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Abstract
First impressions strongly influence social interactions, having a high impact in the personal and professional life. In this
paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and
further assisting on job interview recommendation in a first impressions setup. The setup is based on the ChaLearn First
Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data,
where each person is talking in front of a camera. In order to give a comprehensive prediction, we analyze the videos from
both the entire scene (including the person’s motions and background) and the face of the person. Our CR-Net first performs
personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits
and interview recommendation. Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions
caused by the regression-to-the-mean problem. Extensive experiments on the First Impressions dataset show the effectiveness
of our proposed network, outperforming the state-of-the-art.

Keywords Personality traits · Multimodal data · Convolutional neural networks · Classification-regression network ·
Bell Loss function

1 Introduction

The analysis of human affective behavior is an active research
in computer vision nowadays, which can be widely used
in a variety of applications, such as social relation analy-
sis (Xia et al. 2017), analysis of depression (Klein et al.
2011) and job candidate screening (Naim et al. 2015; Ponce-
López et al. 2016; Escalante et al. 2016), among others.
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Unconscious behaviors may produce facial expressions or
words of a person that can reflect some traits of person-
ality, influencing other people’s impression about him/her.
Evidence with psychological support has been shown in the
case of job interviews (Barrick andMount 1991).However, in
real-world situations, estimating one’s personality is still an
open problem in psychology, linguistics and physiology (Wei
et al. 2018). The advances in computer vision are providing
support to advance the study of personality computing, ben-
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efiting from the automatic analysis and recognition of facial
expressions, audio, speech, scene, and so on (Zhang et al.
2016; Wei et al. 2018; Subramaniam et al. 2016; Güçlütürk
et al. 2018; Kaya et al. 2017).

Apparent personality analysis is a key element in person-
ality computing (Wei et al. 2018). Slightly different from
real personality computing, apparent personality is that per-
ceived by an observer regarding other people. In this paper,
we focus on apparent personality analysis coming from first
impressions scores on a large set of audio-visual recordings.
Psychologists have proposed different models for describing
personality traits. One of the most acceptedmodels is the Big
Five (Norman 1963). It involves five factors to provide a full
picture of a person. The factors areOpenness,Conscientious-
ness, Extraversion, Agreeableness and Neuroticism. In this
work, the Big Five is the personality trait model which we
analyze on theChaLearn First Impressions dataset (Escalante
et al. 2018).

Psychologists have studied personality for decades (Corr
and Matthews 2009; Pennebaker and King 1999; Mairesse
and Walker 2007; Polzehl et al. 2010; Mohammadi and
Vinciarelli 2015), with the questionnaire as the preferred
choice in order to quantitatively estimate apparent personal-
ity traits scores (Corr and Matthews 2009). Further research
has been done with the analysis of communication con-
tent (Pennebaker andKing 1999;Mairesse andWalker 2007),
audio (Polzehl et al. 2010;Mohammadi andVinciarelli 2015)
and biological signals (Zhao et al. 2018; Correa et al. 2018),
among others. Owing to the advances of deep learning and
the newChalearnmultimodal personality datasets (Escalante
et al. 2018) released in computer vision, new insights have
been presented in the area of personality computing (Xia et al.
2017; Basu et al. 2018; Wei et al. 2018; Subramaniam et al.
2016; Güçlütürk et al. 2016a; Kaya et al. 2017; Bekhouche
et al. 2017; Ventura et al. 2017).

Predicting the apparent personality in the case of Big Five
trait model is essentially a regression task. Either traditional
machine learning-based methods or recent deep learn-ing-
based methods can perform the regression task by mapping
the set of features into real value scores. The mean square
error (MSE) loss is usually used for this optimization. One
problem with the MSE loss is the prediction of extreme val-
ues. When training with a batch of data that has ground truth
scores covering a large range of values, it is common the
optimization process produces predictions near the mean of
ground truth scores in order to minimize the loss. This is
even more pronounced in case where the ground truth scores
follow a Gaussian distribution. This phenomenon is called
“regression-to-the-mean” problem (Wang et al. 2018), and
harms the proper regression of extreme values in predictions.

The recently released First Impressions v2 dataset
(Escalante et al. 2018) contains apparent personality scores
for theBig Five traits of people in video sequences. The anno-

tation of recommendations on the invitation to job interview
is also available in the dataset. It shows a high agreement
among raters/observers regarding apparent personality (first
impressions) annotations, as well as the interview recom-
mendation variable (Escalante et al. 2018). We analyze the
Big Five traits based on this dataset.1

In order to estimate personality traits and further pro-
vide assistance to job interview recommendation from short
video sequences, we propose a deep Classification-Regressi-
on Network (CR-Net). The architecture of our network is
shown in Fig. 1. In order to take the benefit of different
modalities provided in the data, we first separate the visual
and audio inputs from the video sequence. For the visual
input, we consider both facial expressions and the motion of
the person. We adopt a multi-focus scheme, which decom-
poses scene and face cues to pay attention to the global
and local information about the person, respectively. For the
audio input, we consider both input audio channel and the
corresponding transcriptions, which are fused in early stages
of the network. Compared to some existing combinations of
classification and regression (Rothe et al. 2015; Huang and
Ramanan 2017; Niu et al. 2016; Chen et al. 2018; Gao et al.
2018), Our CR-Net network applies classification features as
a guidance to derive more discriminative features for regres-
sion. In this way, classification features are used to optimize
the regression search space. Since the classification features
are used as guidance rather than the input for regression,
it can avoid the propagation of classification errors to the
regression. Furthermore, in order to mitigate the regression-
to-the-mean problem, we design a new loss function, called
the Bell Loss, of which the shape is like an inverted Bell to
avoid the minimum of the loss obtained at the mean value of
the samples in a batch. Finally, with a weighted fusion, the
multi-focus visual features and audio-text features are inte-
grated and fed into the Extra Tree Regressor (ETR) for the
final prediction.

The main contributions of this paper are threefold:

1. A network that takes features for classification as a guid-
ance for regression. Unlike previous approaches that
combine classification and regressionpredictions/outputs,
we use the ResNet-34 as the backbone network for clas-
sification, and use classification features to guide the
regression optimization.

2. A new loss function, namely the Bell Loss, is proposed.
In order to mitigate the regression-to-the-mean problem
(Wang et al. 2018) related to traditional MSE-oriented

1 Note that our aim is to perform an analysis of our network and loss
proposal in order to enhance first impressions recognition. We do not
argue that interview recommendation variable has a direct application in
real scenarios. Different jobs require different competences and study-
ing automatic recommendation of job profiles is out of the scope of this
work.
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Fig. 1 Pipeline of the proposed method for personality trait prediction.
The prediction process for trait Conscientiousness is taken as an exam-
ple.We first split the input video sequence into the visual and audio-text
input streams. For the visual stream, we employ a multi-focus scheme
to capture the global scene cue and local face cue from the whole frame
and the facial region (Zhang et al. 2016), respectively. The audio-text
input is a fused feature of the audio vector and skip-thought vector of

the transcription. Then different inputs are fed to the CR-Net. For each
trait, we have one CR-block module in the network using the classifi-
cation features as a guidance for regression. The features extracted by
the CR-net are fused and sent to Extra Trees Regressor to produce final
regression scores of the trait Conscientiousness. The other Big Five
traits and the job interview recommendation variable can be obtained
in the same way

loss functions, we design a new loss function inspired by
the Gaussian curve. The Bell Loss has a high gradient
even though the divergence between the prediction and
label is small, which results in more robust regression
results.

3. A comprehensive study on multimodal data for apparent
personality analysis using the First Impressions dataset
(Escalante et al. 2018). We exploit different modalities
from the input audio-visual data. The video input is sep-
arated into global and local cues, whereas the audio and
transcription are early fused in the network, considering
their inner relations. The features of all modalities are
fused for the final prediction.

The remainder of the paper is organized as follows. Related
works are presented in Sect. 2, with the particular focus on
apparent personality analysis, techniques combining classifi-
cation and regression, and solutions to the regression-to-the-
mean problem. Section 3 describes our CR-Net and the Bell
Loss. Experiments are presented in Sect. 4. A discussion of
the contributions of each module of our model is presented
in Sect. 5. Finally, Sect. 6 concludes the paper.

2 RelatedWorks

2.1 Learning personality traits from different
modalities

Most of the research in the apparent personality analysis has
been done from a linguistic data analysis perspective (Pen-
nebaker and King 1999; Mairesse and Walker 2007). Audio
data has also been widely considered (Polzehl et al. 2010;
Mohammadi and Vinciarelli 2015). Physiologists also stud-
ied biological signals, like Electroencephalogram (EEG),
Electrocardiogram (ECG) and Galvanic Skin Response
(GSR) to relate them to affect or personality traits (Zhao et al.
2018; Correa et al. 2018). Facial expressions have played a
very important role in relation to personality traits. Basu et al.
(2018) used the RGB facial image together with the simul-
taneously obtained thermogram image to predict affective
states. However, a single modality may not provide enough
information about the personality. Words and audio features
can also be influenced by environmental factors like back-
ground noise or sudden breaks, whereas the static imagemay
only contain some instantaneous actions as a response to con-
crete stimulus rather than reflecting the apparent personality.
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On the other hand, capturing signals such as EEG requires
specific hardware, which may not be accessible for general
applications. At the same time, the undesirable bias in cap-
turing EEG signals can also affect the personality perception.

Recently, predicting apparent personality traits from
social media has raised the attention of researchers. Several
works to compute apparent personality from audio-visual
data have been recently published thanks to the 2016 and
2017 ChaLearn Looking at People First Impressions Chal-
lenges (Zhang et al. 2016). Wei et al. (2018) employed a
newly proposed Descriptor Aggregation Network (DAN)
incorporating ResNet (He et al. 2016) to extract visual fea-
tures and LSTM (Hochreiter and Schmidhuber 1997) to
model handcrafted audio features. This work achieves a high
performance, but relies on the combination of severalmodels,
which brings high memory and computational requirements.
Ventura et al. (2017) employed a similar DAN+ network
for inferring apparent personality traits from single facial
images. However, it just proves that the facial image con-
tains relevant information regarding personality. It lacks a
comprehensive analysis of the effect ofmotion and additional
information cues. Subramaniam et al. (2016) developed two
bi-modal deep CNNs using audio and face images. One is
based on 3D convolution networks (Ji et al. 2013) and the
other is based on LSTM. This again suffers from high com-
putational requirements. Güçlütürk et al. (2016a) employed
an audiovisual deep residual network, which is based on the
ResNet (He et al. 2016) and has two streams to process visual
and audio data separately. The features of these two branches
are fused for final regression. It is also extended to use audio
transcriptions in Güçlütürk et al. (2018). Researchers further
tried to predict interviewing recommendations score from the
First Impressions dataset based on interviewees’ personal-
ity (Escalante et al. 2018). Kaya et al. (2017) used pre-trained
VGG-Face (Parkhi et al. 2015) and VGG-VD19 (Simonyan
and Zisserman 2014) network to extract features of face and
the whole frame, and used the openSMILE (Eyben et al.
2010) to extract audio features. Then they extracted fea-
tures with Extreme LearningMachines (ELMs) (Huang et al.
2001) and obtained the final prediction with Random Forest
(RF). Bekhouche et al. (2017) performed face alignment and
extracted Pyramid Multi-Level features to train five Support
Vector Regressors (SVRs) corresponding to Big Five traits.
Most of the previous models rely on finetuning of existing
pre-trained models. For example, the pre-trained VGG-Face
model is commonly used (Zhang et al. 2016; Wei et al. 2018;
Kaya et al. 2017).

2.2 Techniques Combining Classification and
Regression

Some researchers combined classification schemes in order
to support/guide regression problems. Apparent age estima-

tion is an example that benefited from this combination,
whe-re the simplest approach is to map the regression into
a classification task. Rothe et al. (2015) defined a set of 101
possible output classes, which correspond to 101 discrete age
values from0 to 100, anduse softmaxvalue as the expectation
to produce the final prediction. A similar idea, but grouping
into age groups was performed by Tan et al. (2018). Niu et al.
(2016) and Chen et al. (2018) dealt with apparent age estima-
tionwith an ordinal regression,which transforms the problem
into several simple binary classifiers or CNNs. Based on the
study of deep label distribution learning, Gao et al. (2018)
used softmax to calculate the distribution of labels and used
a L1 loss to predict the age. It can be understood as an exten-
sion of Rothe et al. (2015), which learns to regress with the
expectation of all ages.

In the above examples, though age is continuous it can
still be defined as a series of discrete integers, which is easy
to fit into classification models. However, in the scenario
of apparent personality, the score of personality traits is a
real number that requires a precision up to four decimals
according to recent publications. Therefore, directly treat-
ing apparent personality prediction as a classification task
is not appropriate. Thus, the way which we combine the
advantages of classification and regression is designed dif-
ferently from the methods mentioned above. Unlike ordinal
regression techniques, which aggregate ranking classifica-
tion results for final prediction, we keep a regression loss to
obtain accurate personality predictions. On the other hand,
compared to Gao et al. (2018) which applied final regression
based on classifier outputs, we sum up the weighted features
used for classification as regression input. In this way, fea-
tures for classification are also considered by the regressor,
benefiting the final regression even in cases where the clas-
sification outputs may be wrong.

2.3 Dealing with Regression-to-the-Mean Problem

Regression-to-the-mean is a statistic phenomenon (Bland
and Altman 1994a, b), whi-ch indicates a variable is extreme
in its first measurement but closer to the mean in its sec-
ond measurement.2 In learning-based tasks, it occurs for
regressions with MSE-oriented loss. An example of appli-
cations where it may happen is pixel-wise super-resolution
task (Wang et al. 2018), where the extreme value of pixels
(like 1 or 255) is always predicted towards the mean value
(128). That is because if predicting towards the mean value,
the average MSE loss can be lower when training with a
large amount of data. The general solution in pixel-wise sce-
narios is to introduce some loss functions like perceptual
loss (Johnson et al. 2016) and adversarial loss (Ledig et al.
2017), which take semantic information into consideration

2 https://en.wikipedia.org/wiki/Regression_toward_the_mean.
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to alleviate the regression-to-the-mean problem. However,
the features for predicting apparent personality are highly
abstract, with no clear definition of semantic information.
Therefore, we designed a new loss function, namely Bell
Loss, for the apparent personality regression problem. The
shape of the Bell Loss is like an inverted Bell, and in this
way, the decreasing loss ranges of samples with different
ground truth values are not overlapped. Therefore, the Bell
Loss avoids the minimum of the sum of the loss for samples
in amini-batch being obtained at themean value of them, and
then the regression-to-the-mean problem can be alleviated.

3 Methodology

In this section, we present the proposed CR-Net for apparent
personality analysis and job interview recommendation. As
depicted inFig. 1, it has threemain steps: data pre-processing,
feature extraction with CR-Net and the ETR regression. For
data pre-processing, we first split the input video sequence
into the multi-focus visual input and the audio-text input.
The multi-focus visual input involves two visual cues, which
pay attention to both global scene and face, respectively. The
audio-text input is a mixture of audio data and audio tran-
scription encoded as skip-thought vectors (Kiros et al. 2015).
The CR-Net takes the ResNet-34 as the backbone network,
and uses the classification features as guidance for the regres-
sion process towards the end of the network. Finally, features
of different modalities are fused and the final prediction is
obtained via ETR.

3.1 Data Pre-processing

We perform a series of pre-processing steps for different data
modalities, which help the inputs meet the requirement of
CNNs for data.

3.1.1 Video Stream

To effectively extract features of video data and meet CNN
requirements, it is better to sample the videos spatially and
temporally. First, each video is sampled with 32 frames. This
number is fixed to strike the balance between the effective
feature extraction of motion relevant cues and computational
requirements (Li et al. 2016, 2017). In order to avoid overfit-
ting, when sampling the video sequences we cut the original
video into 32 segments, and randomly select only one frame
from each segment and resize it to 112 × 112 to fit the
network input. Note that the random mechanism makes the
selected frames vary through the entire training process. In
other words, the frames of one video selected in each epoch
can be different. In this way, we can augment the number
of training samples online. After such a spatiotemporal pre-

Fig. 2 An example of the complementarity of facial image and the
whole scene image. a The facial expression. b The whole scene

Fig. 3 The pipeline of face detectionwithMTCNN (Zhang et al. 2016).
This network uses three subnets andNon-maximumsuppression (NMS)
to generate bounding boxes and merges them to output the facial region
and keypoints

processing on the video sequence, we obtain the input stream
for the network.

Previous methods for the first impressions task always
focused on the face region, since it contains facial expres-
sions relevant to personality. However, additional scene cues
can contain complementary information. This may include
actions, clothes, hair styles and even the background. Figure 2
is a good example.3 If we only judge from the facial expres-
sion in Fig. 2a, we may think this man is irritable. However,
with the whole scene in Fig. 2b, we understand that he is in a
speech and is very impressive. Therefore,wedivide the visual
stream into global scene cue and local facial cue. The facial
cue is obtained by detecting the face region (Zhang et al.
2016) with the pipeline as shown in Fig. 3. Both global and
local visual cues are separate inputs of CR-Net, being each
processed by an independent ResNet-34 in order to extract
visual features.

3.1.2 Audio-Text Stream

Another input stream is audio and transcription. In this stre-
am, themain data is the audio from the video sequence,which
may reflect one’s personality by the variations of speaking

3 Images are from Lisa Feldman Barrett’s Keynote speech “From
Essences to Predictions: Understanding the Nature of Emotion” on
European Society for Cognitive and Affective Neuroscience 2018.
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manners and tones. There is no extra pre-processing but con-
verting the acoustic wave to fixed-length vectors. To satisfy
the requirement of input length of CNNs, we convert the
acoustic wave to fixed-length vectors with a popular python
audio library, librosa. With it we first load the audio as the
floating series with the sampling rate of 16000. Then we
record the maximum of length of the vectors. Most vectors
are with the same length, under that sampling rate. Then for
the vectors shorter than this, we extend their length by zero-
padding. In this way, all the audio vectors are with the same
length.

The audio transcription is easily accessible using speech-
to-text techniques. In our case, we use the audio transcrip-
tions already provided within the dataset as a complementary
input to the audio channel. We adopt the skip-thought vec-
tor (Kiros et al. 2015) since it has shown to be effective and
provide a compact representation of texts (Güçlütürk et al.
2018). Given the inherent correlation between audio and text,
they are early-fused by a concatenation, as shown in Fig. 1,
as the input of one ResNet-34 stream of CR-Net.

3.2 CR-Net Architecture

The CR-Net Network is based on ResNet-34 (He et al. 2016).
The unique characteristic of the proposedCR-Net is themod-
ule of CR-block, as illustrated in Fig. 4. Unlike the previous
networks that combine classification and regression, we do
not directly use the expectancy of the classification as the
result (Rothe et al. 2015), or the outputs of the classifier
(Gao et al. 2018) as the input to regression. In this study,
the ResNet-34 is used as the backbone for both classifica-
tion and regression processes. At the first stage, we obtain
the classification features with the cross-entropy loss. Then
at the second stage, we generate weights from the classifica-
tion features via the softmax function and yield a weighted
sum of these features. We then use it for regression with the
MSE, L1 and our proposed Bell Loss.

The optimizations for classification and regression are dif-
ferent. Using the cross-entropy loss, we just consider the
probability of the samples belonging to the ground truth
class during classification. The one-hot encoding strategy
makes the optimization focus on the right distribution of the
space of labels. However, regression is performed with the
MSE loss, of which the response varies with the distance
betweenprediction andground truth.Having all samples con-
tribute equally in the loss and making all of them within the
same range of regression values lead the network to move
all regression predictions to the ground truth mean score. If
we want to take benefit of classification as a guidance for
regression, the one-hot classification prediction can be used
to estimate which sub-interval the sample belongs to. This
will guide the regression through pruned ranges of values in
order to achieve more accurate predictions.

Fig. 4 The structure of CR-block. When predicting personality trait p,
it first derives n weight values via a softmax layer for the corresponding
n features {fp1 , fp2 , . . . , fpn }, which are obtained from the backbone
ResNet-34. Here n is in accord with the number of classes, and the n
weight values sum 1. Then These values are extended to 512-dimension
vectors {wp1 ,wp2 , . . . ,wpn }, which serve as weights of their corre-
sponding features. The weighted sum of the features is used as input
for regression fpreg

For each personality trait p, define n-class vector Cp =
[Cp1,Cp2 , . . . ,Cpn ], corresponding to n sub-intervals in the
range of [0, 1]. In the CR-block, we obtain n features from
the convolutional layer as:

fpi = F(a, θpi ), (1)

whereF is a convolutional process with parameter θpi for the
i th class and a is the output of the previous average pooling
layer. Then the softmax function can be used to obtain the
probability of the samples belonging to class i :

wpi = exp(fpi )∑n
i=1 exp(fpi )

. (2)

We take wpi as the weight for each feature fpi and sum them
together:

fpreg =
n∑

i=1

fpi � wpi , (3)

where wpi is a vector extended by scalar wpi to match the
dimension of fpi and � indicates the Hadamard product.
By summing the features, the regression can learn based on
classes guidance. The personality prediction can be obtained
with the following conditioned function:

ŷp = G(fpreg , 2p|�p), (4)

where ŷp is the personality prediction, G is the convolu-
tional layer with parameter 2p that maps f preg to ŷp, and �p

defines the condition upon which the mapping function is
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conditioned, and it can be expressed as:

�p = Cp = [Cp1,Cp2 , . . . ,Cpn ]. (5)

3.3 Bell Loss

3.3.1 Limitations of Regression Loss Function

Image we have a batch of samples with the ground truth of
0.4, 0.5 and 0.6. When calculating the loss value, it always
sums the differences between predictions and ground truth
values according to the loss formulation. As shown in Fig. 5a,
b, the shapes of the MSE and L1 losses in this batch obtain
their minimum when the ground truth equals 0.5, being
the mean of the range. Therefore, in the optimization with
loss functions like MSE or L1 loss, the prediction tends to
approach the mean value to assure a low loss. This is how
the problem of regression-to-the-mean occurs in traditional
regression tasks.

Another problem related to current regression loss func-
tions is the accuracy of the predictions. As shown in Fig. 6,
the gradient ofMSE loss, which is marked in green dash line,
decreases as the prediction approximates the ground truth. It
may be insignificant if we do not need a high precision of the
result. However, for a task like the first impressions requir-
ing precision up to four decimals, this problem makes the
optimization harder to give an accurate prediction. L1 loss
marked in red dash-and-dotted line has an invariant gradient,
which does not help either. Therefore, a loss function that
keeps the gradient large enough when the predicted value is
close to the ground truth value would be desirable to further
help optimization and improve predictions.

3.3.2 Bell Loss Details

The design of the Bell Loss is inspired by theGaussian curve,
on which the gradient rises while the variable x approaches
the expectation μ. To meet the demand of loss function, we
define it as:

Lbell = γ

(

1 − e− (y−ŷ)2

2σ2

)

, (6)

where y and ŷ are ground truth and prediction, respectively,
σ is the derivation parameter that controls the amplitude of
variation. A smaller σ leads to a higher gradient. γ is a scale
parameter, which changes the loss value and makes it con-
sistent with the other loss functions.

3.4 Regression with ETR

After learning with CR-Net, we extract the features for
regression from each sub-network stream, namely global

Fig. 5 An example of summing losses of a mini-batch with ground
truth of 0.4, 0.5 and 0.6. a MSE loss. b L1 loss. c Bell loss

scene video stream, local face video stream and the audio-
text stre-am. To obtain the final scores of personality and
interview recommendation, the features of these streams are
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Fig. 6 A sketch of MSE loss, L1 loss and Bell Loss. The gradient of
MSE loss moves rapidly when the prediction is far from the ground
truth value but slowly when it becomes closer. It may hinder a precise
prediction. On the contrary, the Bell Loss can produce a higher gradient
even when the prediction is closer to ground truth score

integrated. In this paper, we use a late weighted fusion to
obtain the final feature set. The weight for the fusion is
empirically fixed as 7:5:3, emphasizing different levels of
importance for the three streams.

The final regression is performedwith Extra TreesRegres-
sor (ETR). To the best of our knowledge, this is the first
work to use ETR for apparent personality analysis. ETR is a
regressor basedonExtra-Trees algorithm (Geurts et al. 2006),
which is a kind of tree-based ensemble learningmethod. ETR
can be regarded a kind of extension of Random Forest with
two main differences: 1) each tree in ETR is trained with the
whole training data rather than applying bootstrapping, 2)
instead of using the locally optimal cut-point for splitting the
tree learner, ETR selects a random cut-point. From all the
randomly generated splits, the split that yields the highest
score is chosen to split the node.

For the regression process, ETRgenerates k decision trees,
and randomly select m features for each training sample.
At each node of the decision tree, it selects a cut-point at
random. This random selection further benefits the network
to be robust against overfitting to some extent. In our model,
we empirically set k = 1000, andm = 512, as the control of
the complete set of features.

3.5 Network Training

As illustrated in Fig. 7, theCR-Net is trainedwith a two-stage
scheme. In the first stage, we train the classification branch
with the objective function Lc:

Fig. 7 Illustration of the two-stage training process. During the first
stage, only the classification branch is trained usingCross-entropyLoss.
At the second stage, the whole network is jointly trained with L1 loss,
MSE loss, Bell Loss, and Cross-entropy Loss

Lc = − 1

N

N∑

i=1

P∑

p=1

C∑

c=1

ρi
pc log(ρ

i
pc), (7)

where N, P and C denote the number of samples, personality
traits and classes, respectively, indexed by i, p and c.

In the second stage, we jointly optimize the entire network
with a multi-task loss function:

L = L1 + LMSE + Lbell + λLc, (8)

whereL1 andLMSE are the L1 andMSE losses, respectively,
Lbell is the proposed Bell Loss. λ is the regularization param-
eter for Lc, changing values related to the training iterations.
We set it as:

λ = 4 ∗ Emax

(E + 1)
, (9)

where E indicates the current epoch and Emax is the maxi-
mum number of epochs. It decreases along with the training
iterations, since at latter stages the classification branch
becomes more stable.

4 Experimental Results

In this section, we first introduce the dataset used for the
experiments. Then we describe the network implementa-
tion details and the protocols for evaluating the performance.
Finally, we provide comparisons with the state-of-the-art.
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Fig. 8 Some examples of the First Impressions dataset. Each contains
one person speaking in front of the camera. For each video, the apparent
Big Five traits scores are provided. Traits scores are in the range [0, 1].
Each video also contains a scalar indicating the recommendation to
invite him/her to a job interview based on the average of several raters’
opinions. The ground truth/our prediction pairs are given under each
sample video frame

4.1 Database

For training and evaluation, we choose the First Impressions
v2 dataset (Escalante et al. 2018), which is an extension of
the First Impressions v1 dataset (Ponce-López et al. 2016)
and was used at the ChaLearn Explainable Computer Vision
Multimedia and Job Candidate Screening Competition. As
aforementioned, it is a representative dataset since it is the
most relevant and largest public dataset on the topic of audio-
visual personality perception. Some examples of this dataset
together with the ground truth/our prediction are illustrated
in Fig. 8. It comprises 10000 clips extracted from more
than 3,000 different YouTube high-definition (HD) videos
of people facing and speaking in English to a camera. This
dataset can be divided into three parts: the training subset, the
validation subset and the testing subset, of which the num-
ber of videos is split with the ratio 3:1:1. For each video,
the Big Five personality scores are annotated with Amazon
Mechanical Turk (AMT) workers. Meanwhile, in the First
Impressions v2 dataset, the words of the video clips are tran-
scribed by the professional transcription service Rev. The
annotations of job interviewing completed by theAMTwork-

ers are also available, which are presented by real values in
the range [0, 1] as well. The higher scores mean higher prob-
abilities for the candidates being invited to the interviewing.

4.2 Experimental Setup

4.2.1 Training Parameters

Our experiments are conducted with PyTorch (Paszke et al.
2017) toolbox on a NVIDIA M6000 GPU. The training
process is performed in two stages. For the first stage of
optimization, we use the stochastic gradient descent (SGD)
(Krizhevsky et al. 2012) with the initial learning rate,
momentum and weight decay fixed to 0.002, 0.9 and 0.005,
respectively. We feed the network with a mini-batch of 30
video sequences and audio-text. For the second stage, we
use the Adam algorithm (Kingma and Ba 2014). The initial
learning rate and weight decay are the same as the first stage,
while β1 and β2 are set to 0.5 and 0.999, respectively. The
batch size is set the same as the first stage. The learning rate
decreases to its 1/10 after every 10 epochs, and the optimiza-
tion is stopped after 50 epochs.

Note that the value of the traits is between 0 and 1. In
this way, the MSE may be as small as 10−6 in some cases.
In order to avoid a very small MSE to produce a vanishing
gradient, we multiplied by 100 the value of both ground truth
and prediction scores. And also, to balance the loss value of
MSE and Bell Loss, we empirically set the parameters of
Bell Loss σ = 9 and γ = 300.

4.2.2 Number of Classes

In the CR-Net, one important parameter is Cp, namely the
number of classes. Using more classes means a fine divi-
sion of the intervals. However, it does not always result in
a better performance because the features are hard to reflect
the subtle differences among classes when over-classified.
A better solution is to consider Cp in terms of the distribu-
tion of the dataset. Based on this, we draw the histogram of
the distribution of the Big Five traits, which is depicted in
Fig. 9. We divide the interval stepped by 0.1, and derive 10
sub-intervals. As can be seen in Fig. 9, the data distribution is
unbalanced. Most scores are within the intervals of 0.5–0.6
and 0.6–0.7, whatever the trait is. If we directly divide the
scores into 10 classes, the uneven distribution could jeop-
ardize the training process. Therefore we set Cp as 4, and
scores with 0–0.5 fall into one class, and similar for 0.5–0.6,
0.6–0.7, and 0.7–1.0, respectively. In this way, the number
of samples for each class is approximately balanced.
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Fig. 9 Histogram of the score distribution of the five personality traits in the training/testing set of First Impressions v2 dataset

4.3 Evaluation Protocol

For a fair comparison, we employ the evaluation protocol
used in most publications. The performance of each trait is
scored in terms of Mean Absolute Error (MAE), which is
formulated as:

Ep = 1 − 1

N

N∑

i=1

|ypi − ŷpi |, (10)

where p indicates the personality trait, N indicates the num-
ber of samples, ypi and ŷpi denote the ground truth and the
prediction of sample i , respectively.

4.4 Comparison with the State-of-the-Art

In this subsection, we show our results and compare them
with state-of-the-art approaches, including the publications
and top entries in both rounds of the First Impressions com-
petitions.

As shown in Table 1, our method achieves 0.9188 score
on average for the Big Five traits, and 0.9247 for the inter-
view recommendation variable, showing better results than
themethods in comparisons and any competition results. This
happens even for methods trained with both the training and
validation subsets, such as the one by Kaya et al. (2017).

Note that some results in this table are reported for the First
Impressions v1 dataset, on which the text data is not avail-
able. To have a fair comparison, we also provide the result of
our method without using the text from audio transcriptions.
Still, our result (the second row in Table 1) is better than the
state-of-the-art.

In addition to the comparison of scores for Big Five
traits and interview recommendation variable, we present a
more comprehensive comparison inTable 2, including details
about the training process in terms of datamodalities and net-
workdetails.As shown inTable 2, the visual cue is considered
by all compared approaches. The reason behind itmay be that
the facial expression and movement always contribute to the
determination of one’s perceived personalitywhen compared
with his/her voice or words. Meanwhile, assembling more
networks does not certainly imply the highest performance.
The entry “ucas” combines 16 networks in their method, but
the results are inferior to methods (Kaya et al. 2017; Zhang
et al. 2016; Subramaniam et al. 2016), which have less than
5 networks on average.

5 Ablation Study

In this section, we discuss the contribution of each module of
our method related to the final performance.We first evaluate
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Table 2 Training details of compared methods

Method/entry Modality Network Number of networks Mean trait*

Ours Video & audio & text CR-Net 3 0.9188

Kaya et al. (2017) Video & audio VGG-face 4 0.9173

VGG-VD19

ELM

Random Forest

Gürpinar et al. (2016) Video & Audio VGG-face 3 0.9130

VGG-VD19

ELM

Zhang et al. (2016) Video and audio VGG-face 5 0.9130

ResNet

DAN/DAN+

Linear Regressor

Subramaniam et al. (2016) Video & audio 3D CNN 2 0.9121

LSTM

Güçlütürk et al. (2018) Video & audio & text ResNet 3 0.9118

ridge regression

Bekhouche et al. (2017) Video Pyramid multi-level 5 0.9116

support vector regressor

Ventura et al. (2017) Video DAN+ 5 0.9116

Güçlütürk et al. (2016a) Video & Audio ResNet 2 0.9109

ucas (Ponce-López et al. 2016) Video & Audio lbptop 16 0.9098

hog3d

VGG

AlextNet

ResNet

Gürpınar et al. (2016b) Video CNN 2 0.9094

Vo et al. (2018) Video & Audio & text Mixture density nerual network 4 0.8845

mixture of Gaussian distribution

dynamic cascade boosting network

*Namely the average of Big Five traits marked in Table 1

the effect of different data modalities. After that, we analyze
the two main contributions of our model, the CR-block and
the Bell Loss. Then we verify the effect of different choices
of the number of classes for CR-block. We further compare
some commonly used regressors, including SVR and RF,
against the ETR used in this paper. Finally, we provide a
visual analysis of the learned features to visualize where our
network focuses to regress for the apparent personality traits.

5.1 Performance of Different Data Modalities

Table 3 shows a comparison of performance using different
data modalities. As we split two main cues, the results of
scene and face data are also shown. The video data can yield a
much better result than the other twomodalities. The average
score of video stream is about 2%higher than that of fusion of
audio and text. It is also consistent with the result of current

publications in Table 1. Meanwhile, one can see in general
the scene data can achieve a slightly better result. The average
score of scene cue is 0.9138, which is better than the face cue
of 0.9133. However, not all traits follow this phenomenon.
The result of face cue on “Extraversion” and “Neuroticism” is
better than the scene cue. Theremay be two reasons for it. On
one hand, features like whether the people are friendly or not
(Extraversion) canbe judged from their face directly,whereas
the traits like sloppy (Conscientiousness) and imaginative
(Openness) may also relate to their pose, hair style and body
movements, which are beyond the face region. On the other
hand, as we use the video stream rather than a single frame,
the motion is more coherent in the scene data, which can
leveragemore temporal information than the facial alone. All
in all, results show that the proposed combination of multiple
cues enhances the result of the final recognition.
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Table 3 Comparison on the performance of the network trained with different data modalities

Modality Extraversion Neuroticism Agreeableness Conscientiousness Openness Average Interview

Video

Face 0.9167 0.9090 0.9130 0.9151 0.9125 0.9133 0.9177

Scene 0.9133 0.9087 0.9148 0.9183 0.9139 0.9138 0.9187

Multi-focus 0.9199 0.9123 0.9168 0.9204 0.9168 0.9172 0.9230

Audio-text

Audio only 0.8942 0.8942 0.9005 0.8912 0.8996 0.8959 0.8974

Text only 0.8825 0.8818 0.8964 0.8800 0.8872 0.8856 0.8855

Audio+ text 0.8953 0.8951 0.9010 0.8920 0.9002 0.8967 0.8981

Table 4 Comparison of network performance with CR-blocks and Bell Loss

Modality Strategy Extraversion Neuroticism Agreeableness Conscientiousness Openness Average Interview

CR-block Bell Loss

Face – – 0.9041 0.8949 0.9025 0.9051 0.8927 0.8999 0.9049

� - 0.9121 0.9019 0.9079 0.9045 0.9098 0.9072 0.9104

- � 0.9134 0.9031 0.9060 0.9090 0.9065 0.9076 0.9094

� � 0.9167 0.9090 0.9130 0.9151 0.9125 0.9133 0.9177

Scene - - 0.9028 0.8972 0.9036 0.9063 0.9026 0.9025 0.9065

� - 0.9057 0.9022 0.9087 0.9113 0.9086 0.9073 0.9098

- � 0.9088 0.9054 0.9086 0.9142 0.9066 0.9087 0.9129

� � 0.9133 0.9087 0.9148 0.9183 0.9139 0.9138 0.9187

Audio+ text – – 0.8891 0.8829 0.8937 0.8853 0.8914 0.8885 0.8909

� – 0.8896 0.8901 0.8989 0.8877 0.8963 0.8925 0.8949

- � 0.8919 0.8917 0.8996 0.8877 0.8976 0.8937 0.8952

� � 0.8953 0.8951 0.9010 0.8920 0.9002 0.8967 0.8981

5.2 Effectiveness of CR-Block and Bell Loss

In order to verify the two main contributions in this work, we
evaluate the effectiveness of our CR-block and Bell Loss. As
shown in Table 4, we use the checkmark to indicate which
module we employ for learning. Meanwhile, the line without
any checkmarks means the baseline network, i.e., ResNet-34
only.

We present the comparisons of the scene video stream, the
face video stream and the audio-text stream, which are the
three streams in the network.Comparing the result ofResNet-
34 (the first line) and that of using CR-block (the second
line), we find the CR-block improves the performance by
about 0.0073, 0.0048 and 0.0040 for the face cue, scene cue,
and the audio-text stream, respectively. The improvement of
Bell Loss (the third line) is a little higher than CR-block,
by about 0.0004, 0.0014 and 0.0012 for the three streams,
respectively. It shows the benefit of the proposed loss at the
final stage, being even more relevant than the gain provided
by the guidance of classification at the first stage.

To better demonstrate how Bell Loss benefits the predic-
tions for extreme samples, we also show the scattering plots

of the absolute error with/without the Bell Loss against dif-
ferent ground truth values.

As can be seen from Fig. 10, without the Bell Loss, the
number of samples with a high estimation error is appar-
ently higher than using the Bell Loss. For those samples with
extreme ground truth values, we can also see that it can lead
to extremely wrong predictions without using the Bell Loss.
Some of the divergence can even reach 0.8 under this condi-
tion.

We further perform a comparison when the networks are
trained with different losses, including L2 loss, L1 loss, Bell
loss, L2+L1 losses, and all losses (namely L1+L2+Bell
losses). We use the ResNet-34 as the backbone network and
only change the loss functions for this comparison.

As shown in Table 5, when comparing the performances
between L1 loss and L2 loss, we find that the ones with only
L2 loss achieve in general a better result for all the three kind
of input streams (Face, Scene, or Audio+ text). The average
improvements are 0.0077, 0.0035, and 0.0039 for “L2 loss
only” versus “L1 loss only” for face, scene and audio-text
stream, respectively. L1 and L2 losses, in average, provide
performance improvements when used together compared to
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Fig. 10 The absolute error with or without the Bell Loss. The red triangles indicate the result learned without the Bell Loss whereas the blue circles
refer to the result with Bell Loss. It is apparent the Bell Loss significantly reduces the prediction errors of samples with extreme ground truth (Color
figure online)

Table 5 Comparison on the performance of the network trained with different losses

Modality Strategy Extraversion Neuroticism Agreeableness Conscientiousness Openness Average Interview

Face L1 loss only 0.9016 0.8861 0.8974 0.8801 0.8903 0.8911 0.9055

L2 loss only 0.9044 0.8915 0.9024 0.9017 0.8941 0.8988 0.9036

L1+L2 losses 0.9041 0.8949 0.9025 0.9051 0.8927 0.8999 0.9049

Bell Loss only 0.9123 0.9030 0.9052 0.9076 0.9044 0.9065 0.9126

All losses 0.9134 0.9031 0.9060 0.9090 0.9065 0.9076 0.9094

Scene L1 loss only 0.8999 0.8873 0.8924 0.9034 0.8986 0.8963 0.9036

L2 loss only 0.8993 0.8960 0.9010 0.9027 0.9000 0.8998 0.9043

L1+L2 losses 0.9028 0.8972 0.9036 0.9063 0.9026 0.9025 0.9065

Bell Loss only 0.9044 0.8987 0.9045 0.9078 0.9026 0.9036 0.9077

All losses 0.9088 0.9054 0.9086 0.9142 0.9066 0.9087 0.9129

Audio+ text L1 loss only 0.8777 0.8802 0.8921 0.8824 0.8809 0.8827 0.8815

L2 loss only 0.8834 0.8869 0.8965 0.8801 0.8859 0.8866 0.8838

L1+L2 losses 0.8891 0.8829 0.8937 0.8853 0.8914 0.8885 0.8909

Bell Loss only 0.8897 0.8918 0.8955 0.8862 0.8967 0.8920 0.8920

All losses 0.8919 0.8917 0.8996 0.8877 0.8976 0.8937 0.8952

their individual usage. Finally, our proposed Bell Loss out-
performs “L2+L1 losses” results (0.0066, 0.0011 and 0.0035
for face, scene and audio-text stream, respectively). When
all three losses are used together, the performance is slightly
improved aswell, especially for the scene video stream, bene-

fiting from the complementary nature of the three losses. One
of the main reasons we hypothesize for this is that in those
cases of having large differences between a random predic-
tion and the corresponding ground truth, it may become hard
for the Bell Loss to find a good initialization point. However,
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Table 6 Comparison on the performance with different classification-regression techniques

Modality Strategy Extraversion Neuroticism Agreeableness Conscientiousness Openness Average Interview

Face Expectation 0.9019 0.8964 0.8991 0.9016 0.8978 0.8994 0.9042

Expectation+ reg 0.9061 0.9018 0.9039 0.9020 0.9034 0.9034 0.9066

Our (CR-block) 0.9121 0.9019 0.9079 0.9045 0.9098 0.9072 0.9104

Scene expectation 0.8882 0.8879 0.8953 0.8891 0.8909 0.8903 0.8930

Expectation+ reg 0.8933 0.8910 0.8979 0.8955 0.8959 0.8947 0.8982

Our (CR-block) 0.9057 0.9022 0.9087 0.9113 0.9086 0.9073 0.9098

Audio+ text expectation 0.8856 0.8873 0.8947 0.8843 0.8917 0.8887 0.8903

Expectation+ reg 0.8877 0.8919 0.8983 0.8849 0.8940 0.8914 0.8920

Our (CR-block) 0.8896 0.8901 0.8989 0.8877 0.8963 0.8925 0.8949

Table 7 Comparison on the performance with different classes for CR-block

Extraversion Neuroticism Agreeableness Conscientiousness Openness Average Interview

Face

4-class 0.9167 0.9090 0.9130 0.9151 0.9125 0.9133 0.9177

7-class 0.9129 0.9071 0.9111 0.9111 0.9103 0.9105 0.9141

10-class 0.9110 0.9043 0.9101 0.9085 0.9081 0.9084 0.9130

Scene

4-class 0.9133 0.9087 0.9148 0.9183 0.9139 0.9138 0.9187

7-class 0.9114 0.9084 0.9092 0.9169 0.9079 0.9108 0.9166

10-class 0.9074 0.9018 0.9075 0.9103 0.9084 0.9071 0.9105

Audio+ text

4-class 0.8953 0.8951 0.9010 0.8920 0.9002 0.8967 0.8981

7-class 0.8903 0.8913 0.8987 0.8987 0.8954 0.8949 0.8932

10-class 0.8862 0.8888 0.8946 0.8830 0.8915 0.8888 0.8891

according to Fig. 6, L2 and L1 losses have a larger gradient in
this condition, and they can be beneficial at early optimiza-
tion stages.

5.3 Comparison with Previous
Classification-Regression Techniques

To further verify our CR-block in the apparent personality
recognition task, we also compare our approach with two
methods that involve a combination of classification and
regression. One method in comparison uses the expectation
of all the classes as the final prediction (Rothe et al. 2015),
and we denote it as expectation in Table 6. The other method
adds the regression loss on the expectation to learn the final
result (Gao et al. 2018), andwe denote it as expectation+reg.
Similar to Sect. 5.2, The experiment is conducted on the face
video stream, scene video stream and the audio-text stream.
As it can be observed from Table 6, considering the value of
personality as different classes and taking the expectation of
them as the prediction is hard to get a good performance. The
solution adding the regression loss achieves a better result

when compared with the simple expectation. However, the
information provided by the prediction of each class and its
confidence is not accurate enough. Compared with these two
strategies, ours takes the classification features as the guid-
ance for the final regression, and achieves better recognition
results.

5.4 Comparison of Different Classes for CR-Block

As mentioned in Sect. 4.2.2, we set the number of classes to
4, owing to the imbalance of data distribution. In this subsec-
tion, we evaluate the setting for a different number of classes.

As shown in Table 7, we defined the traits to be classified
into 7 and 10 classes. To maintain a roughly equal num-
ber of samples in each class, we have a more sophisticated
segment point. For the 7-class, we have the segment point
of “0.3556, 0.4383, 0.5003, 0.5575, 0.6143, and 0.6849”.
For the 10-class, we have “0.3220, 0.3962, 0.4466, 0.4903,
0.5307, 0.5708, 0.6078, 0.6528 and 0.7102”.

As shown in Table 7, with the increase of the number of
classes, the ultimate performance is falling down. That is
because although the problem of uneven distribution of data
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Fig. 11 Regression results of SVR, RF and ETR

is addressed, it is still hard for the classifier to discriminate
the subtle differences between adjacent classes.

5.5 Comparison of Regressors

We compare the performance of different regressors. In this
comparison, we select two popular regressors, the SVR and
RF, which are also commonly used in current personality
prediction works.

The comparison results are shown in Fig. 11. Compared
with SVR, the results of RF and ETR are better. It demon-
strates the effectiveness of ensemble learning. Moreover, the
ETR outperforms RF, which shows that randomly selecting
features can do better to avoid overfitting.

5.6 Feature Visualization

In this subsection, we visualize the feature maps, including
both scene and face cues to illustrate what features are more
important to recognize the apparent personality traits for the
network. To achieve this, we first normalize the feature maps
to the range [0, 1]. Then, we employ the python library -
seaborn, and use the heatmap function with the parameter
colormap set to “jet”. The obtained feature maps are shown
in Fig. 12.

One can see that for the face cue, what contribute the most
to the results are relevant face keypoints such as eyes, nose
and mouth. Those are more related to facial expressions of
emotion. Regarding the scene cue, one can see the face has a
significant contribution, and clothing and furnishings show
some relevant activations as well.

We also quantitatively evaluate the relationship between
highlighted features and face keypoints. For each visualized
feature map, we select the 30% highest pixel values to obtain
the highlighted features binary image. We find the face key-
points from the image of the face cue as in Zhang et al.
(2016). For a precise evaluation, we employ the points of
two eyes, the nose, and two corners of the mouth as in Zhang

Fig. 12 Examples of feature visualization of scene and face cues

et al. (2016), with an additional point at the mid distance of
the two mouth corners. Then we calculate the ratio of those
points being inside the highlighted regions. From all 2000
testing videos with 32 frames from each, we have 73.96% of
highlighted points, proving the relevance of face keypoints
for recognizing apparent personality traits.

6 Conclusion

This work has presented a network scheme to deal with the
problemof apparent personality computing and job interview
recommendation using audio-visual recordings. We have
proposed a deep Classification-Regression Network, which
benefits from the learned classification features as a guid-
ance to improve the regression performance. Furthermore,
wehavepresented theBellLoss function,which alleviates the
regression-to-the-mean problem and promotes network opti-
mization to reachmore accurate predictions, by keeping high
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gradient values when it approaches optimal solutions in opti-
mization. Exhaustive evaluations of the proposed technique
and loss, including the combination of multiple data modali-
ties, the classification-regressionmodule, andBell Loss, have
shown a higher recognition accuracy for personality traits
and job interview recommendation on the First Impressions
dataset when compared with the state-of-the-art.

Acknowledgements The work was supported by the National Key
R&D Program of China under Grant #2018YFC0807500, the National
Natural Science Foundations of China #61961160704, #61876179,
#61772396, #61772392, #61902296, the Fundamental Research Funds
for the Central Universities #JBF180301, Xi’an Key Laboratory
of Big Data and Intelligent Vision #201805053ZD4CG37, the Sci-
ence and Technology Development Fund of Macau (#0008/2018/A1,
#0025/2019/A1, #0010/2019/AFJ, #0025/2019/AKP), Spanish project
TIN2016-74946-P (MINECO/FEDER, UE) and CERCA Programme/
Generalitat de Catalunya.

References

Barrick, M. R., & Mount, M. K. (1991). The big five personality
dimensions and job performance: Ameta-analysis. Personnel Psy-
chology, 44(1), 1–26.

Basu, A., Dasgupta, A., Thyagharajan, A., Routray, A., Guha, R., &
Mitra, P. (2018). A portable personality recognizer based on affec-
tive state classification using spectral fusion of features. IEEE
Transactions on Affective Computing, 9(3), 330–342.

Bekhouche, S. E., Dornaika, F., Ouafi, A., & Taleb-Ahmed, A. (2017).
Personality traits and job candidate screening via analyzing facial
videos. In 2017 IEEE conference on computer vision and pattern
recognition workshops (CVPRW) (pp. 1660–1663). IEEE.

Bland, J. M., & Altman, D. G. (1994a). Regression towards the mean.
BMJ: British Medical Journal, 308(6942), 1499.

Bland, J. M., &Altman, D. G. (1994b). Statistics notes: Some examples
of regression towards the mean. BMJ, 309(6957), 780.

Chen, S., Zhang, C., & Dong, M. (2018). Deep age estimation: From
classification to ranking. IEEETransactions onMultimedia, 20(8),
2209–2222.

Corr, P. J., & Matthews, G. (2009). The Cambridge handbook of per-
sonality psychology, chap. MethodsofPersonalityAssessment (pp.
110–126). Cambridge: Cambridge University Press.

Correa, J. A. M., Abadi, M. K., Sebe, N., & Patras, I. (2018). Amigos:
A dataset for affect, personality and mood research on individuals
and groups. IEEE Transactions on Affective Computing. https://
doi.org/10.1109/TAFFC.2018.2884461.

Escalante, H. J., Kaya, H., Salah, A. A., Escalera, S., Gucluturk, Y.,
Guclu, U., et al. (2018). Explaining first impressions: Model-
ing, recognizing, and explaining apparent personality from videos.
arXiv preprint arXiv:1802.00745.

Escalante, H. J., Ponce-López, V., Wan, J., Riegler, M. A., Chen, B.,
Clapés, A., et al. (2016). Chalearn joint contest on multimedia
challenges beyond visual analysis: An overview. In ICPR (pp. 67–
73).

Eyben, F.,Wöllmer, M., & Schuller, B. (2010). Opensmile: Themunich
versatile and fast open-source audio feature extractor. In Proceed-
ings of the 18th ACM international conference on multimedia (pp.
1459–1462). ACM.

Gao,B.B., Zhou,H.Y.,Wu, J.,&Geng,X. (2018).Age estimation using
expectation of label distribution learning. In IJCAI (pp. 712–718).

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized
trees.Machine Learning, 63(1), 3–42.

Güçlütürk, Y., Güçlü, U., Baro, X., Escalante, H. J., Guyon, I., Escalera,
S., et al. (2018). Multimodal first impression analysis with deep
residual networks. IEEE Transactions on Affective Computing,
9(3), 316–329.

Güçlütürk, Y., Güçlü, U., van Gerven, M. A., & van Lier, R. (2016a).
Deep impression: Audiovisual deep residual networks for multi-
modal apparent personality trait recognition. In European confer-
ence on computer vision (pp. 349–358). Berlin: Springer.

Gürpınar, F., Kaya, H., & Salah, A. A. (2016b) Combining deep facial
and ambient features for first impression estimation. In European
conference on computer vision (pp. 372–385). Berlin: Springer.

Gürpinar, F., Kaya, H., & Salah, A. A. (2016) Multimodal fusion of
audio, scene, and face features for first impression estimation. In
2016 23rd International conference on pattern recognition (ICPR)
(pp. 43–48). IEEE.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In CVPR (pp. 770–778).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735–1780.

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning
machine: A new learning scheme of feedforward neural networks.
In Proceedings of the 2004 IEEE international joint conference on
neural networks (vol. 2, pp. 985–990). IEEE.

Huang, S., & Ramanan, D. (2017). Expecting the unexpected: Train-
ing detectors for unusual pedestrians with adversarial imposters.
In IEEE conference on computer vision and pattern recognition
(CVPR) (vol. 1).

Ji, S., Xu, W., Yang, M., & Yu, K. (2013). 3d convolutional neural net-
works for human action recognition. IEEETransactions onPattern
Analysis and Machine Intelligence, 35(1), 221–231.

Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-
time style transfer and super-resolution. In European conference
on computer vision (pp. 694–711). Berlin: Springer.

Kaya, H., Gürpinar, F., & Salah, A. A. (2017).Multi-modal score fusion
and decision trees for explainable automatic job candidate screen-
ing from video CVS. In CVPR workshops (pp. 1651–1659).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.

Kiros, R., Zhu, Y., Salakhutdinov, R. R., Zemel, R., Urtasun, R., Tor-
ralba, A., et al. (2015). Skip-thought vectors. InAdvances in neural
information processing systems (pp. 3294–3302).

Klein, D. N., Kotov, R., & Bufferd, S. J. (2011). Personality and depres-
sion: Explanatory models and review of the evidence. Annual
Review of Clinical Psychology, 7, 269–295.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classi-
fication with deep convolutional neural networks. In Advances in
neural information processing systems (pp. 1097–1105).

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta,
A., et al. (2017). Photo-realistic single image super-resolution
using a generative adversarial network. InProceedings of the IEEE
conference on computer vision and pattern recognition (pp. 4681–
4690).

Li, Y., Miao, Q., Tian, K., Fan, Y., Xu, X., Li, R., et al. (2016). Large-
scale gesture recognition with a fusion of rgb-d data based on
the c3d model. In 2016 23rd International Conference on Pattern
Recognition (ICPR) (pp. 25–30). IEEE.

Li, Y., Miao, Q., Tian, K., Fan, Y., Xu, X., Li, R., et al. (2017). Large-
scale gesture recognition with a fusion of rgb-d data based on
saliency theory and c3d model. IEEE Transactions on Circuits
and Systems for Video Technology, 28(10), 2956–2964.

Mairesse, F., & Walker, M. (2007). Personage: Personality generation
for dialogue. In Proceedings of the 45th annual meeting of the
association of computational linguistics (pp. 496–503).

Mohammadi, G., & Vinciarelli, A. (2015). Automatic personality per-
ception: Prediction of trait attribution based on prosodic features

123



International Journal of Computer Vision

extended abstract. In 2015 International conference on affective
computing and intelligent interaction (ACII) (pp. 484–490). IEEE.

Naim, I., Tanveer, M. I., Gildea, D., & Hoque, M.E. (2015). Automated
prediction and analysis of job interview performance: The role of
what you say and how you say it. In 2015 11th IEEE interna-
tional conference and workshops on automatic face and gesture
recognition (FG) (vol. 1, pp. 1–6). IEEE.

Niu, Z., Zhou,M.,Wang, L., Gao, X., &Hua, G. (2016). Ordinal regres-
sion with multiple output CNN for age estimation. In Proceedings
of the IEEE conference on computer vision and pattern recognition
(pp. 4920–4928).

Norman, W. T. (1963). Toward an adequate taxonomy of personality
attributes: Replicated factor structure in peer nomination person-
ality ratings. The Journal of Abnormal and Social Psychology,
66(6), 574.

Parkhi, O. M., Vedaldi, A., Zisserman, A., et al. (2015). Deep face
recognition. In British machine vision conference (Vol. 1, p. 6).

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
et al. (2017). Automatic differentiation in pytorch.

Pennebaker, J. W., & King, L. A. (1999). Linguistic styles: Language
use as an individual difference. Journal of Personality and Social
Psychology, 77(6), 1296.

Polzehl, T., Moller, S., & Metze, F. (2010). Automatically assessing
personality from speech. In 2010 IEEE fourth international con-
ference on semantic computing (ICSC) (pp. 134–140). IEEE.

Ponce-López, V., Chen, B., Oliu, M., Corneanu, C., Clapés, A., Guyon,
I., et al. (2016). Chalearn lap 2016: First round challenge on first
impressions-dataset and results. In European conference on com-
puter vision (pp. 400–418). Berlin: Springer.

Rothe, R., Timofte, R., & Van Gool, L. (2015). Dex: Deep expectation
of apparent age from a single image. In Proceedings of the IEEE
international conference on computer vision workshops (pp. 10–
15).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

Subramaniam, A., Patel, V., Mishra, A., Balasubramanian, P., &Mittal,
A. (2016).Bi-modal first impressions recognition using temporally
ordered deep audio and stochastic visual features. In European
conference on computer vision (pp. 337–348). Berlin: Springer.

Tan, Z., Wan, J., Lei, Z., Zhi, R., Guo, G., & Li, S. Z. (2018). Effi-
cient group-n encoding and decoding for facial age estimation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(11), 2610–2623.

Ventura, C., Masip, D., & Lapedriza, A. (2017). Interpreting CNN
models for apparent personality trait regression. In 2017 IEEE
conference on computer vision and pattern recognition workshops
(CVPRW) (pp. 1705–1713). IEEE.

Vo, N. N., Liu, S., He, X., &Xu, G. (2018). Multimodal mixture density
boosting network for personality mining. In Pacific-Asia confer-
ence on knowledge discovery and data mining (pp. 644–655).
Berlin: Springer.

Wang, X., Yu, K., Dong, C., & Change Loy, C. (2018). Recovering
realistic texture in image super-resolution by deep spatial feature
transform. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 606–615).

Wei, X. S., Zhang, C. L., Zhang, H., & Wu, J. (2018). Deep
bimodal regression of apparent personality traits from short video
sequences. IEEE Transactions on Affective Computing, 9(3), 303–
315.

Xia, F., Asabere, N. Y., Liu, H., Chen, Z., &Wang, W. (2017). Socially
aware conference participant recommendation with personality
traits. IEEE Systems Journal, 11(4), 2255–2266.

Zhang, C. L., Zhang, H., Wei, X. S., & Wu, J. (2016). Deep bimodal
regression for apparent personality analysis. In European confer-
ence on computer vision (pp. 311–324). Berlin: Springer.

Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection
and alignment using multitask cascaded convolutional networks.
IEEE Signal Processing Letters, 23(10), 1499–1503.

Zhao, G., Ge, Y., Shen, B., Wei, X., & Wang, H. (2018). Emotion anal-
ysis for personality inference from eeg signals. IEEE Transactions
on Affective Computing, 9(3), 362–371.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


