:11 in single‐modal track
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pixels. Intuitively, EDL merely assists the network to learn the
absolute distance between the objects to the camera. However,
the distance relationship of different objects is also important
to be supervised for the depth learning. Therefore, one pro-
posed the CDL to offer an extra supervision, which improves
the generality of the depth‐based face anti‐spoofing model:

LCDL ¼∑
i

‖KCDL
i ⊙ DP � KCDL

i ⊙ DG | |22; ð5Þ

where KCDL
i is the ith contrastive convolution kernel, i ∈ ½0; 7�.

The details of the kernels can be found in Figure 5.
Therefore, the total loss Loverall employed by this team is

defined as follows:

Loverall ¼ β ⋅ LEDL þ ð1 � βÞ ⋅ LCDL; ð6Þ

where β is the hyper‐parameter to trade‐off EDL loss and
CDL loss in the final overall loss Loverall. Finally, their code is

publicly available in https://github.com/ZitongYu/CDCN/
tree/master/FAS_challenge_CVPRW2020.

3.1.4 | Harvest

It can be observed from Table 3 that the attack types of the
spoofs in the training and testing subsets are different. The
Harvest team considered the motion information of real faces
is also an important discriminative cue for face anti‐spoofing
attack detection. Therefore, how to effectively learn the motion

F I GURE 3 The framework is provided by the VisionLabs team. Note that the SimpleNet architecture: four blocks of Conv 3� 3 – BatchNorm – Relu –
MaxPool of sizes 16, 32, 64 and 128, followed by Conv 5� 5 with 256 filters. The figure is provided by the VisionLabs team and ranked NO:1 in single‐modal track

F I GURE 4 The framework of regression network. The figure is provided by the BOBO team and ranked NO:2 in single‐modal track. CDC, central
difference convolution

F I GURE 5 The kernel Kcontrast
i in contrastive depth loss
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information of real faces from the interference motion infor-
mation of the replay attack is a key step. As shown in Figure 6,
the live frame displays obvious temporal variations, specially, in
expressions, while there are very little facial changes in the
print spoof samples for the same subject, which inspires the
Harvest team to capture the subtle dynamic variations by re‐
labelling live sequence. Suppose the labels of spoof and live
samples are 0 and 1 respectively. They define a new temporal‐
aware label via forcing the labels of the real face images in a
sequence to change uniformly from 1 to 2, while the spoofing
faces stay 0. Let X ¼ fx1; x2;…; xng denote a video containing
n frames, where x1 and xn represent the first and final frames,
respectively. They encode this implicit temporal information by
reformulating the ground‐truth label, such as

gti ¼ 1þ
i
n
; ð7Þ

where the genuine label grows over time. Note that they do not
encode the temporal variations in the spoof video due to their
irregular variations in sequence. As shown in Figure 7, the
overall framework consists of two parts as follows:

(1) In the training stage, they encode inherent discriminative
information by re‐labelling live sequence

(2) In inference stage, they aggregate the static‐spatial features
with dynamic–temporal information for sample classifi-
cation. Finally, combined with the strong learning ability of
backbone, their method achieved third in the single‐modal
track and the code is publicly available in https://github.
com/yueyechen/cvpr20

3.1.5 | ZhangTT

Similar to the SD‐Net in baseline [22], this team proposes a
two‐branch network to learn hybrid features from static and
temporal images. They call it quality and time tensor, respec-
tively. As shown in Figure 8, they take the ResNet [31] as the

backbone for each branch and use the single frame and multi‐
frame as the input of the two branches. Specially, the quality
tensor and time tensor are first sent to a normal 7� 7
receptive field convolution layer for preliminary feature
extraction. After feature extraction by three independent
blocks, a higher level expression quality feature map and time
feature map were obtained. Then the quality feature and the
time feature are concatenated together to form a new feature
map for final classification with a binary cross‐entropy loss
function. The blocks in this work are the same as the ResNet
block [31].

For data pre‐processing, they first discarded the colour
information by converting the RGB modality to grayscale
space and then used histogram equalization to mitigate the
skin‐tone gap between ethnicities. Finally, they adopted the
following four strategies to reduce the difference between
replay and print attacks: (1) They regard face anti‐spoofing
work as a classification task for four classes instead of two. The
four considered categories are live‐invariable (label 0), fake‐
invariable (label 1), live‐variable (label 2) and fake‐variable
(label 3), respectively; (2) dithering each channel of the attack
sample solves the problem of consistency of each frame of the
print attack; (3) to enhance the robustness, consider randomly
superimposing Gaussian noise and superimposing gamma
correction on each channel of the time tensor; and (4) to
discriminate the texture difference, the first channel of the time
tensor is separately identified and recorded as the quality
tensor. It is sent to the network to extract features without
noise superposition. Their code is publicly available in https://
github.com/ZhangTT-race/CVPR2020-SingleModal.

3.1.6 | Newland_tianyan

This team mainly explores single‐modal track from two aspects
of data augment and network design. For data augmentation,
on the one hand, they introduced print attacks in the training
set by randomly pasting study textures on real face samples. On
the other hand, they performed random rotation, movement,
brightness transformation, noise and fold texture addition on

F I GURE 6 Visual comparison of real face, replay attack, print attack motion information for Harvest team
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the same frame of real face to simulate the case that there is no
micro expression change for the print attack. For network
design, this team used a five‐layer sequence network which
takes 16 frames of samples as input to learn the temporal
features. To improve the generalization faced with different
ethnicities, the images were subtracted from the neighbour-
hood mean before sending to the network due to the samples
of different ethnicities vary widely in skin colour. Their code is
publicly available in https://github.com/XinyingWang55/
RGB-Face-antispoofing-Recognition.

3.1.7 | Dopamine

This team uses face ID information for face anti‐spoofing
tasks. The architecture is shown in Figure 9, a multi‐task
network is designed to learn the features of identity and
authenticity simultaneously. In the testing phase, these two
scores are combined to determine whether a sample is a real
face. They use the softmax score from the real/fake classifier
and the feature computed by the backbone network
(Resnet100) to compute the minimal similarity between the
same person. In theory, the feature similarity score of the
attack sample is close to 1, and the real face is close to 0. Their
code is publicly available in https://github.com/xinedison/
huya_face.

3.1.8 | IecLab

This team uses feathernet and 3DResNet [37] to learn the
authenticity and expression features of the samples, and finally

merged the two features for anti‐spoofing tasks. Their code is
publicly available in https://github.com/1relia/CVPR2020-
FaceAntiSpoofing.

3.1.9 | Chuanghwa telecom lab

This team combines subsequence features with Bag of local
features [38] within the framework of MIMAMO‐Net
(https://github.com/wtomin/MIMAMO-Net). Finally, the
ensemble learning strategy is used for feature fusion. Their
code is publicly available in https://drive.google.com/open?
id¼1ouL1X69KlQEUl72iKHl0-_UvztlW8f_l.

3.1.10 | Wgqtmac

This team focused on improving face anti‐spoofing general-
ization ability and proposed an end‐to‐end trainable face anti‐
spoofing approach based on deep neural network. They
choose Resnet18 [31] as the backbone and use a warmup
strategy to update the learning rate. The learnt model performs
well on the developing subset. However, it is easily overfitted
on the training set and gets worse results on the testing set.
Their code is publicly available in https://github.com/
wgqtmac/cvprw2020.git.

3.1.11 | Hulking

The main role of PipeNet proposed by this team is to selec-
tively and adaptively fuse different modalities for face

F I GURE 7 The framework of training and testing phases for Harvest. The figure is provided by the Harvest team and ranked NO:3 in single‐modal track.
IR, infrared

F I GURE 8 Architecture of the
proposed for the single‐modal track. The
figure is provided by the ZhangTT team and
ranked NO:4 in the single‐modal track
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anti‐spoofing tasks. Since the single‐modal track only allows
the use of RGB data, the team's method has limited perfor-
mance in this challenge. We detail the team's algorithm in
Section 3.2. Their code is publicly available in https://github.
com/muyiguangda/cvprw-face-project.

3.1.12 | Dqiu

This team treats the face anti‐spoofing as a binary classification
task and uses Resnet50 [31] as the backbone to learn the fea-
tures. Since no additional effective strategies were used, no
good results were achieved on the testing set.

3.2 | Multi‐modal face anti‐spoofing
challenge track

3.2.1 | Baseline

In order to take full advantage of multi‐modal samples to
alleviate the ethnic and attack bias, we propose a novel
multi‐modal fusion network, namely PSMM‐Net [22]. As
shown in Figure 10. It consists of two main parts: (a) the
modality‐specific network, which contains three SD‐Nets to
learn features from RGB, Depth and IR modalities, respec-
tively; and (b) and a shared branch for all modalities, which
aims to learn the complementary features among different
modalities. To capture correlations and complementary se-
mantics among different modalities, information exchange,
and interaction among SD‐Nets and the shared branch are
designed.

There are two main kind of losses employed to guide the
training of PSMM‐Net. The first corresponds to the losses of
the three SD‐Nets, that is, colour, depth and IR modalities,
denoted as L

color, L
depth and L

IR, respectively. The second
corresponds to the loss that guides the entire network training,
denoted as L

whole, which bases on the summed features from
all SD‐Nets and the shared branch. The overall loss L of
PSMM‐Net is denoted as follows:

L ¼ L
whole
þ L

color
þ L

depth
þ L

IR
ð8Þ

3.2.2 | BOBO

For the multi‐modal track, as shown in Figure 11, this team
takes three independent networks (backbone) to learn the
features of the three modalities (e.g., RGB, Depth, IR).
Therefore, the entire structure consists of two main parts: (a)
the modality‐specific network, which contains three branches
(the backbone network of each modality branch is not shared)
to regress depth maps of RGB, Depth and IR modalities,
respectively; and (b) a fused branch (via concatenation) for all
modalities, which aims to learn the complementary features
among different modalities and output final depth map with
the same size (1� 32� 32) of the single‐modal track. Similar
to the single‐modal track, the CDL and CDE loss functions are
used in a multi‐modal track in the form of weighted sums.

As the feature‐level fusion strategy (see Figure 11) might
not be optimal for all protocols, they also try two other fusion
strategies: (1) input‐level fusion via concatenating three‐modal
inputs to 256� 256� 9 directly, and (2) score‐level fusion via
weighting the predicted score from each modality. For these
two fusion strategies, the architecture of single‐modal CDCN
(see Figure 4) is used. Through comparative experiments, they
concluded that the input‐level fusion (i.e., simple fusion with
concatenation) might be sub‐optimal because it is weak in
representing and selecting the importance of modalities.
Therefore, this final result is combined with the best sub‐
protocols results (i.e., feature‐level fusion for protocol 4_1,
while score‐level fusion for protocol 4_2 and 4_3). Specially
for score‐fusion, they weight the results of RGB and Depth
modalities averagely as the final score (i.e.,
fusion_score¼ 0:5� RGB_scoreþ 0:5� depth_score). This
simple ensemble strategy helps to boost the performance
significantly in their experiments.

3.2.3 | Super

CASIA‐SURF CeFA is characterized by multi‐modality (i.e.,
RGB, Depth, IR) and a key issue is how to fuse the comple-
mentary information between the three modalities. This team
explored multi‐modal track from three aspects: (1) Data pre‐
processing, (2) Network construction, and (3) Ensemble
strategy design.

F I GURE 9 The architecture of the multi‐task network for face anti‐spoofing. The figure is provided by the Dopamine team and ranked NO:6 in the single‐
modal track
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Since the dataset used in this competition retained the black
background area outside the face, this team tried to remove the
background area using the histogram threshold method to
mitigate its interference effect onmodel learning. To increase the
diversity of training samples, they use random rotationwithin the
range of [� 30°, 30°], flipping, cropping and colour distortion for
data augmentation. Note that the three modalities of the same
sample are maintained in a consistent manner to obtain the
features of the corresponding face region.

Inspired by Zhang et al. [21] which employs the ‘Squeeze‐
and‐Excitation; Block (SE Block) [39] to re‐weighting the hi-
erarchy features of each modality, this team takes a multi‐
stream architecture with three subnetworks to study the dataset
modalities, as shown in Figure 12. We can see that the RGB,
Depth and IR data are learnt separately by each stream, and
then shared layers are appended at a point (Res‐4) to learn joint
representations. However, the single‐scale SE block [39] does
not make full use of features from different levels. To this end,
they extend the SE fusion from a single scale to multiple scales.
As shown in Figure 12, the Res‐1, Res‐2 and Res‐3 blocks from
each stream extract features from different modalities. After
that, they first fuse features from different modalities via the

SE block after Res‐1, Res‐2 and Res‐3, respectively, then
concatenate these fused features and sending them to aggre-
gation block (Agg Block), next merging these features
(including shared branch features after the GAP) via element
summation operations similar to [40]. Finally, they use the
merged features to predict real and fake. Differently from [40],
they add a dimension reduction layer before the fully con-
nected layer for avoiding the overfitting.

To increase the robustness to unknown attack types and
ethnicities, they design several new networks based on the
basic network shown in Table 4. Such as the Network A with
a dimension reduction layer and without SE fusion after each
res block. While the Network B and C are similar to [21,40]
respectively. For the IR_ResNet50, it uses the improved
residual block which aims at fitting the face recognition task.
In the experiments, they found that different networks
performed differently under the same sub‐protocol. There-
fore, they selectively trained these networks according to
different sub‐protocols and get the final score via averaging
the results of selected networks. Their code is publicly
available in https://github.com/hzh8311/challenge2020_
face_anti_spoofing.

F I GURE 1 0 The framework of PSMM‐Net. The figure is provided by the baseline team and ranked NO:8 in multi‐modal track

F I GURE 1 1 The framework of regression network for three modalities. The figure is provided by the BOBO team and ranked NO:2 in multi‐modal track.
CDC, central difference convolution

LIU ET AL. - 33

 20474946, 2021, 1, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/bm

e2.12002 by Institute O
f A

utom
ation C

hinese A
cadem

y O
f Sciences L

ibrary, W
iley O

nline L
ibrary on [05/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/hzh8311/challenge2020_face_anti_spoofing
https://github.com/hzh8311/challenge2020_face_anti_spoofing


3.2.4 | Hulking

As for this team, they propose a novel Pipeline‐based CNN
(namely PipeNet) fusion architecture which taking modified
SENet‐154 [39] as the backbone for multi‐modal face anti‐
spoofing. Specifically, as shown in Figure 13, it contains two
modules, namely selective modal pipeline (SMP) module and
limited frame vote (LFV) module for the input of multiple
modalities and sequence video frames, respectively. We can see
that the framework contains three SMP modules, and each
module takes a modal data (i.e., RGB, Depth, IR) as input.
Taking the RGB modality as an example, they first use one
frame as input and randomly crop it into patches, then send
them to ColorPipeline which consists of data augmentation
and feature extraction operations. They use a fusion strategy,
which is concatenating the responses of ColorPipeline,
DepthPipeline and IRPipeline, and sending them to
FusionMoudle for further feature abstraction. After the linear
connection, input all frame features of the video to the LFV
module, and iteratively calculate the probability that each frame
sample belongs to the real face. Finally, the output is a pre-
diction for real face probability of the input face video.

3.2.5 | Newland_tianyan

For multi‐modal track, this team uses two independent
ResNet‐9 [31] as backbones to learn the features of Depth

and IR modal data respectively. Similar to the single‐modal
track, the inputs of depth branch are subtracted from the
neighbourhood mean before entering the network. In
addition to data augment similar to the single‐modal track,
they transferred the RGB data of real samples to grey space
and added light spots for data augment. Their code is
publicly available in https://github.com/Huangzebin99/
CVPR-2020.

3.2.6 | ZhangTT

A multi‐stream CNN architecture called ID‐Net is proposed
for the multi‐modal track. Since the different feature distri-
butions of different modalities, the proposed model attempt to
explore the interdependence between these modalities. As
shown in Figure 14, there are two models trained by this team
which one is trained using only IR as input and the other using
both IR and Depth as inputs. Specially, a multi‐stream archi-
tecture is designed with two sub‐networks to perform multi‐
modal features fusion and the feature maps of two sub‐net-
works are concatenated after a convolutional block. The final
score is a weighted average of the results of two models. Their
code is publicly available in https://github.com/ZhangTT-
race/CVPR2020-MultiModal.

3.2.7 | Harvest

Different from other teams, they pay more attention to the
network structure, this teammainly explores data pre‐processing
and data augmentation to improve the generalization perfor-
mance. Through experimental comparison, they found that IR
modal data are more suitable for face anti‐spoofing task.
Therefore, in this multi‐modal track, only the IR modal data
participate in model training. Similar to the team Super, they first
use the face detector to remove the background area outside the
face. Concretely, they use a face detector to detect face region of

F I GURE 1 2 The framework of Super team. The ResNet34 or IR_ResNet50 as the backbone. The figure is provided by the Super team and ranked NO:2 in
the multi‐modal track. SE, Squeeze‐and‐Excitation

TABLE 4 The networks ensemble ways adopted by Super team. Each
network carries functions marked by ✓

Network Backbone SE block Dimension reduction Agg block

A ResNet34 ✓ ✓

B ResNet34 ✓ ✓

C ResNet34 ✓

D IR_ResNet50 ✓
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interest (ROI) with RGB data, and then mapping theses ROIs to
IR data to get the corresponding face position. Since only IR
modal data are used, more sample augmentation strategies are
used in network training to prevent overfitting. Such as the image
is randomly divided into patches in an online manner before
sending it to the network. Besides, they tried some tricks
including triplet loss with semi‐hard negative mining, sample
interpolation augmentation and label smoothing.

3.2.8 | Qyxqyx

Based on the work in [15], this team adds an additional binary
classification supervision to promote the performance for
multi‐modal track. Specifically, the network structure is from
[15,41], and the additional binary supervision is inspired by
[42]. As shown in Figure 15, taking the RGB modality as an

example, the input samples are supervised by two loss func-
tions which are a binary classification loss and a regression loss
after passing through the feature network. Finally, the weighted
sum of the binary output and the pixel‐wise regression output
as the final score. Their code is publicly available in https://
github.com/qyxqyx/FAS_Chalearn_challenge.

3.2.9 | Skjack

The network structure is similar to team Super. They use
ResNet‐9 [31] as the backbone and fuse the RGB, Depth and
IR features after the res‐3 block, then a 1� 1 convolution
operation is used to compress the channel. Since there are no
additional novel innovations, the team's algorithm did not
perform well in this competition. Their code is publicly
available https://github.com/skJack/challange.git.

F I GURE 1 3 The overall architecture of PipeNet. The figure is provided by the Hulking team and ranked NO:3 in the multi‐modal track

F I GURE 1 4 Architecture of the proposed for the multi‐modal track. The figure is provided by the ZhangTT team and ranked NO:5 in the multi‐modal
track. IR, infrared
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4 | CHALLENGE RESULTS

In this section, we first report the results of the participating
teams from the perspective of both single‐modal and multi‐
modal tracks, and then analyse the performances of the par-
ticipants' methods. Finally, the shortcomings and limitations of
these algorithms are pointed out.

4.1 | Challenge results report

4.1.1 | Single‐modal (RGB) track

Since the single‐modal track only allows the use of RGB data,
the purpose is to evaluate the performance of the algorithms
on a face anti‐spoofing system with a VIS camera as the
acquisition device. The final results of the 11 participating
teams are shown in Table 5, which includes the three consid-
ered indicators (e.g., APCER, BPCER and ACER) on three
sub‐protocols (e.g., 4 1, 4 2 and 4 3). The final ranking is
based on the average value of the ACER on three sub‐pro-
tocols (smaller means better performance). At the same time,
we report the thresholds for all algorithms to make decisions
on real faces and attack samples. The thresholds of the top
three teams are either very large (i.e., more than 0.9 for BOBO)
or very small (i.e., 0.01 for Harvest), or have very different
thresholds for different sub‐protocols (i.e., 0.02 vs. 0.9 for
VisionLabs). In addition, VisionLabs achieves the best results
on APCER with a value of 2:72%, meaning that the algorithm
can better classify attack samples correctly. Whilst, Wgqtmac's
algorithm obtains the best results on the indicator of BPCER
(0:66%), indicating that it can better classify real face. Overall,
the results of the first 10 teams are better than the baseline
method [22] when ranking by ACER. The VisionLabs team
achieved the first place with a clear advantage.

4.1.2 | Multi‐modal

The multi‐modal track allows the participating teams to use all
the modal data. The purpose is to evaluate the performance of
the algorithms on anti‐spoofing systems equipped with

multi‐optic cameras, such as the Intel RealSense or Microsoft
Kinect sensor. The results of the eight participating teams in the
final stage are shown in Table 6. BOBO team's algorithm gets
first‐place performance, such as APCER¼ 1:05%,
BPCER¼ 1:00% andACER ¼ 1:02%. While the teamof Super
ranks secondwith a slight disadvantage, such asACER ¼ 1:68%.
It is worth noting thatNewland_tianyan's algorithm achieves the
best results on the APCER indicator with a value of 0:24%.
Similar to the conclusion of the single‐modal track, most of the
participating teams have relatively large thresholds which are
calculated on the validation set, specially the Super and New-
land_Tianyan teamswith the value of 1.0 on three sub‐protocols,
indicating that these algorithms treat the face anti‐spoofing task
as an anomaly detection. In addition, we can find that the ACER
values of the top four teams are 1:02%, 1:68%, 2:21%, and
2:28%, which are better than the ACER of the first place of the
single‐modal track, such as 2:72% for the team of VisionLabs. It
shows the necessity of our multi‐modal track in improving ac-
curacy in face anti‐spoofing task.

4.2 | Challenge results analysis

In this section, we analyse the advantages and disadvantages of
the algorithm performance of each participating team in detail
according to different tracks.

4.2.1 | Single‐modal

As shown in Table 3, the testing subset introduces two un-
known target variations simultaneously, such as the different
ethnicities and attack types in training and testing subsets,
which pose a huge challenge for participating teams. However,
most teams achieved relatively good results in the final stage
compared to baseline, specially the top three teams get ACER
values below 10%. It is worth mentioning that different al-
gorithms have their own unique advantages, even if the final
ranking is relatively backward. Such as the value of BPCER of
Wgqtmac'team is 0:66%, meaning about one real sample from
100 real faces will be treated as fake ones. While,
APCER ¼ 0:11% for the team of VisionLabs indicates about

F I GURE 1 5 The supervision and the network of Qyxqyx team. The orange cube is convolution layer. The pixel‐wise binary label in their experiment is
resized into 32� 32 resolution. The figure is provided by the Qyxqyx team and ranked NO:7 in the multi‐modal track
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TABLE 5 The results of single‐modal track

Team Name Method (keywords) Prot. Thre. FP FN APCER(%) BPCER(%) ACER(%) Rank

VisionLabs OpticalFlow, 4 1 0.02 4 21 0.22 5.25 2.74 1

RankPooling, 4 2 0.90 0 12 0.00 3.00 1.50

Data augment, 4 3 0.10 2 31 0.11 7.75 3.93

SimpleNet Avg � Std 0.34 � 0.48 2 � 2 21 � 9 0.11 � 0.11 5.33 � 2.37 2.72 � 1.21

BOBO CDC, CDL, EDL, 4 1 0.95 201 10 11.17 2.5 6.83 2

Multi‐level cell, 4 2 0.99 120 8 6.67 2.0 4.33

Attention moudle, 4 3 0.99 67 12 3.72 3.0 3.36

Depth supervision Avg � Std 0.97 � 0.02 129 � 67 10 � 2 7.18 � 3.74 2.50 � 0.50 4.84 � 1.79

Harvest Motion cues, 4 1 0.01 31 48 1.72 12.0 6.86 3

Relabelling live, 4 2 0.01 116 51 6.44 12.75 9.6

Sequence, 4 3 0.01 109 67 6.06 16.75 11.4

ResNet Avg � Std 0.01 � 0.00 85 � 47 55 � 10 4.74 � 2.62 13.83 � 2.55 9.28 � 2.28

ZhangTT Quality tensor, 4 1 0.9 103 74 5.72 18.5 12.11 4

Time tensor, 4 2 0.9 132 45 7.33 11.25 9.29

Data 4 3 0.9 57 108 3.17 27.0 15.08

Pre‐processing Avg � Std 0.9 97 � 37 75 � 31 5.40 � 2.10 18.91 � 7.88 12.16 � 2.89

Newland_tianyan Data augment, 4 1 0.77 34 117 1.89 29.25 15.57 5

Temporal feature, 4 2 0.7 513 11 28.5 2.75 15.62

Neighbourhood 4 3 0.55 299 6 16.61 1.5 9.06

Mean Avg � Std 0.67 � 0.11 282 � 239 44 � 62 15.66 � 13.33 11.16 � 15.67 13.41 � 3.77

Dopamine ID information, 4 1 0.02 325 6 18.06 1.5 9.78 6

Multi‐task, 4 2 0.22 367 24 20.39 6.0 13.19

Score fusion, 4 3 0.01 636 0 35.33 0.0 17.67

Resnet100 Avg � Std 0.07 � 0.11 442 � 168 10 � 12 24.59 � 9.37 2.50 � 3.12 13.54 � 3.95

IecLab 4 1 0.33 696 21 38.67 5.25 21.96 7

3D ResNet, 4 2 0.45 606 26 33.67 6.5 20.08

Fueature fusion, 4 3 0.45 489 26 27.17 6.5 16.83

Softmax Avg � Std 0.40 � 0.07 597 � 103 24 � 2 33.16 � 5.76 6.08 � 0.72 19.62 � 2.59

Chunghwa‐Telecom Subsequence 4 1 0.87 538 44 29.89 11.0 20.44 8

Feature, 4 2 0.93 352 113 19.56 28.25 23.9

Local feature, 4 3 0.79 442 71 24.56 17.75 21.15

MIMAMO‐Net Avg � Std 0.86 � 0.06 444 � 93 76 � 34 24.66 � 5.16 19.00 � 8.69 21.83 � 1.82

Wgqtmac 4 1 0.85 1098 1 61.0 0.25 30.62 9

ResNet18, 4 2 1.0 570 7 31.67 1.75 16.71

Warmup strategy, 4 3 0.56 1117 0 62.06 0.0 31.03

Softmax Avg � Std 0.80 � 0.22 928 � 310 2 � 3 51.57 � 17.24 0.66 � 0.94 26.12 � 8.15

(Continues)
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one fake sample from 1000 attackers will be treated as real
ones.

To fully compare the stability of the participating team's
algorithms, similar to [21], we introduce the receiver operating
characteristic (ROC) curve in this challenge which can be used
to select a suitable trade‐off threshold between false‐positive
rate (FPR) and TPR according to the requirements of a given
real application. As shown in Figure 16, the results of the top
one team (VisionLabs) on both three sub‐protocols are clearly
superior to other teams, revealing that using optical flow
method to convert RGB modal data to other sample spaces
can effectively improve the generalization performance of the
algorithm to deal with different unknown factors. However,
the TPR value of the remaining teams decreased rapidly as the
FPR reduced (e.g., TPR@FPR ¼ 10� 3 values of these teams
are almost zero). In addition, we can find that although the
performance of ACER for Harvest team is worse than that of
the BOBO team, the performance of the TPR@FPR¼ 10� 3 is
significantly better than the BOBO team. It is mainly because
the FP and false‐negative (FN) samples of the Harvest team
are relatively close (see from Table 5).

Finally, for the top three teams, we randomly selected some
mismatched samples as shown in Figure 17. We can see that
most of the FN samples of the VisionLabs team are real faces
with large motion amplitude, while the most of FP samples are
3D print attacks, indicating that the team's algorithm has
correctly classified almost all 2D attack samples. In addition,
due to the challenging nature of our competition dataset, such
as it is difficult to distinguish the real face from attack samples
without the label, the BOBO team and the Harvest team did
not make correct decisions on some difficult samples.

4.2.2 | Multi‐modal

From the Table 6, we can find that the ACER values of the
top seven teams are relatively close, and the top four teams are
better than VisionLabs (ACER ¼ 2:72%) in the single‐modal
track. It indicates that the complementary information
between multi‐modal datasets can improve the accuracy of the
face anti‐spoofing algorithm. Although Newland_Tianyan
ranked fourth in ACER, they achieved the best results on the
APCER indicator (e.g., APCER ¼ 0:24%). It means the
smallest number of FP samples among all teams. In addition,
from the Table 6 and Figure 18, we can find that although the
ACER values of the top two algorithms are relatively close, the
stability of the Super team is better than the BOBO, such as
the values of TPR@FPR ¼ 10� 3 for Super and New-
land_Tianyan are better than BOBO on both three sub‐pro-
tocols. Finally, we can find from the Figure 19 that the FP
samples of the top three teams contain many 3D print attacks,
indicating that their algorithms are vulnerable to 3D face
attacks.

5 | OPEN ISSUES AND
OPPORTUNITIES

In this section, we will first summarize some common issues
that were identified in this challenge, then analyse some of the
corresponding causes, and describe some feasible solutions to
alleviate these problems in combination with practical appli-
cations. Finally, we formulate the future work based on the
CASIA‐SURF CeFA dataset.

TAB LE 5 (Continued)

Team Name Method (keywords) Prot. Thre. FP FN APCER(%) BPCER(%) ACER(%) Rank

Hulking 4 1 0.81 635 138 35.28 34.5 34.89 10

PipeNet, 4 2 0.82 1027 37 57.06 9.25 33.15

Softamx 4 3 0.67 768 59 42.67 14.75 28.71

Avg � Std 0.76 � 0.08 810 � 199 78 � 53 45.00 � 11.07 19.50 � 13.27 32.25 � 3.18

Dqiu 4 1 1.0 1316 142 73.11 35.5 54.31 11

ResNet50, 4 2 1.0 567 60 31.5 15.0 23.25

Softmax 4 3 1.0 664 146 36.89 36.5 36.69

Avg � Std 1.00 � 0.00 849 � 407 116 � 48 47.16 � 22.62 29.00 � 12.13 38.08 � 15.57

Baseline Static and 4 1 1.0 1331 7 73.94 1.75 37.85 *

Dynamic features 4 2 1.0 1379 27 76.61 6.75 41.68

Features, 4 3 1.0 836 57 46.44 14.25 30.35

RankPooling Avg � Std 1.00 � 0.00 1182 � 300 30 � 25 65.66 � 16.70 7.58 � 6.29 36.62 � 5.76

Notes: Avg � Std indicates the mean and variance operation and best results are shown in bold. *, it means the proposed baseline method.
Abbreviations: ACER, average classification error rate; APCER, attack presentation classification error rate; CDC, central difference convolution; CDL, contrastive depth loss; EDL,
Euclidean distance loss; FP, false positive; FN, false negative.
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TABLE 6 The results of Multi‐modal track. Avg � Std indicates the mean and variance operation and best results are shown in bold

Team Name Method (keywords) Prot. Thre. FP FN APCER(%) BPCER(%) ACER(%) Rank

BOBO CDC, CDL, EDL, 4 1 0.98 6 2 0.33 0.5 0.42 1

Feature fusion 4 2 0.95 25 3 1.39 0.75 1.07

Score fusion, 4 3 0.94 26 7 1.44 1.75 1.6

Depth supervision Avg � Std 0.95 � 0.02 19 � 11 4 � 2 1.05 � 0.62 1.00 � 0.66 1.02 � 0.59

Super Data pre‐processing, 4 1 1.0 9 11 0.5 2.75 1.62 2

Dimension reduction, 4 2 1.0 5 17 0.28 4.25 2.26

SE fusion 4 3 1.0 20 5 1.11 1.25 1.18

Score fusion Avg � Std 1.0 � 0.00 11.33 � 7.76 11 � 6 0.62 � 0.43 2.75 � 1.50 1.68 � 0.54

Hulking PipeNet, 4 1 0.96 31 0 1.72 0.0 0.86 3

SENet‐154, 4 2 1.0 99 5 5.5 1.25 3.37

Selective modal Pipeline 4 3 1.0 46 9 2.56 2.25 2.4

Limited frame Vote Avg � Std 0.98 � 0.02 58 � 35 4 � 4 3.25 � 1.98 1.16 � 1.12 2.21 � 1.26

Newland_tianyan Resnet9, 4 1 1.0 0 3 0.0 0.75 0.37 4

Data pre‐processing 4 2 1.0 4 26 0.22 6.5 3.36

Neighbourhood mean 4 3 1.0 9 23 0.5 5.75 3.12

Data augmen Avg � Std 1.00 � 0.00 44 17 � 12 0.24 � 0.25 4.33 � 3.12 2.28 � 1.66

ZhangTT ID Net, 4 1 0.94 0 19 0.0 4.75 2.37 5

Feature fusion 4 2 0.9 66 34 3.67 8.5 6.08

Score fusion 4 3 0.79 102 0 5.67 0.0 2.83

Avg � Std 0.87 � 0.07 56 � 51 17 � 17 3.11 � 2.87 4.41 � 4.25 3.76 � 2.02

Harvest Data pre‐processing, 4 1 0.87 13 4 0.72 1.0 0.86 6

Data augment, 4 2 0.93 180 28 10.0 7.0 8.5

Only IR 4 3 0.96 119 8 6.61 2.0 4.31

Semi‐hard negative mining Avg � Std 0.92 � 0.04 104 � 84 13 � 12 5.77 � 4.69 3.33 � 3.21 4.55 � 3.82

Qyxqyx Binary supervision 4 1 0.98 1 53 0.06 13.25 6.65 7

Pixel‐wise regression, 4 2 0.98 19 8 1.06 2.0 1.53

Score fusion 0.89 257 19 14.28 4.75 9.51

Avg � Std 0.95 � 0.05 92 � 142 26 � 23 5.12 � 7.93 6.66 � 5.86 5.89 � 4.04

Skjack Resnet9 4 1 0.0 1371 2 76.17 0.5 38.33 8

4 2 0.01 1155 46 64.17 11.5 37.83

Softmax 4 3 0.0 511 93 28.39 23.25 25.82

Avg � Std 0.00 � 0.00 1012 � 447 47 � 45 56.24 � 24.85 11.75 � 11.37 33.99 � 7.08

Baseline SD‐Net, 4 1 1.0 413 109 22.94 27.25 25.1 *

A shared branch, 4 2 0.17 1340 23 74.44 5.75 40.1

PSMM‐Net 4 3 0.02 864 55 48.0 13.75 30.87

Fusion Avg � Std 0.39 � 0.52 872 � 463 62 � 43 48.46 � 25.75 15.58 � 10.86 32.02 � 7.56

Notes: *, it means the proposed baseline method. Bold value means the best performance under a specific evaluate metric (i.e., ACER).
Abbreviations: ACER, average classification error rate; APCER, attack presentation classification error rate; CDC, central difference convolution; CDL, contrastive depth loss; EDL,
Euclidean distance loss; FP, false positive; FN, false negative.
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F I GURE 1 6 The ROC of 12 teams in a single‐modal track. From left to right are the receiver operating characteristics on protocol 4_1, 4_2 and 4_3

F I GURE 1 7 The mismatched samples of the top three teams in the single‐modal track. FN and FP indicate false negative and false positive, respectively

F I GURE 1 8 The ROC of nine teams in the multi‐modal track. From left to right are the receiver operating characteristics on protocol 4_1, 4_2 and 4_3
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5.1 | Critical issues and breakthrough point

From Tables 5 and 6 of the competition results, we can find
that the threshold for both single‐modal and the multi‐modal
track is generally high. The meaning of the threshold in our
challenge is the minimum probability that a sample will be
classified as a real face. For instance, the thresholds on three
sub‐protocols reach to one for the team of dqiu in single‐
modal track and the top‐ranked teams (Super, Hulking and
Newland_Tianyan) in the multi‐modal track. These over‐
confidence problems mean that some attack samples will be
judged as real faces with high probability, which is unrea-
sonable in practical applications. We analyse the following
three reasons responsible for this problem: (1) caused by the
task itself. The nature of the face anti‐spoofing task is a bi-
nary classification task. If the sample scale is small and lacks
diversity, it can easily lead to extreme thresholds. This phe-
nomenon is also found in other binary classification tasks,
such as face detection, (2) caused by different collection
environments for positive (real face) and negative samples
(spoof). For example, the attack samples of the same subject

are collected under multiple lighting conditions, while the real
face is collected only in indoor environments, and (3) caused
by the lack of generalization performance when the algorithm
faces unknown attack types and ethnicities. According to the
characteristics of the testing protocol that contains two un-
known variables (i.e., cross‐PAIs and cross‐ethnicity) in
training and testing phases, some teams design networks and
loss functions pay more attention to the motion information
of real face and replay attack in the training phase, and treat
any unseen static‐samples (including spoofs and real faces) in
the testing phase as abnormal information (spoofs), resulting
in poor generalization ability in cross‐PAIs. Other teams have
subtracted different neighbourhood mean values according to
different ethnicities to alleviate the interference caused by
skin colour differences. However, in the face of unknown
ethnic samples, the inability to subtract the appropriate
neighbourhood mean causes classification errors. In summary,
poor generalization performance (i.e., unable to correctly
classify unknown real samples and attack types) causes the
classification threshold to be too large or too small. To
alleviate this problem, we propose feasible solutions from the

F I GURE 1 9 The mismatched samples of the top three teams in the multi‐modal track. FN and FP indicate false negative and false positive, respectively
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three aspects of data collection, training strategy, and algo-
rithm design. CASIA‐SURF CeFA is the largest up to date
face anti‐spoofing dataset and contains various attack types
and attack environments, such as the attack types include
print attacks and replay attacks under multiple lighting con-
ditions. However, the diversity of the device and environment
for collecting real face samples is limited.

It inevitably brings the problem of sample imbalance.
Therefore, the CASIA‐SURF CeFA dataset should consider
supplementing some real samples including acquisition
equipment and shooting environment. Whilst, an effective
training strategy is to balance the positive and negative pro-
portions of samples in each batch during the training process.
Finally, a binary cross‐entropy loss might discover arbitrary
cues, such as spot or screen bezel of the spoof medium, that
are not the faithful spoof patterns. Therefore, the supervision
should be designed from the essential differences between live
and spoof faces, such as the rPPG signals (i.e., heart pulse
signal) which can reflect human physiological signs.

5.2 | Future work and opportunities

Face anti‐spoofing based on multi‐modal datasets attracts
increasing research interests. However, the gap exploration
between sensing patterns of different face modalities remains
an open research problem in face anti‐spoofing. Some previ-
ous works [22,43] have been verified the existence of perfor-
mance deviations of the SOTA algorithms in different face
modalities. At the same time, they designed a testing protocol
to measure the degree of modal bias, such as the Protocol
three in CASIA‐SURF CeFA [22]. Similar to heterogeneous
face recognition (e.g., NIR‐VIS [44–46]), which refers to
matching faces across different modalities (or sensing patterns),
we cast the face anti‐spoofing task as a heterogeneous face
matching problem. In this way, the discrimination information
of other modal samples can be used to assist the learning of
RGBmodal data. And after themodel is trained, there is no need
to load other modal samples during the testing phase.

Since the existing datasets for training and verification are
collected in VIS spectrum, the use of samples of additional
modalities (e.g., Depth or IR) to assist the learning of RGB
modal data while without extra modalities in testing phase is
interesting in the practical applications. On the other hand,
CASIA‐SURF [21] and CASIA‐SURF CeFA [22] are multi‐
modal face anti‐spoofing datasets and each sample contains
three paired modalities, which may provide us with the pos-
sibility to study heterogeneous face anti‐spoofing.

6 | CONCLUSION

We organized the Chalearn Face Anti‐spoofing Attack Detec-
tion Challenge at CVPR2020 based on the CASIA‐SURF
CeFA dataset with two tracks and running on the CodaLab
platform. Both tracks attracted 340 teams in the development
stage, and finally, 11 and eight teams have submitted their

codes in the single‐modal and multi‐modal face anti‐spoofing
recognition challenges, respectively. We described the associ-
ated dataset, and the challenge protocol including evaluation
metrics. We reviewed in detail the proposed solutions and re-
ported the challenge results. Compared with the baseline
method, the best performances from participants under the
ACER value are from 36.62 to 2.72, and 32.02 to 1.02 for the
single‐modal and multi‐modal challenges, respectively. We
analysed the results of the challenge, pointing out the critical
issues in PAD task and presenting the shortcomings of the
existing algorithms. Future lines of research in the field have
been also discussed.
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