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a b s t r a c t 

In this paper, a 4D tensor model is firstly constructed to explore efficient structural information and cor- 

relations from multi-modal data (both 2D and 3D face data). As the dimensionality of the generated 4D 

tensor is high, a tensor dimensionality reduction technique is in need. Since many real-world high-order 

data often reside in a low dimensional subspace, Tucker decomposition as a powerful technique is uti- 

lized to capture multilinear low-rank structure and to extract useful information from the generated 4D 

tensor data. Our goal is to use Tucker decomposition to obtain a set of core tensors with smaller sizes 

and factor matrices which are projected into the 4D tensor data for classification prediction. To charac- 

terize the involved similarities of the 4D tensor, the low-rank and sparse representation is built in terms 

of the low-rank structure of factor matrices and the sparsity of the core tensor in the Tucker decomposi- 

tion of the generated 4D tensor. A tensor completion (TC) framework is embedded to recover the missing 

information in the 4D tensor modeling process. Thus, a novel tensor dimensionality reduction approach 

for 2D + 3D facial expression recognition via low-rank tensor completion (FERLrTC) is proposed to solve 

the factor matrices in a majorization–minimization manner by using a rank reduction strategy. Numeri- 

cal experiments are conducted with a full implementation on the BU-3DFE and Bosphorus databases and 

synthetic data to illustrate the effectiveness of the proposed approach. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Facial expression is the most cogent and naturally preeminent

way for humans to communicate emotions and to regulate interac-

tions with the environment or other people. Nowadays, the facial

expression recognition (FER) has received enormous attention and

played an important role in computer vision, affective computing

and multimedia research [1] . 

From the data modality perspective, existing FER approaches

can be roughly classified into 2D FER, 3D FER and 2D + 3D FER

[2] . 2D FER methods often use 2D face images, while 3D FER ap-

proaches generally utilize 3D face shape models. 2D + 3D FER meth-

ods usually employ both 2D and 3D face data (i.e., textured 3D face

scans). 
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In last several decades, research on 2D facial expression recog-

ition were mostly focused on the 2D modality of images and

ideos [3,4] or multi-modality fusion of visual and audio data [5] .

o satisfy the requirements beyond the lab environment and to im-

rove the FER accuracy, not only distinguishing spontaneous and

osed expressions, but also removing non-expression related head

ovement were taken into consideration. The infrared facial im-

ges were also utilized in [6] to solve the illumination issue. With

 limited capacity on capturing subtle facial deformations and on

andling complicated circumstances such as wearing glasses, 2D

ER methods that rely on facial texture analysis were largely af-

ected by pose and illumination variations, which often appear in

eal scenes. 

With the rapid development of 3D acquisition devices, multi-

odal FER (such as RGB, depth and RGB-D) has gained a lot of

ttention. Compared with the traditional 2D facial expression [7,8] ,

D Facial expression exhibits more resistance to interference from

he illumination and head pose variations. For example, the depth

 z coordinate) information of its 3D physical coordinates ( x, y, z )

an capture the subtle face deformations caused by the movements
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f facial muscles. Various multi-modality data have then been used

n multi-modal FER, including both 2D and 3D face data [2,9] ,

isible and infrared face images [6] , visual and audio [5] , two-

imensional (2D) and 3D videos [10] . It has become a potential

esearch interest because of the complementarity between differ-

nt modalities. However, data representation in existing methods

or FER do not maintain intrinsic structural information between

ulti-modal data. 

To make up this deficiency, a new attempt is to construct a

D tensor model in this paper. This 4D tensor model is composed

f both 2D and 3D face data. The generated issues for such a

ata combination structure are mainly reflected in three aspects:

1) How to construct and represent a 4D tensor model from both

D and 3D face data? (2) How to propose a tensor optimization

odel and solve it for FER? (3) How to evaluate the tensor op-

imization model? Nowadays, all kinds of features by geometric

aps or texture maps are utilized to describe 3D facial shape infor-

ation or 2D appearance information for FER, respectively. How-

ver, to the best of our knowledge, these generated features are

ot combined to construct a 4D tensor model by being stack for

ER. Inspired by this fact, it is feasible to construct a 4D tensor

odel by stacking some discriminative features from 2D and 3D

ace data, which overcomes the issues that the number of train-

ng 3D faces is not enough and the dimensionality disaster due to

igh-dimensional vectorization features. This is the first contribu-

ion in the paper. 

As the dimensionality of the generated 4D tensor is high, a ten-

or dimensionality reduction technique is in need. For many high-

rder data in the real world, they have the spatial redundancy in-

ormation and are often located in a low dimensional subspace.

nd tensor decomposition, which is based on low-rank approxima-

ion, is a powerful technique to capture intrinsic multi-dimensional

tructure and to extract useful information from the high-order

ata. Meanwhile tensor decomposition is widely applied for tensor

ecovery [11] , data classification [12] , and harmonic retrieval [13] .

ucker decomposition and CANDECOMP/PARAFAC (CP) decomposi-

ion [14] are the two popularly adopted low-rank tensor decom-

osition forms. Tucker decomposition decomposes a tensor into a

roduct of a core tensor and a number of factor matrices, whereas

P decomposes a tensor as a sum of rank-one Kronecker bases. For

ifferent types of data, Tucker decomposition has a better gener-

lization ability compared with CP decomposition [15] . Thus, we

ocus on Tucker decomposition in this paper. The relative tensor

asics, Tucker decomposition, tensor projection and tensor recon-

truction are introduced in Section 2 . Based on a Tucker decompo-

ition of the high-order tensor, its spatial redundancy information

s reflected in the spatial structure of the generated factor matri-

es that are used for projection. Hence, the Tucker decomposition

echnique is applied to multi-modal FER for the first time, which

s the second contribution. 

As one sees, when extracting all kinds of features by geomet-

ic maps (3D face data) or texture maps (2D face data), similari-

ies among samples will unavoidably be generated and some use-

ul intrinsic information will possibly be missed. To characterize

he involved similarities of the 4D tensor model, the low-rank and

parse representation [16] is built in terms of the low-rank struc-

ure of factor matrices and the sparsity of the core tensor in the

ucker decomposition of the generated 4D tensor. A tensor com-

letion (TC) framework is embedded to recover the facial expres-

ion data. Thus, a new tensor dimensionality reduction approach

or 2D + 3D FER via low-rank tensor completion (FERLrTC) is pro-

osed, in which our goal is to find a set of core tensors with

maller sizes and a set of factor matrices which are projected into

he generated 4D tensor for classification prediction, i.e., the di-

ensionality of the 4D tensor is reduced. This is the third con-

ribution. Its detailed flowchart in Fig. 1 . Our proposed optimiza-
ion algorithm is employed to handle the 4D tensor model which

s also introduced to overcome the drawback of the missing infor-

ation. Meanwhile a rank reduction strategy is designed to retain

trong interactions among factor matrices and the core tensor by

emoving the redundancy information and to speed up the con-

ergence processing, which is the fourth contribution. Our goal is

o To verify the efficiency of our approach, the multi-class-SVM is

tilized for the final facial expression prediction. In addition, the

ffectiveness of the 4D tensor model based on feature-level fusion,

he complexity and convergency analyses and the effectiveness of

he rank reduction strategy will be discussed accordingly for fur-

her validation. 

The remainder of the paper is organized as follows. In Section 2 ,

ome related works including 3D and 2D + 3D FER, and tensor rep-

esentations are reviewed. A new model based on low-rank ten-

or completion is proposed and solved in Section 3 . Experiment

esults and analysis are given in Section 4 . Conclusions are drawn

n Section 5 . 

. Related works 

Some related existing works on 3D and 2D + 3D FER are re-

iewed and some preliminaries on tensors are recalled in this sec-

ion. 

.1. Related works on 3D and 2D + 3D FER 

Existing approaches for 3D FER can be roughly categorized into

wo main streams [3,17,18] : the feature-based and model-based ap-

roaches. The feature-based approaches mainly extract local ex-

ression features around facial landmarks employing different sur-

ace geometric or differential quantities. For instance, local surface

atch-based distances [3,9,19] , 3D landmark distances [20–22] , the

epth [23,24] , conformal images [25] , surface normal [26,27] , nor-

al maps [2,17,28] , curvatures [2] and mean curvature [29] are

ome popular expression features. In [18] , a 4D tensor structure

rom 3D face data was constructed to explore efficient structural

nformation. After a low-rank approximation method has reduced

imension of the original tensor data, nonnegative tensor factoriza-

ion which is based on graph-preserving extracted local geometric

nd discriminant information. NN classifier was used to recognize

acial expression. Note that [18] is the first time to utilize high-

rder Tucker decompositions for 3D FER. In [2,9,30] , the merits

f both 2D and 3D face data are combined for exploring multi-

odal 2D + 3D FER approaches. For instance, Li et al. [2] proposed

ultimodal 2D + 3D FER with deep fusion convolutional neural net-

ork (DF-CNN). DF-CNN consists of a feature extraction subnet, a

eature fusion subnet, and a softmax-loss layer. Six types of facial

ttribute maps from each textured 3D face scan are then jointly

ent into DF-CNN for feature extraction and feature fusion. Expres-

ion prediction is accomplished through two classifiers: one is to

tilize the 32-dimensional fused deep features for learning linear

VM classifiers; the other is to use the 6-dimensional expression

robabilities for softmax prediction. 

For the model-based approaches, a generic 3D face template is

btained by averaging a quantity of neutral samples for training.

nd it fits to match unknown 3D face scans for testing. Meanwhile,

he corresponding parameters or coefficients are employed for ex-

ression prediction. For example, a bilinear model was proposed

o simultaneously recognize 3D face and 3D FER in [31] , and it

as generated from facial correspondence based on elastic defor-

ation. After establishing a PCA-based deformation subspace, an

symmetric bilinear model is involved in a maximum-likelihood

rame work for 3D FER. Zhao et al. [30] proposed a Statistical Facial

eature Model (SFAM) for automatic facial landmarking, both 2D

exture and 3D shapes features were used around these landmarks
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Fig. 1. A flowchart of the proposed approach (FERLrTC) on BU-3DFE database. 
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for expression prediction. In [32] , Gong et al. described facial ex-

pression with the Expressional Shape Component (ESC). Due to the

linear combination of neutral faces, the Basic Facial Shape Compo-

nent (BFSC) did not contain expression information. ESC was then

obtained by subtracting the depth map of BFSC from that of an

input scan and was further utilized to build the feature vector. 

The aforementioned approaches, either feature-based or model-

based, have their own disadvantages. For example, most of the ex-

isting model-based approaches not only require high computation,

but also are very sensitive to topological changes, such as mouth

opening. The feature-based approaches generally need relatively

low computation, while they substantially rely on the discrimina-

tive power of the local feature and mostly require manual or au-

tomatic landmarks. 2D + 3D FER has emerged and becomes a hot

research topic in pattern recognition due to the complementarity

between different modalities. Along this research line, we focus on

2D + 3D FER in this paper. 

2.2. Related works on tensors 

2.2.1. Notations and tensor basics 

Throughout the paper, vectors, matrices and tensors will be rep-

resented by lowercase letters (e.g., y ), capital letters (e.g., Y ) and

calligraphic letters (e.g., Y), respectively. We use symbols �, ◦ and
∗ to indicate the Kronecker, outer and Hadamard product, respec-

tively. An N -order tensor can be denoted as Y ∈ R 

I 1 ×I 2 ... ×I N with en-

tries Y i 1 ···i n ∈ R (1 ≤ i n ≤ I N ) . The Frobenius norm of Y is defined by

‖Y ‖ 2 F = 

∑ I 1 
i 1 =1 

∑ I 2 
i 2 =1 

. . . 
∑ I N 

i N =1 
Y 

2 
i 1 i 2 ... i N 

. 

In tensor operations, Y (n ) ∈ R 

I n 
∏ N 

k � = n,k =1 
I k is defined by the mode-

n unfolding of Y . The operator × n shows the mode- n product, and

X = Y ×n A 

(n ) indicates the mode- n product of Y with a matrix

A 

( n ) where A 

(n ) ∈ R 

I n ×R n and X ∈ R 

I 1 ×I 2 ... ×R n ×... ×I N . The rank of Y is

defined as a N -tuple (r 1 (Y) , . . . , r N (Y)) , where r n (Y) = rank (Y (n ) )

for all n = 1 , . . . , N. 

2.2.2. Multilinear tensor definitions 

Tucker decomposition: Suppose Y ∈ R 

I 1 ×I 2 ... ×I N , we can get a core

tensor X ∈ R 

R 1 ×R 2 ... ×R N and factor matrices { A 

(n ) } ∈ R 

I n ×R n by a

Tucker decomposition of Y, which can be defined as follows: 

Y = X 

N ∏ 

n =1 

×n A 

(n ) . (1)

Tensor projection: Given Y and the generated factor matrices

{ A 

( n ) } obtained by a Tucker decomposition of Y , then the projection

of Y onto { A 

( n ) } along each mode of Y is defined as Y 

∏ N 
n =1 ×n A 

(n ) T .
Tensor reconstruction: The tensor O ∈ R 

R 1 ×R 2 ... ×R N can be recon-

tructed by projecting Y onto its generated factor matrices { A 

( n ) }

y a Tucker decomposition of Y, its definition is shown as fol-

ows 

 = Y 

N ∏ 

n =1 

×n A 

(n ) T . (2)

.2.3. Tensor low-rank representation 

Low-rank representation (LrR) method, which is the most com-

only used method of low-rank matrix recovery (LrMR) [33] ,

tems from compressed sensing (CS) [34] and has been widely ap-

lied in many fields, such as image segmentation, motion segmen-

ation and face recognition, etc [35] . Based on Tucker decomposi-

ion of Y, a reasonable and favorable way to get a low-rank repre-

entation or approximation is to find some low-rank A 

( n ) ’s to store

nd analyze the information of Y, especially for large-scale cases.

n this sense, we can adopt the following minimization problem to

et such a low-rank representation of Y: 

min 

, { A (n ) } 

N ∑ 

n =1 

λn ‖ A 

(n ) ‖ ∗

s.t. 

∥∥∥∥∥Y − X 

N ∏ 

n =1 

×n A 

(n ) 

∥∥∥∥∥
2 

F 

≤ ε, (3)

here λn > 0 is the weight parameter for A 

( n ) for each n = 1 , . . . , N

nd ε is a prescribed accuracy parameter. ‖ · ‖ ∗ stands for the ma-

rix nuclear norm equal to the sum of all singular values of the

atrix. 

.2.4. Tensor sparse representation 

Sparse representation (SR) method is also rooted from com-

ressed sensing (CS) and has been broadly applied into machine

earning, pattern recognition, signal processing, image processing,

omputer vision [36] , etc. Based upon the Tucker decomposition, a

parse representation or approximation of a given N -order tensor

 ∈ R 

I 1 ×I 2 ... ×I N can be achieved by 

min 

, { A (n ) } 

N ∑ 

n =1 

‖ z n ‖ 0 

s.t. 

∥∥∥∥∥Y − X 

N ∏ 

n =1 

×n A 

(n ) 

∥∥∥∥∥
2 

F 

≤ ε, (4)

here z n is an I n -dimensional vector with its i th element obtained

y z n,i � ‖X (n,i ) ‖ 2 , where X (n,i ) represents the i th row of the n -

ode unfolding matrix of X and ‖X (n,i ) ‖ 2 indicates the sum of
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he squares of each element of X (n,i ) . Obviously, the involved � 0 
orm [37,38] with combinatoric properties makes this problem NP-

ard generally. Many different relaxation strategies have been pro-

osed in the literature, such as the � 1 norm relaxation, the log-sum

enalty function, etc. In [39,40] , the log-sum penalty function has

een shown to be more sparsity-encouraging than the � 1 norm.

he detailed model takes the form of 

min 

, { A (n ) } 

N ∑ 

n =1 

I n ∑ 

i =1 

log ( ‖X (n,i ) ‖ 

2 + ε) 

s.t. 

∥∥∥∥∥Y − X 

N ∏ 

n =1 

×n A 

(n ) 

∥∥∥∥∥
2 

F 

≤ ε, (5) 

here ε > 0 is some given approximation parameter. 

. The proposed FERLrTC approach 

.1. The low-rank tensor completion model 

Here we propose a new tensor dimensionality reduction ap-

roach for 2D + 3D FER, which deals with higher order tensors di-

ectly instead of converting them into vectors. Now, given M sam-

les of 3D facial expressions with N features of size I 1 × I 2 , a 4D

ensor Y 0 of size I 1 × I 2 × N × M is then constructed to store the

eature information of all samples. Our goal is to find the low-

ankness of factor matrices for projection by a Tucker decompo-

ition of Y 0 . The resulting tensor Y 0 will naturally admit some

ow-rank representation due to the high similarities among sam-

les. Inspired by the way of using a group-based log-sum func-

ion to place structural sparsity over the core tensor in [40] , we

ombine the low-rank structure of factor matrices and a group-

ased log-sum function over the core tensor to together charac-

erize the involved similarities of the 4D tensor data Y 0 based

n Tucker decomposition. To achieve the required low-rankness of

 A 

(n ) } ∈ R 

I n ×R n (R n < = I n ) , the trace-norm, other than the Frobenius

orm as introduced in [40] , is imposed in the tensor optimization

odel. As information will partially be missed in the tensor mod-

ling process, a tensor completion (TC) framework based Tucker

ecomposition is embedded, which is actually one of our major

ontributions. Thus, the general tensor optimization model of the

roposed approach is as follows: 

min 

, { A (n ) } , Y 

4 ∑ 

n =1 

I n ∑ 

i =1 

log ( ‖X (n,i ) ‖ 

2 

F 
+ ε) + γ

4 ∑ 

n =1 

λn ‖ A 

(n ) ‖ ∗

s.t. 

∥∥∥∥∥Y − X 

4 ∏ 

n =1 

×n A 

(n ) 

∥∥∥∥∥
2 

F 

≤ ε, 

�(Y) = �(Y 0 ) , (6) 

here γ ( γ > 0) is a tradeoff parameter to compromising the spar-

ity of the core tensor and the low-rank of factor matrices, λn is

he weight of A 

( n ) , Y is the required reconstructed tensor, Y 0 repre-

ents the facial expression data, and �(Y 0 ) represents the nonzero

ntries in Y 0 . 

.2. Solving the tensor completion model 

To effectively solve the problem (6) , the majorization-

inimization method (MM) [41] is employed to optimization the

iven objective function through iteratively minimizing a simple

urrogate function. Its advantage is shown that the iterative pro-

ess generates a non-increasing objective function value. 

Before using the MM scheme, the Tikhonov regularization is

tilized to approximate the original constrained problem (6) by 
min 

X , { A (n ) } , Y , �(Y )=�(Y 0 ) 
L (X , { A 

(n ) } 4 n =1 , Y) 

= 

4 ∑ 

n =1 

I n ∑ 

i =1 

log ( ‖X (n,i ) ‖ 

2 

F 
+ ε) + γ

4 ∑ 

n =1 

λn ‖ A 

(n ) ‖ ∗

+ μ

∥∥∥∥∥Y − X 

4 ∏ 

n =1 

×n A 

(n ) 

∥∥∥∥∥
2 

F 

, (7) 

here μ ( μ> 0) is the regularization parameter. Obviously, the

inimization function L (X , { A 

(n ) } 4 n =1 , Y) contains a joint term of

actor matrices { A 

(n ) } 4 
n =1 

, a core tensor X and a reconstructed ten-

or Y, which is difficult to be minimized. 

The inexact alternating direction method (IADM) [42] is then

mbedded into the MM algorithm, which can solve the optimiza-

ion problems (7) subject to certain inexactness criteria by break-

ng it into small subproblems which are easier to handle. With

he initial tuple (X 

[0] , { (A 

(n ) ) [0] } 4 
n =1 

, Y 

[0] ) , the resulting iteration

cheme is 
 

 

 

 

 

 

 

 

 

X 

[ t+1] ≈ arg min 

X 
L (X , { (A 

(n ) ) [ t] } 4 n =1 , Y 

[ t] ) , 

(A 

(n ) ) [ t+1] ≈ arg min 

A (n ) 
L (X 

[ t+1] , { (A 

(k ) ) [ t+1] } k<n , A 

(n ) , 

{ (A 

(k ) ) [ t] } k>n , Y 

[ t] ) , n = 1 , . . . , 4 ; 

Y 

[ t+1] ≈ arg min 

�(Y)=�(Y 0 ) 
L (X 

[ t+1] , { (A 

(n ) ) [ t+1] } 4 n =1 , Y) . 

(8) 

he subproblems in (8) will be carefully treated as follows. 

.2.1. Optimization of X 

Followed by Yang et al. [40] , the update of X is obtained by

olving the following optimization problem 

in 

X 
〈X , D 

[ t] ∗ X 〉 + μ

∥∥∥∥∥Y − X 

4 ∏ 

n =1 

×n A 

(n ) 

∥∥∥∥∥
2 

F 

, (9) 

here D 

[ t] is a tensor of the same size of X with its ( i 1 , i 2 , . . . , i 4 ) th

lement given by 

 

[ t] 
i 1 , ... ,i n , ··· ,i 4 = 

4 ∑ 

n =1 

(∥∥∥X 

[ t] 

(n,i n ) 

∥∥∥2 

F 
+ ε

)−1 

. (10) 

he details for a majorization function of L (X , { A 

(n ) } 4 
n =1 

, Y) in

7) will be found in Appendix A . 

Let x � vec( X ), D � diag(vec( D 

[ t] )), y � vec( Y), and H �
( 
⊗ 

n A 

(n ) ) . The above optimization can be expressed as 

in 

x 
μ‖ 

y − Hx ‖ 

2 
2 + x T Dx, (11) 

hich has a unique optimal solution of the form 

 = (H 

T H + μD ) −1 H 

T y. (12) 

t is expensive to get x directly from (12) since the computation

omplexity for the inverse of the matrix H 

T H + μD is O 

(∏ 4 
n =1 I 

3 
n 

)
.

o accelerate the computation, an iterative algorithm called the

ver-relaxed MFISTA approach (e.g. [43] ) is employed which not

nly guarantees the monotonically decreasing in the objective

unction, but also admits a variable stepsize in a broader range

ith the convergence rate O (1/ k 2 ). For notational convenience, de-

ote 

f (x ) = μ‖ 

y − Hx ‖ 

2 
2 , and g(x ) = x T Dx. 

irect calculation leads to 

f (x ) = 2 μ(H 

T Hx − H 

T y ) , 

r a more efficient tensor version as 

f (X ) = 2 μ

( 

X 

4 ∏ 

n =1 

×n A 

(n ) − Y 

) 

4 ∏ 

n =1 

×n A 

(n ) T . (13) 
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Additionally, for any given positive scalar β , the proximal operator

prox βg ( x ) has the following closed form 

prox βg (x ) := arg min 

z 

{ 

g(z) + 

1 

2 β
‖ z − x ‖ 

2 
2 

} 

= (2 βD + I) −1 x, (14)

where I is the identity matrix with the same size of D . Since D is

a diagonal matrix, the inverse of ( 2 βD + I) can be easily obtained.

Note that ∇ f is Lipschitz continuous with the Lipschitz constant

L ( f ) being 

L ( f ) = λmax (2 μH 

T H) = 2 μ
4 ∏ 

n =1 

λmax (A 

(n ) T A 

(n ) ) , (15)

where λmax (X ) stands for the largest eigenvalue of the matrix X,

and details of the Eq. (15) are shown in Appendix B . 

The procedure to update X is illustrated by Algorithm 1 . 

Algorithm 1 Solving (9) by the over-relaxed MFISTA. 

Input: two tensors Y and X ; Factor matrices { A 

(n ) } 4 n =1 ; Parameters

δ, k max ; 

Output: X ; 

Step 0 Compute D by (10) and L ( f ) by (15); 

Step 1 select β from (0, (2 −δ)/ L ( f ) ] with some δ ∈ (0,2); 

Step 2 Set x [0] =vec( X ), w 

[1] = x [0] , η[1] =1; 

Step 3 For k =1 to k max do 
• Calculate ∇ f (X ) using (13); 
• z [ k ] = prox βg (w 

[ k ] − β∇ f (w 

[ k ] )) or using (14); 

• x [ k ] =arg min 

{
F (z) | z ∈ { z [ k ] , x [ k −1] } }; 

• η[ k +1] = 

1+ 
√ 

1+4(η[ k ] ) 2 

2 ; 

• w 

[ k +1] = x [ k ] + 

η[ k ] 

η[ k +1] 
(z [ k ] − x [ k ] ) + 

η[ k ] −1 

η[ k +1] 
(x [ k ] − x [ k −1] ) + 

η[ k ] 

η[ k +1] 
(1 − δ)(w 

[ k ] − z [ k ] ) ; 

End for 

Step 4 Set X =tensor( x [ k max ] ) 

3.2.2. Optimization of A 

(n) ’s 

For { n 1 , n 2 , n 3 , n 4 } ∈ {1, 2, 3, 4}, any given X , { A 

(n j ) } 4 n j � = n i ,n j =1 ,

Y, the update of A 

(n i ) is obtained from ̂ A 

(n i ) ≈ arg min 

A (n i ) 
L (X , { A 

(n i ) } 4 n i =1 , Y) 

=: arg min 

A (n ) 
{ f 1 (A 

(n i ) ) + f 2 (A 

(n i ) ) } , (16)

where f 1 (A 

(n i ) ) = γ λn ‖ A 

(n i ) ‖ ∗ is a closed convex but not differen-

tiable function, and 

f 2 (A 

(n i ) ) = μtr(A 

(n i ) T A 

(n i ) �n i �
T 
n i 

− 2 A 

(n i ) T Y (n i ) �
T 
n i 
) 

with �n i = (X 

∏ 

k � = n i ×k A 

(k ) ) (n i ) 
, is a convex quadratic function. To

get a closed form approximation of ̂ A 

(n i ) , a majorization technique

for f 2 (A 

(n i ) ) based upon its first-order Taylor expansion at the cur-

rent (A 

(n i ) ) [ t] is utilized, and 

̂ A 

(n i ) is then obtained via ̂ A 

(n i ) ≈ arg min 

A (n i ) 
f 1 (A 

(n i ) ) + f 2 ((A 

(n i ) ) [ t] ) + 〈∇ f 2 ((A 

(n i ) ) [ t] ) , 

A 

(n i ) − (A 

(n i ) ) [ t] 〉 + 

ζn 

2 

‖ A 

(n i ) − (A 

(n i ) ) [ t] ‖ 

2 
F 

= γn i 

(
(A 

(n i ) ) [ t] − 1 

ζn i 

∇ f 2 ((A 

(n i ) ) [ t] ) 

)
(17)

with ∇ f 2 ((A 

(n i ) ) [ t] ) = 2 μ(A 

(n i ) �n i − Y (n i ) 
)�T 

n i 
, where γn i = 

γ
ζn i 

λn i ,

ζn i = 2 μ‖ �n i ‖ 2 2 
, α(Z) = US α(�) V T for any matrix Z with its

singular value decomposition (SVD) Z = U�V T , and S α(�i j ) =
sign (�i j ) ∗ max (0 , | �i j | − α) is the soft-thresholding operator. 
.2.3. Optimization of Y
Given X , { A 

(n ) } 4 
n =1 

, the update ̂ Y can be easily obtained by the

rojection property in the following way: 
 

 

 

�
(̂ Y 

)
= �(Y 0 ) , 

�
(̂ Y 

)
= �

(
X 

4 ∏ 

n =1 

×n A 

(n ) 

)
. 

(18)

Now, we are in a position to establish the proximal version of

M framework with IADM in the following Algorithm 2 . 

lgorithm 2 Solving (7) by the MM algorithm with IADM. 

nput: A tensor Y 0 ∈ R 

I 1 ×I 2 ... ×I 4 ; Parameters λn , γ , μ, t max ; 

utput: Factor matrices { A 

(n ) } 4 
n =1 

; 

Step 0 Initialization: choose { (A 

(n ) ) [0] } 4 
n =1 

, X 

[0] , Y 

[0] = Y 0 and set

t = 0 ; 

Step 1 Update X by Algorithm 1; 

Step 2 Update { A 

(n ) } 4 
n =1 

by (17); 

Step 3 Update Y by (18); 

Step 4 (Rank Reduction Strategy) Remove negligible rows of each

mode unfolding of X and the corresponding columns of

{ A 

(n ) } 4 
n =1 

according to the rank reduction strategy with a

given threshold θ (details in next subsection); 

Step 4 t = t + 1 ; while some stop criteria are not satisfied, go to

Step 1. 

In the above algorithm, the iteration process will be terminated

nce the iteration number reaches some prescribed t max or 

�

( 

Y 

[ t+1] − X 

[ t] 
4 ∏ 

n =1 

×n (A 

(n ) ) [ t] 

) 

∥∥∥∥∥
2 

F 

/ ‖Y 0 ‖ 

2 
F < η, (19)

ith some sufficiently small η > 0. 

.2.4. Rank reduction strategy (RRS) 

After achieving X , { A 

( n ) } and Y at each iteration, negligible

olumns of { A 

( n ) } may exist, which is according to rows of each

ode unfolding of X . The strict definition of unnecessary rows of

 (n,i ) is shown 

 

(n ) := 

{ 

i 

∣∣∣∥∥X (n,i ) 

∥∥2 

F 
= 0 ; n = 1 , . . . , 4 , ∀ i 

} 

. (20)

If j ∈ H 

(n ) , j th column of A 

( n ) can be clearly ignored. However,

ts criterion is difficult to remove the negligible components. Thus,

 more relaxed criterion is utilized by 

 

(n ) := 

{ 

i 

∣∣∣∣∣1 − ‖X (n,i ) ‖ 

2 
F 

max 
i 

(‖X (n,i ) ‖ 

2 
F 
) 

≥ θ ; n = 1 , . . . , 4 , ∀ i 

} 

, (21)

here θ ∈ [0.7, 1] is a threshold (e.g., θ= 0.9980), which means

 “big” gap between ‖X (n,i ) ‖ 2 F 
and max i (‖X (n,i ) ‖ 2 F 

) . Meanwhile,

trong interactions among factor matrices and the core tensor will

e retained naturally. Finally, negligible complements are removed

y 

X (n ) ← X (n ) 

(
M 

(n ) 
⊥ , : 

)
, 

A 

(n ) ← A 

(n ) 
(
: , M 

(n ) 
⊥ 

)
, n = 1 , . . . , 4 ; (22)

here M 

(n ) 
⊥ is the complement operator of M 

(n ) . 

. Experimental evaluation 

To evaluate the effectiveness of our proposed approach (FERL-

TC), we will compare its performance in terms of different exper-

mental protocols and other methods of the state-of-the-art over
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Fig. 2. Seven basic expressions with face images and facial models in BU-3DFE and 

Bosphorus databases, respectively. 
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Fig. 3. Visualization of the nine types of 2D maps and 2D texture information of 

two textured 3D face scans (subject bs0 0 0 on Bosphorus database in the first line 

and subject M0031 with 4 levels of expression intensity on BU-3DFE dataset in rest 

lines) with happiness expression. Each line shows: the depth (the geometry maps), 

the three normal maps (x, y, and z), curvature maps (curvature and mean curva- 

ture), 2D texture information (components R, G, B) (from the second row to the 

fifth row: level 4 to level 1). 
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wo 3D face databases including BU-3DFE [44] and Bosphorus [45] .

he details will be focused on BU-3DFE database. We also vali-

ate FERLrTC on synthetic data of the third-order and fourth-order

ensor. Finally, we will discuss the following five issues: the effec-

iveness of the 4D tensor model based on feature-level fusion for

D + 3D FER, the selection of feature descriptors, complexity and

onvergence analysis, the effectiveness of the rank reduction strat-

gy. 

.1. Implementation details 

.1.1. Databases and preprocessing 

BU-3DFE database: As a database with the prototypical expres-

ions of seven basic emotions (i.e., anger, disgust, fear, happiness,

adness, surprise and neutral), the BU-3DFE database [44] has be-

ome the actual test bed where FER researchers evaluate their ap-

roaches. It contains 2500 3D face models of 100 subjects with 56

emales and 44 males, aging from 18 to 70, with a variety of eth-

ic/racial ancestries, including East-Asian, White, Indian Middle-

ast Asian, Hispanic Latino, and Black. For every subject, there are

5 scans of which one is the neutral expression and the rest are

ix prototypical expressions (except neutral) of four levels of in-

ensity. The seven basic expressions consist of anger (AN), disgust

DI), fear (FE), happiness (HA), sadness (SA), surprise (SU) and neu-

ral (see Fig. 2 ). 

Bosphorus 3D face database: The Bosphorus database [45] has

een widely applied in 3D human face processing tasks including

acial action unit detection, expression recognition, face recogni-

ion under adverse conditions, etc. It is composed of 105 subjects

nd 46 6 6 pairs of 3D face models and 2D face images in various

oses, expressions, and occlusion conditions. Different from BU-

DFE database, Bosphorus database has not provided facial expres-

ion with intensity information and has only 65 subjects accom-

lishing six prototypical expressions. 

Preprocessing: The preprocessing of the data in both BU-3DFE

44] and Bosphorus [45] databases are similar and includes: pose

orrection based on the Iterative Closest Point (ICP) algorithm [46] ,

ose detection, face cropping, resample and projection procedures

ith cubic interpolation for 3D face normalization. According to x,

 , and z coordinates obtained, geometry map I g , three normal com-

onent maps I x n , I 
y 
n and I z n , and curature maps (i.e., curvature I c and

ean curvature I mc ) can be achieved by the methods introduced

n [2,29] . The 3-channel 2D texture information I r t , I 
g 
t and I b t of BU-

DFE database are obtained by projecting 3D texture images with

inear interpolation. These generated features are used with LBP

Local Binary Pattern) descriptor [47] which has been widely em-
loyed in both 2D and 3D FER. Samples of preprocessed facial at-

ribute maps and 2D texture information of BU-3DFE and Bospho-

us databases are shown in Fig. 3 . 

.1.2. Algorithm initialization 

To alleviate the sensitivity to the algorithm’s parameters,

he insensitive parameters δ and β are simply set to be 0.1,

nd (2 − δ) /L ( f ) , respectively. λn ( n = 1 , 2 , 3 , 4 ) is set to be∏ 4 
k � = n,k =1 

a k ∗‖ A (k ) ‖ ∗∑ 4 
n =1 

∏ 4 
k � = n,k =1 

a k ∗‖ A (k ) ‖ ∗ ( a 1 = 0 . 1 , a 2 = 0 . 1 , a 3 = 80 , a 4 = 0 . 01 ) to bet-

er characterize the similarities of samples. The choices of μ and

are more crucial than the others, and they depend on the data

issing ratio and the value of facial expression data. A stable re-

overy performance can be obtained when μ and γ are set to be

1 

w 1 ‖Y 0 ‖ 2 F 

and w 2 
μ‖ �(4) ‖ 2 2 

λ4 
, respectively. w 1 is set to be 1e-12 accord-

ng to the size of the facial expression data, and w 2 is set to be

e −2 on the basis of γn = 

γ
ζn 

λn to avoid severe truncation. Y 0 is

et to be Y Training , { (A 

(n ) ) [0] } 4 n =1 are obtained from the high order

ingular value decomposition (HOSVD) of Y 0 ( [48] ), and X 

[0] is set

o be Y 0 ×1 ((A 

(1) ) [0] ) � ×2 ((A 

(2) ) [0] ) � · · · ×4 ((A 

(4) ) [0] ) � . The max-

mal iteration numbers k max and t max are set to be 5 and 100, re-

pectively, and the accuracy parameter η in Algorithm 2 is set to

e 1e-4. θ is set to be 0.99875 when the rank reduction strategy

s implemented. 

.1.3. Tensor reconstruction and classification prediction 

Given a Y Training and a Y Testing as the training and the testing,

espectively, we can get the corresponding estimated factor ma-

rices { A 

(n ) } 4 
n =1 

by Algorithm 2 . Then the reconstruction tensors

 Tr and Y Te are obtained by Y Training ×1 A 

(1) T ×2 A 

(2) T ×3 A 

(3) T and

 Testing ×1 A 

(1) T ×2 A 

(2) T ×3 A 

(3) T , respectively. 

Set X Training be the mode-4 unfolding matrix of Y Tr and X Testing 

e that of Y Te . These two matrices, together with the labels of the

orresponding samples are sent to the Multi-Class-SVM classifier

ased on linear SVM with default parameter of C for classification

rediction. 

.2. Evaluation and comparison on BU-3DFE database 

.2.1. Experimental protocol 

Three experimental protocols, termed as Setup I, II, and III, are

sed in this paper. Among them, the two highest levels of inten-

ity are considered in Setup I and II, while all four levels of inten-

ity are utilized in Setup III. The details of protocols are as below:
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Table 1 

Average confusion matrix for feature-level fusion FER on BU- 

3DFE database with Setup I, II and III. 

% AN DI FE HA SA SU 

AN 80.92 4.58 3.83 0.58 10.09 0.00 

DI 5.58 78.67 7.17 2.67 1.83 4.08 

FE 4.50 5.91 70.75 10.00 5.17 3.67 

HA 0.00 1.75 5.67 92.25 0.00 0.33 

SA 11.75 2.50 6.67 0.17 78.91 0.00 

SU 0.25 1.00 2.00 0.92 0.00 95.83 

Setup I 82.89% 

% AN DI FE HA SA SU 

AN 76.75 6.75 2.67 0.75 13.08 0.00 

DI 10.92 76.28 6.58 2.92 2.33 0.97 

FE 2.42 8.63 69.12 6.75 9.33 3.75 

HA 1.58 0.30 3.60 93.65 0.17 0.70 

SA 15.65 4.42 2.83 1.05 76.05 0.00 

SU 0.85 0.50 2.75 2.27 0.00 93.63 

Setup II 80.91% 

% AN DI FE HA SA SU 

AN 76.55 6.70 4.50 0.00 12.25 0.00 

DI 9.20 79.25 7.20 0.15 2.05 2.15 

FE 3.05 9.25 67.00 9.75 6.85 4.10 

HA 0.75 1.90 7.80 89.25 0.00 0.30 

SA 19.75 3.00 6.35 0.65 70.25 0.00 

SU 0.20 1.70 5.65 1.00 0.00 91.45 

Setup III 78.96% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Comparison of different classifiers on BU-3DFE database with Setup I. 

Classifier k-Nearest neighbor CRC Random forest Linear SVM 

Accuracy(%) 78.91 80.37 80.22 82.89 
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i) Setup I fixes 60 subjects in all the experiments, while Setup II

selects randomly 60% of 100 subjects in each round. The 10-fold

cross-validation scheme is adopted in which 60 subjects selected

are randomly divided into 10 subsets, and one subset (6 subjects

with 72 scans) is retained as the testing and the other 9 subsets

(648 scans of 54 subjects) as the training for each time; ii) Setup

III utilizes the 10-fold cross-validation scheme which 100 subjects

are randomly divided into 10 subsets, and 9 subsets are utilized for

training (i.e., 12960 attribute maps of 90 subjects) and the remain-

ing is used for testing (i.e., 1,440 attribute maps of 10 subjects).

The experiment is repeated for 10 times so that every subset is

treated exactly once as the testing and that the training and the

testing own no overlap. Then the results averaged from 10 splits

are the final estimation. Experiments in Setup I, II and III are re-

peated 100 times for the average performance, and the linear SVM

is used as the classifier in all experiments. The experimental anal-

ysis below is based on the results generated in Setup I, II and III. 

In addition, to facilitate comparison with some existing ap-

proaches, Setup V is added, which runs less than 20 times. 

4.2.2. Results on BU-3DFE database 

Comparison for different experimental protocols: Table 1 shows

the average confusion matrices for feature-level fusion by Setup

I, II and III. It is easy to find from Table 1 that happiness and

surprise are the two expressions easiest to be recognized due to

their high facial deformations, whereas sadness and fear are two

which are more difficult to be recognized except in Setup I. Among

the three strategies, Setup I achieves the best result with recog-

nition accuracy only 1.98% higher than Setup II, and 3.93% higher

than Setup III. For sadness recognition, Setup I obtains better re-

sult compared with Setup II and III, and even shows some im-

provement compared with those in [17,29,49] . Disgust expression

of Setup III achieves higher recognition accuracy compared with

those of Setup I and II. From Table 1 , we can learn that facial

expressions with lower levels of expression intensity (i.e., 1-level

and 2-level) are actually much more difficult to be recognized than

those with the higher levels. 

Comparison with different classifiers: It is known that there

are various classifiers such as SVM, k-Nearest Neighbor (k-NN),

Bayesian Belief Net (BBN), Neural Networks (NN), multi-boosting,
aximal Likelihood (ML), random forest, collaborative represen-

ation based classification (CRC) and Sparse representation based

lassification (SRC), among which the SVM, k-NN, CRC and ran-

om forest are all capable of high-dimensional data and multi-

lass classification. To show the superiority of utilizing linear SVM

lassifier, experiments are implemented on BU-3DFE database with

etup I. The parameters are set in the following: (i) the parameter

 is taken the default value 1 in SVM; (ii) k = 1 is set in k-NN; (iii)

and the eigenfaces dimension are set to be 1e-3 and 200, re-

pectively for a best performance in CRC; iv) the number of trees

re taken the default value 500, and the number of variables used

or the binary tree in the nodes is set to be 200 in random forest.

ccuracy results as reported in Table 2 shows that the linear SVM

s generally regarded as the best candidate classifier in expression

rediction. 

Comparison with tucker decomposition algorithms in other appli-

ations: Our proposed approach (FERLrTC) is compared with IRTD

40] , APG _ NTDC [50] , WTucker [51] and KBR _ TC [11] on BU-3DFE

atabase. The IRTD proposes that the sparsity over the core ten-

or X is replaced with a group-based log-sum penalty function

or Tucker decomposition of incomplete tensors and a Frobenius

orm is imposed on factor matrices { A 

( n ) } to avoid a trivial solution

X → 0 , { A 

(n ) } →∝} , the APG _ NTDC utilizes alternating proximal

radient (APG) method to decompose a tensor into a core tensor

nd several factors with sparsity and non-negativity constraints.

he WTucker proposes a Tucker factorization method based on

redefined multilinear rank and applies it to low- n -rank comple-

ion, and the KBR _ TC proposes a tensor sparsity measure based on

ronecker-basis-representation (KBR) for tensor recovery, in which

he number of rank-1 Kronecker bases are utilized for representing

he tensor. To speed up the convergence processing, KBR _ TC adopts

he rank-increasing scheme [52] and IRTD uses the rank reduction

trategy as FERLrTC does. It should be noted that the APG _ NTDC

equires to predefine the multilinear rank, and the KBR _ TC pro-

ides a smaller estimate of multilinear rank, and the multilinear

ank of the WTucker needs to be over-estimated. 

All the parameters utilized in these three algorithms are ad-

usted carefully according to the suggestions in the related liter-

tures for achieving their best performances: (i) IRTD, we set δ
 0.1, β = (2 − δ) /L ( f ) , λ1 = 0.1, λ2 = 1 and γ = 1.25e −3; (ii)

PG _ NTDC, λn ( n = 1, 2, 3, 4) and λc are all set to be 0.5, the prede-

ned multilinear rank is set to be (15, 11, 8, 12); (iii) WTucker, the

ultilinear rank to be (30, 22, 9,24); (iv) KBR _ TC, we set λ = 10 ,

 = 1 e − 3 , v = 0 . 1 , ρ = 1 . 05 and μ = 250 , the provided multi-

inear rank is set to be (12, 12, 9, 12). The comparisons on recog-

ition accuracy (RA), relative error(RE), the rank variations (RV) of

actor matrices and feature reconstruction (FR) are shown as be-

ow. 

(1) RA: The comparison results on average recognition accuracy

(%) in Setup I are reported in Fig. 4 (a), from which one can

see that the FERLrTC achieves the best performance on aver-

age recognition accuracy, while APG _ NTDC gains a relatively

worse performance. The results obviously indicates our pro-

posed tensor dimensionality reduction approach based on

Tucker decomposition can extract the more effective low di-

mensional features from the generated 4D tensor for multi

modal FER, and the low-rank tensor completion model for

multimodal FER are more effective than other methods. 
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Fig. 4. Comparison of average recognition rate(%) and convergence behavior with IRTD, APG _ NTDC, WTucker and KBR _ TC on BU-3DFE database with Setup I. 

Fig. 5. The comparison results of the rank variations of factor matrices ( A ( n ) , n = 1, 2, 3, 4) with IRTD, APG _ NTDC, WTucker and KBR _ TC on BU-3DFE database by Setup I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The comparison results for LBP feature reconstruction with 70% SR on BU- 

3DFE database with Setup I (the subject F0 0 03 with angry expression of 4-level 

intensity). 

 

 

 

 

 

 

 

 

 

 

 

(2) RE: RE = ‖ ̂  Y 

t − ̂ Y 

t−1 ‖ F / ‖Y 0 ‖ F is often utilized to verify con-

vergence behavior. Fig. 4 (b) shows that RE can converge fast

in a number of iterations. The comparison results manifest

our approach has better convergence behavior, which further

indicates the rank reduction strategy is more efficient com-

pared with the rank-increasing scheme adopted by KBR _ TC. 

(3) RV: Fig. 5 reports the comparison results of rank variations

of factor matrices. It is noted that the spatial redundancy

information of the 4D tensor data is reflected in the spatial

structure of the generated factor matrices by Tucker decom-

position. Hence, our aim is to obtain the low-rankness of

factor matrices for projection and then to achieve the goal

of the 4D tensor dimensionality reduction. From Fig. 5 , we

can know the rank variations of factor matrices are stable:

(i) A 

(4) that represents the number of samples varies the

fastest and also verifies the high similarities among samples;

(ii) A 

(3) that indicates the number of features only changes

a little; (iii) A 

(1) and A 

(2) that show the size of 2D fea-

tures vary slower than A 

(4) . It is clear that the rank of fac-

tor matrices will no longer change after several iterations.

The comparison results indicate that rank variations of fac-

tor matrices of our proposed approach are relatively slower

than IRTD, which is because the desired low-rank structure

among samples with the high similarities is characterized

in terms of the low-rankness of the involved factor matri-

ces and the structured sparsity of the involved core tensor,

effectively avoiding the overpruning of the factor matrices.

On the other hand, KBR _ TC based on the rank-increasing

scheme shows the bad performance in approximating the

multilinear rank. 

(4) FR: Fig. 6 shows some examples of original features by 2D

maps, features with LBP descriptor (here after LBP feature

 

for short), LBP feature with 70% sampling ratio (SR) selected

randomly, and their reconstruction features by APG _ NTDC,

IRTD and FERLrTC, respectively. And it is noted that WTucker

and KBR _ TC could not carry out successfully face reconstruc-

tion. Meanwhile we can easily observe that the LBP features

of our proposed approach FERLrTC could be reconstructed

by over 70% SR, and the reasons lie in two aspects: one

is that nine kinds of features without LBP descriptor con-

tain some NaN values (i.e., indeterminate values) which are

formed when the 3D face scans map into 2D planes and set

to be zero, the other is that nine kinds of features with LBP

descriptor contains averagely less than 65% useful formation
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Table 3 

Comparisons of the significant test with IRTD, KBR _ TC, 

WTucker and APG _ NTDC, respectively. 

IRTD KBR _ TC WTucker APG _ NTDC 

P 1.85E −08 1.29E −08 3.15E −54 2.01E −67 

H 1 1 1 1 
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which are larger than zero. In short, our proposed approach

obtains better reconstruction result, which indicates that our

proposed approach can make use of more information con-

tained in higher dimensional tensors. 

In addition, in order to show the significant difference between

our proposed method and other methods, we use Wilcoxon rank-

sum method [61] to test the statistical significance because the five

sets of recognition accuracy data generated by these five methods

are non-normal distribution. Assuming that there is an equal me-

dian between our method and other methods, i.e., the null hypoth-

esis, and the significance level is set to be 5%, we use the rank-sum

function in MATLAB to carry out the significant tests between our

proposed approach and other four methods respectively. Table 3

shows the comparison results. From this table, we can observe that

the values of P are much less than 5% and all the values of H are

all ones, in which the value of P is the probability of achieving

a result equal to or more extreme than what is observed actually

when the null hypothesis is true, and the results H = 0 and H = 1 il-

lustrate an acceptance and a rejection of the null hypothesis under

the 5% significance level, respectively. As we know, both P < 0.05

and H = 1 indicate that the null hypothesis of equal medians is re-

jected under the 5% significance level. Meanwhile we can observe

that the lower the recognition accuracy of the compared method,

the smaller the generated value of P . Thus, there are significant

differences between our proposed approach and other methods. 

Comparison with other methods: In order to comprehensively

evaluate the validity of the proposed method (FERLrTC), we com-

pare it with some state-of-the-art approaches in four aspects in-

cluding data modality, expression features, expression classifiers

and recognition accuracy shown in Table 4 (a). The result indi-

cates that our proposed method (FERLrTC) obtains the higher ac-

curacies of 82.89%, 80.91%, 78.96%, and 95.28% compared with all

state-of-the-art approaches by Setups I, II, III and V, respectively.

From Table 4 (a), it is observed that the recognition accuracies of

[21,53,54] obtained by utilizing the unstable experiment protocols

(i.e., 10-fold or 20-fold cross-validation) decline more than 20% sig-

nificantly than those of utilizing a more stable experimental proto-

col (i.e., Setup I). Therefore, we can see that our proposed method

can obtain the stably good performance under different setups. 

Although our proposed method (FERTLrR) based on Tucker de-

composition outperforms the state-of-the-art in Table 4 (a) by us-

ing Setups I, II and III, there are still some approaches which sur-

pass our method in Table 4 (b). As we know, the state-of–art algo-

rithms in Table 4 (b) could produce high accuracy with feature vec-

torization and concatenation because of larger samples and high

complexity to construct the networks, such as [2,10,17,60] , or fa-

cial landmark localization [59] . In addition, compared with the ap-

proaches in Table 4 (b), our method needs fewer parameters, less

complexity, smaller samples and no key landmarks. In spite of a

certain gap between our method and the approaches [2] in terms

of recognition accuracy, how to improve the recognition accuracy

is one of our future directions. 

Model-based methods of the state-of-the-art are shown in

Table 5 for running only once with 10-fold cross-validation

method. The data include single modality (3D) or multi-modality

(2D + 3D). From Table 5 , we can learn that our feature-based

method can outperform the model-based methods except for [3] .
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Table 5 

Model-based methods of the state-of-the-art on BU-3DFE database. 

Method Data Methodology Setup V(%) 

Soyel et al. [62] 3D Neural network 87.9(10T) 

Tang et al. [63] 3D SVM 94.7(10T) 

Tang et al. [21] 3D AdaBoost 87.1(10T) 

Mpiperis et al. [31] 3D Bilinear model 90.5(10T) 

Zhao et al. [30] 2D + 3D BBN + SFAM 87.2(10T) 

Zhen et al. [3] 3D Logistic Regression 96.4(10T) 

Table 6 

Average confusion matrix for feature-level fusion FER on Bosphorus 

database with Setup IV. 

% AN DI FE HA SA SU 

AN 77.37 6.23 3.23 0.13 12.91 0.13 

DI 11.43 67.03 5.7 5.23 7.87 2.74 

FE 7.63 4.87 63.83 1.53 1.61 20.53 

HA 0 3.57 1.73 92.97 0 1.73 

SA 15.03 11.8 5.67 0 65.97 1.53 

SU 1.73 3.97 5.67 0.23 0 88.4 

Setup IV 75.93 

I  

k  

a  

m  

a  

m  

b

4

4

 

s  

e  

f  

3  

m  

r  

E  

u

4

 

S  

(  

s  

n  

g  

s  

p  

t  

p  

d  

a  

s  

r

4

 

a  

d  

fi  

[  

p  

Fig. 7. Twelve pairs of 2D texture images on Bosphorus database. 
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n [3] , it requires to annotate manually landmarks around some

ey region and to a dense correspondence among face scans for

chieving a better recognition accuracy. However, our proposed

ethod is not sensitive to topological changes and don’t require

 dense correspondence among face scans and the artificial land-

ark annotation, which are often needed in practice for model-

ased methods. 

.3. Evaluation and comparison on bosphorus database 

.3.1. Experimental protocol 

Setup IV also utilizes the 10-fold cross-validation scheme. 60

ubjects are randomly selected and divided into 10 subsets, and for

ach subset, 2916 features including 2D maps and 2D texture in-

ormation of 54 subjects are utilized for training and the remaining

24 features of 6 subjects are used for testing. Thus, the experi-

ent needs to be repeated for 10 times, and then the generated

esults are the final estimation by being averaged from 10 splits.

xperiments of Setup IV are repeated for 100 times. Linear SVM is

tilized for expression prediction. 

.3.2. Results on bosphorus database 

The average confusion matrix for feature-level fusion with

etup IV is shown in Table 6 . From this table, we can observe that:

i) Happy expression is the easiest to recognize, while fear expres-

ion is the most difficult to recognize; (ii) The RAs of disgust, sad-

ess and fear expressions are all lower than 67.10%; (iii) Angry, dis-

ust and fear expressions can be confused into any other expres-

ions; (iv) The confusion probability of fear expression with sur-

rise expression is higher than others, and vice versa. Meanwhile

he same is true of confusion of angry expression with sadness ex-

ression. From Fig. 7 , we can see that there are only very slight

ifferences between f ear and surprise pairs of the same person,

nd these very slight differences also occur between angry and

ad pairs. Thus, Bosphorus database is very difficult for expression

ecognition compared with BU-3DFE database in this paper. 

.3.3. Comparison with other methods 

Table 7 shows the performance comparisons of our proposed

pproach with state-of-the-art methods (i.e., [27,28] ) on Bosphorus

atabase in four aspects: data modality, expression features, classi-

ers, and accuracies. It is easily found from this table that method

27] obtains the lowest accuracy, and methods of [28] and our

roposed approach obtain very similar results (75.83% vs. 75.93%).
mong three methods, our proposed approach achieves the best

esults on Bosphorus database with Setup IV. 

.4. Validation of FERLrtc on synthetic data 

.4.1. Synthetic method 

In this section, we validate FERLrTC on synthetic third-order

ensor of size 10 × 20 × 30 and fourth-order tensor of size 20

20 × 3 × 50 based on the Tucker decomposition model uti-

izing a random core tensor multiplied by random factor matrices

long each mode under the noiseless condition. Note that the core

ensor and all the factor matrices are drawn from a normal distri-

ution. Assume that the sizes of two core tensors are of size (3,

, 5) and (8, 8, 2, 10) according to the third-order and four-order

ensor, respectively. Obviously, the groundtruth for these generated

ensor ranks is (3, 4, 5) or (8, 8, 2, 10). 

.4.2. Compared algorithms and experiment protocol 

Here, five Tucker decomposition algorithms (i.e., APG _ NTDC,

RTD, WTucker, HaLRTC [64] and KBR _ TC) are compared with FERL-

TC under 30%, 50% and 80% SRs selected randomly. On the basis

f tensor nuclear-norm, the HaLRTC proposes a tensor completion

ethod for estimating missing data in tensors of visual data. Noted

hat the HaLRTC does not provide an explicit estimate of multilin-

ar rank. For each setup, results are averaged by running 100 times

ndependently. 

.4.3. Parameters setting 

In our experiments, parameters are set in the following: i)

PG _ NTDC, λn ( n = 1, 2, 3) and λc are all set to be 0.2, the pre-

efined multilinear rank is set to be (3, 4, 5) and (8, 8, 2, 10),

espectively; ii) IRTD, we let λ2 = 1, λ1 = 0.1 and γ = 1e-2; iii)

Tucker, we predefined the multilinear rank to be (6, 8, 10) and

12, 12, 5, 15), respectively; iv) HaLRTC, ρ is set to be 1e −5; v)

BR _ TC, λ, c, v, ρ and μ are all set to be 1e −1, 1e −3, 0.1, 1.05 and

e −5, respectively; vi) FERLrTC, for the third-order tensor, we set

 1 = 1e −2, w 2 = 5e −3, a 1 = 0.07, a 2 = 4 and a 3 = 8. Meanwhile

.8333, 0.8976, and 0.9583 of θ values correspond to 30%, 50% and

0% SRs, respectively. For the fourth-order tensor, w 1 , a 1 , a 2 , a 3 , a 4 
nd w are set to be 1e −3, 0.7, 0.7, 10, 0.1 and 0.88, respectively. At
2 
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Table 7 

Comparison of data modality, expression features, classifiers, and accuracies with the state-of-the-art 

on Bosphorus database with Setup IV. 

Method Data Feature Classifier Setup IV 

Li et al. [28] 3D normals/LBP MKL 75.83 

Ujir et al. [27] 3D surface normals AdaBoosting 63.63 

Ours 2D + 3D depth,normals, curvatures, textures/LBP SVM 75.93 

Table 8 

RSE, running time (seconds) and rank on synthetic tensors. 

(a) Tensor size: 10 × 20 × 30 

30% (SR) 50% (SR) 80% (SR) 

Method RSE TIME(s) Rank RSE TIME(s) Rank RSE TIME(s) Rank 

APG _ NTDC 0.9806 0.1613 (3 4 5) 0.9738 0.2473 (3 4 5) 0.9580 0.3050 (3 4 5) 

IRTD 0.2179 10.225 (3 4 4) 0.0951 9.5803 (3 4 5) 0.0432 9.1732 (3 4 5) 

HaLRTC 0.8816 1.6851 – 0.8234 1.7429 – 0.6734 1.8132 –

WTucker 0.7376 174.6073 (6 8 10) 0.0176 163.3026 (6 8 10) 0.0076 119.1621 (6 8 10) 

KBR _ TC 0.2051 9.0345 (10 20 30) 0.0915 7.2404 (10 20 30) 0.0403 2.6978 (10 20 30) 

FERLrTC 0.0086 0.0393 (3 4 5) 0.0035 0.0395 (3 4 5) 0.0029 0.0397 (3 4 5) 

(b) Tensor size: 20 × 20 × 3 × 50 

30%(SR) 50%(SR) 80%(SR) 

Method RSE TIME(s) Rank RSE TIME(s) Rank RSE TIME(s) Rank 

APG _ NTDC 0.0993 0.6063 (8 8 2 10) 0.0989 0.6665 (8 8 2 10) 0.0983 0.2464 (8 8 2 10) 

IRTD 0.0277 45.2841 (8 8 2 10) 0.0134 41.1770 (8 8 2 10) 0.0079 50.286 (8 8 2 10) 

HaLRTC 0.8660 5.9706 – 0.6933 5.9756 – 0.4082 5.9783 –

WTucker 0.2540 186.5053 (12 12 3 15) 0.0212 87.3351 (12 12 3 15) 0.0062 44.2379 (12 12 3 15) 

KBR _ TC 0.0167 13.2277 (20 20 3 50) 0.0124 17.7085 (20 20 3 50) 0.0089 17.5450 (20 20 3 50) 

FERLrTC 0.0256 0.1677 (8 8 2 10) 0.0120 0.1378 (8 8 2 10) 0.0053 0.0763 (8 8 2 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

Comparison with each single feature on BU-3DFE database 

with Setup I, II and III. 

% I g I x n I y n I z n I c 

Setup I 71.36 71.62 72.81 71.22 72.54 

Setup II 70.27 70.39 71.35 70.15 71.23 

Setup III 69.37 70.12 69.48 69.16 69.29 

% I mc I r t I g t I b t All 

Setup I 70.83 71.03 71.25 72.38 82.89 

Setup II 68.09 70.15 70.69 71.19 80.91 

Setup III 67.38 68.46 68.61 69.17 78.96 
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the same time 0.7143, 0.8462, and 0.9333 of θ values correspond

to 30%, 50% and 80% SRs, respectively. Other parameters are same

as the settings of initialization in this section. 

4.4.4. Results on synthetic data 

Table 8 shows the comparison of IRTD, APG _ NTDC, WTucker,

HaLRTC, KBR _ TC and our proposed approach (FERLrTC) in terms of

the recovery accuracy (RSE), running time and rank on synthetic

data of the third-order tensor size 10 × 20 × 30 and the fourth-

order tensor size 20 × 20 × 3 × 50 for 100 independent runs. 

From Table 8 , we can observe that: 

(i) FERLrTC presents the best performance of tensor completion

in most cases on whether the third-order or fourth-order tensor.

Also, FERLrTC can reliably estimate the true rank of both the third-

order and fourth-order tensor. The running time of FERLrTC is the

least compared with those of other competing algorithms. 

(ii) Compared with IRTD, FERLrTC shows a better performance

advantage in terms of RSE, running time and rank. The compar-

ison results indicates fully that the potential low-rank structure

can be characterized in terms of the low-rankness of the involved

factor matrices and the structured sparsity of the involved core

tensor under Tucker decomposition, and this low-rank structure

is more characterized than that of IRTD, in which the group log-

sum function imposed on the generated core tensor is combined

with a Frobenius norm imposed on the generated factor matrices

by Tucker decomposition. 

(iii) FERLrTC surpasses APG _ NTDC, WTucker and HaLRTC by a

big margin, specially when SR is less than 50%. This corroborates

that the low-rank tensor completion model of our proposed ap-

proach is more efficient than those of the other three algorithms.

Meanwhile, this reflects the effectiveness of the rank reduction

strategy. 

(iv) FERLrTC performs better than KBR _ TC in most cases in

terms of RSE, running time, rank. Particularly, FERLrTC indicates its

strong advantage in estimating the true multilinear rank compared

with KBR _ TC that makes use of the rank-increasing scheme, which

shows our rank reduction strategy is more effective. 
Overall, our proposed approach (FERLrTC) presents a clear per-

ormance advantage over IRTD, APG _ NTDC, WTucker, HaLRTC, and

BR _ TC in terms of RSE, running time and rank. 

.5. Discussion 

In this subsection, five issues will be discussed on BU-3DFE

atabase: the effectiveness of a 4D tensor model based on feature-

evel fusion for 2D + 3D FER, the selection of feature descriptors,

omplexity and convergence analysis, the effectiveness of the rank

eduction strategy for 2D + 3D FER. 

.5.1. Effectiveness of a 4D tensor model based on feature-Level 

usion for 2D + 3D FER 

In order to better predict facial expressions, we have selected

ome discriminative features with LBP descriptor, such as the ge-

metry map I g , three normal component maps I x n , I 
y 
n and I z n , cur-

ature maps (i.e., curvature I c and mean curvature I mc ), and the

-channel 2D texture information I r t , I 
g 
t and I b t . At the same time,

he nine features are together combined to construct a 4D tensor

odel based on feature-level fusion by being stack. 

Table 9 indicates the average recognition accuracies (RA) of six

xpressions with LBP descriptor by Setup I, II and III. From Table 9 ,

e can conclude that: (i) Normal map I 
y 
n , curature map I c and tex-

ure map I b generally perform better than other facial attribute fea-
t 
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Table 10 

Comparison with different single feature on Bosphorus 

database with Setup IV. 

% I g I x n I y n I z n I c 

Setup IV 70.47 69.15 69.75 69.39 68.46 

% I mc I r t I g t I b t All 

Setup IV 67.31 64.53 64.85 65.68 75.93 

Table 11 

Recognition accuracies for one feature excluded at one time on 

BU-3DFE database with Setup I. 

% −I g −I x n −I y n −I z n −I c 

Setup I 80.21 80.06 79.29 80.89 79.61 

Difference −2.68 −2.83 −3.60 −2.00 −3.28 

% −I mc −I r t −I g t −I b t All 

Setup I 80.2 80.55 80.13 79.50 82.89 

Difference −2.69 −2.34 −2.77 −3.39 0.00 
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Table 12 

Comparison of different feature descriptors on BU-3DFE database 

with Setup I. 

Feature Descriptor HOG Gabor Dense-SIFT LBP 

Accuracy(%) 71.57 77.72 81.16 82.89 
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i  
ures with Setup I and II, while in Setup III, Normal map I x n ob-

ains the best recognition rate; (ii) The fusion of all nine attribute

eatures obtains the best performance; (iii) These results manifest

hat different f eatures actually embody large supplemental infor-

ation between 2D and 3D data for FER. 

Table 10 reports the comparison results of our proposed ap-

roach (FERLrTC) with single feature on Bosphorus database. The

onclusions are similar to those on BU-3DFE database with Setup

, II and III except the first conclusion. It is clear that geometry map

 g performs better than other facial attribute features. 

Nine experiments have been carried out to validate the com-

ination effectiveness with one feature excluded at one time.

able 11 shows recognition accuracies for one feature excluded

t one time on BU-3DFE database with Setup I and their differ-

nces with the average recognition accuracy 82.89% in Table 1 .

rom this table, it is easily found that the differences are in the

ange [ −3 . 60 , −2 . 00] , among which the differences of I 
y 
n and I z n 

chieve the lowest and highest, respectively. This comparison re-

ult manifests sufficiently the large complementarity among differ-

nt modalities and verifies that any of nine kinds of features can

ot be excluded. From Tables 9 , 10 and 11 , we can see that utiliz-

ng a 4D tensor model based on feature-level fusion obtains better

ecognition accuracy than that of any other single feature. 

.5.2. Selection of feature descriptors 

It is well known that there are other popular local descriptors,

uch as Dense-SIFT [65] , HOG [66] and Gabor [67] . Here, our pro-

osed approach is implemented by extracting nine kinds of fea-

ures with the three descriptors respectively on BU-3DFE database

ith Setup I, the comparison results with LBP descriptor are shown

n Table 12 . From this table, it is easily observed that LBP and

ense-SIFT perform better than Gabor and HOG. In particular, LBP

btains the highest recognition accuracies of 82.89%, which per-

orms Dense-SIFT, HOG, and Gabor by 1.73%, 11.32%, and 5.17%, re-

pectively. Therefore, the LBP descriptor is effective and efficient to

ncode local structure of textons within an image patch [10] . 
Table 13 

Comparison results in terms of recognition accuracy, ite

BU-3DFE database with Setup I. 

Recognition accuracy Iterations 

With RRS 82.89% 7 

Without RRS 82.56% 15 
.5.3. Complexity analysis 

The main computation is taken when updating X 

[ t] and

( A 

( n ) ) [ t ] }’s at each iteration. The computational complexity for

pdating X 

[ t] in Algorithm 1 is mainly reflected in the evaluation

f gradient (13) and is of order O ( 
∑ 4 

n =1 ( 
∏ n 

k =1 I k )( 
∏ 4 

j= n R j ) +
 4 
n =1 ( 

∏ n 
k =1 R k )( 

∏ 4 
j= n I j )) that scales linearly with the

ata size. Meanwhile, the main computation complex-

ty for updating A 

( n ) via (17) is of order O (2 R n 
∏ 4 

k =1 I k +
 4 
k =1 ,k � = n R n ( 

∏ k 
m =1 ,m � = n I m 

)( 
∏ 4 

j = k, j � = n R j )) , where the first term

omes from ∇f 2 (( A 

( n ) ) [ t ] ), and the second term stems from the

omputation of �n , and its complexity scales linearly with

he data size. Therefore, the overall computational complex-

ty of every iteration is of order O ( 
∑ 4 

n =1 ( 
∏ n 

k =1 I k )( 
∏ 4 

j= n R j ) +
 4 
n =1 ( 

∏ n 
k =1 R k )( 

∏ 4 
j= n I j )) that scales linearly with the data size. 

.5.4. Convergence analysis 

For the convergence analysis, the problem (6) is much more

omplicated. However, we have proven that MM algorithm with

ADM generates a non-increasing objective function value by up-

ating a variable while keeping other variables fixed. The proof is

hown in Appendix C . 

.5.5. Effectiveness of the rank reduction strategy for 2D + 3D FER 

To validate the effectiveness of the rank reduction strategy

RRS) for 2D + 3D FER, we compare the performance of FERLrTC

ith that achieved without RRS. The experiments are carried out

n BU-3DFE database with Setup I. Table 13 indicates the compar-

son results in terms of recognition accuracy, iterations and com-

utation cost at each iteration. From this table, we can observe

hat the recognition accuracy with RRS achieves higher 0.33% than

hat without RRS, and the corresponding number of iterations with

RS, however, have less 8 times than that without RRS. Meanwhile

he computation cost at each iteration with RRS obtains lower

han that without RRS. Thus, the performance of FERLrTC with RRS

chieves better results, which fully illustrates that using RRS can

ot only retain strong interactions among factor matrices and the

ore tensor for 2D + 3D FER, but also accelerate the convergency

rocessing. 

. Conclusion and future work 

In this paper, a new 4D tensor model has been built upon

ultimodal data including 2D face images and 3D face models to

xplore efficient structural information and correlations between

ifferent modalities, and a novel tensor dimensionality reduction

pproach for 2D + 3D facial expression recognition via low-rank

ensor completion (FERLrTC) is proposed and solved. The capability

n tensor recovery is enhanced and the accuracy of expression
rations and computation cost at each iteration on 

Computation cost at each iteration 

O 

(
4 ∑ 

n =1 

(
n ∏ 

k =1 

I k 

)(
4 ∏ 

j= n 
R j 

)
+ 

4 ∑ 

n =1 

(
n ∏ 

k =1 

R k 

)(
4 ∏ 

j= n 
I j 

))
O 

(
2 

(
4 ∑ 

n =1 

I n 

)(
4 ∏ 

n =1 

I n 

))
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classification is promoted as the numerical results on BU-3DFE

and Bosphorus databases. Meanwhile synthetic data also shows

that our proposed approach could have competitive performance

compared with other existing methods. To further improve the

recognition accuracy, more effective features need to be appropri-

ately extracted and a higher order tensor model will then be built.

The resulting tensor optimization will be of a relatively large scale

and more efficient and robust algorithms are then in need. All of

these will be our future research topic. 
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Appendix A. A majorization function of L(X , { A 

(n ) } 4 
n =1 

, Y) in 

(7) 

Followed by Yang et al. [40] , the involved log-sum function in

(7) can be approximated by 

Q(X , { A 

(n ) } 4 n =1 , Y|X 

[ t] ) 

= 〈X , D 

[ t] ∗ X 〉 + γ
4 ∑ 

n =1 

λn ‖ A 

(n ) ‖ ∗

+ μ‖Y − X 

4 ∏ 

n =1 

×n A 

(n ) ‖ 

2 
F + α, (23)

where α = 

∑ 4 
n =1 

∑ I 4 
i =1 

log ( ‖X 

[ t] 

(n,i ) 
‖ 2 

F 
+ ε) − ∑ 4 

n =1 I n . Apprarently,

Q(X , { A 

(n ) } 4 n =1 , Y) is a majorization function of L (X , { A 

(n ) } 4 n =1 , Y) ,

i.e., L (X 

[ t] , { A 

(n ) } 4 
n =1 

, Y) = Q(X 

[ t] , { A 

(n ) } 4 
n =1 

, Y|X 

[ t] ) , and 

Q(X , { A 

(n ) } 4 n =1 , Y|X 

[ t] ) � L (X , { A 

(n ) } 4 n =1 , Y) , (24)

Thus, solving (7) converts to minimize the surrogate function

(23) iteratively. 

Appendix B. Derivation of the Eq. (15) 

L ( f ) = λmax (μH 

T H) 

= μλmax 

(⊗ 

n 

(A 

(n ) ) T 
⊗ 

n 

A 

(n ) 

)
, 

= μλmax 

(⊗ 

n 

((A 

(n ) ) T A 

(n ) ) 

)
, 

= μ
4 ∏ 

n =1 

λmax ((A 

(n ) ) T A 

(n ) ) . 

Appendix C. Proof of convergency of the objective function 

For the current iteration {X 

[ t] , { (A 

(n ) ) [ t] } 4 n =1 , Y 

[ t] } , the non-

increasing objective function value at the new iteration can be de-

rived as follows 

L (X 

[ t] , { (A 

(n ) ) [ t] } 4 n =1 , Y 

[ t] ) 

(a ) = Q(X 

[ t] , { (A 

(n ) ) [ t] } 4 n =1 , Y 

[ t] |X 

[ t] ) , 
(b) 
≥ Q(X 

[ t+1] , { (A 

(n ) ) [ t] } 4 n =1 , Y 

[ t] |X 

[ t] ) , 

(c) 
≥ Q(X 

[ t+1] , { (A 

(n ) ) [ t] } 4 n =1 , Y 

[ t] |X 

[ t+1] ) , 

= L (X 

[ t+1] , { (A 

(n ) ) [ t] } 4 n =1 , Y 

[ t] ) , 

≥ L (X 

[ t+1] , (A 

(1) ) [ t+1] , { (A 

(n ) ) [ t] } 4 n =2 , Y 

[ t] ) , 

. . . 

≥L (X 

[ t+1] , { (A 

(n ) ) [ t+1] } 4 n =1 , Y 

[ t] ) , 

≥L (X 

[ t+1] , { (A 

(n ) ) [ t+1] } 4 n =1 , Y 

[ t+1] ) , 

here the equality (a) is from (24) when X = X 

[ t] , the first in-

quality (b) from (9) and the second inequality (c) from the defi-

ition of the majorization function Q . 

eferences 

[1] C.A. Corneanu , M. Oliu , J.F. Cohn , S. Escalera , Survey on RGB, 3d, thermal, and

multimodal approaches for facial expression recognition: history, trends, and
affect-related applications, IEEE Trans. Pattern Anal. Mach. Intell. 38 (8) (2016)

1548–1568 . 
[2] H. Li , J. Sun , Z. Xu , L. Chen , Multimodal 2D + 3D facial expression recognition

with deep fusion convolutional neural network, IEEE Trans. Multimed. 19 (12)

(2017) 2816–2831 . 
[3] Q. Zhen , D. Huang , Y. Wang , L. Chen , Muscular movement model-based auto-

matic 3d/4d facial expression recognition, IEEE Trans. Multimed. 18 (7) (2016)
1438–1450 . 

[4] Z. Zeng , M. Pantic , G.I. Roisman , T.S. Huang , A survey of affect recognition
methods: audio, visual, and spontaneous expressions, IEEE Trans. Pattern Anal.

Mach. Intell. 31 (1) (2009) 39–58 . 
[5] A. Tawari , M.M. Trivedi , Face expression recognition by cross modal data asso-

ciation, IEEE Trans. Multimed. 15 (7) (2013) 1543–1552 . 

[6] S. Wang , Z. Liu , Z. Wang , G. Wu , P. Shen , S. He , X. Wang , Analyses of a mul-
timodal spontaneous facial expression database, IEEE Trans. Affect. Comput. 4

(1) (2013) 34–46 . 
[7] M. Dahmane , J. Meunier , Prototype-based modeling for facial expression anal-

ysis, IEEE Trans. Multimed. 16 (6) (2014) 1574–1584 . 
[8] S. Zafeiriou , I. Pitas , Discriminant graph structures for facial expression recog-

nition, IEEE Trans. Multimed. 10 (8) (2008) 1528–1540 . 

[9] H. Li , H. Ding , D. Huang , Y. Wang , X. Zhao , J.M. Morvan , L. Chen , An efficient
multimodal 2d + 3d feature-based approach to automatic facial expression

recognition, Comput. Vis. Image Understand. 140 (SCIA) (2015) 83–92 . 
[10] Y. Yao , D. Huang , X. Yang , Y. Wang , L. Chen , Texture and geometry scattering

representation-based facial expression recognition in 2d+3d videos, ACM Trans.
Multimed. Comput. Commun. Appl. 14 (1s) (2018) 18:1–18:23 . 

[11] Q. Xie , Q. Zhao , D. Meng , Z. Xu , Kronecker-basis-representation based tensor

sparsity and its applications to tensor recovery, IEEE Trans. Pattern Anal. Mach.
Intell. 40 (99) (2017) 1888–1902 . 

[12] Q. Li , D. Schonfeld , Multilinear discriminant analysis for higher-order ten-
sor data classification., IEEE Trans. Pattern Anal. Mach. Intell. 36 (12) (2014)

2524–2537 . 
[13] M. Haardt , F. Roemer , G.D. Galdo , Higher-order SVD-based subspace estimation

to improve the parameter estimation accuracy in multidimensional harmonic

retrieval problems, IEEE Trans. Signal Process. 56 (7) (2008) 3198–3213 . 
[14] T.G. Kolda , B.W. Bader , Tensor decompositions and applications, SIAM Rev. 51

(3) (2009) 455–500 . 
[15] A. Cichocki , D. Mandic , L.D. Lathauwer , G. Zhou , Q. Zhao , C. Caiafa , H.A. Phan ,

Tensor decompositions for signal processing applications: from two-way to
multiway component analysis, IEEE Signal Process. Mag. 32 (2) (2015) 145–163 .

[16] Y. Fu , J. Gao , D. Tien , Z. Lin , H. Xia , Tensor LRR and sparse coding-based

subspace clustering, IEEE Trans. Neural Netw. Learn. Syst. 27 (10) (2016)
2120–2133 . 

[17] X. Yang , D. Huang , Y. Wang , L. Chen , Automatic 3D facial expression recogni-
tion using geometric scattering representation, in: Proceedings of the IEEE In-

ternational Conference and Workshops on Automatic Face and Gesture Recog-
nition, 2015, pp. 1–6 . 

[18] Y. Fu , Q. Ruan , G. An , Y. Jin , Fast nonnegative tensor factorization based on

graph-preserving for 3D facial expression recognition, in: Proceedings of the
IEEE International Conference on Signal Processing, 2017, pp. 292–297 . 

[19] A. Maalej , B.B. Amor , M. Daoudi , A. Srivastava , S. Berretti , Shape analysis of
local facial patches for 3d facial expression recognition, Pattern Recognit. 44

(8) (2011) 1581–1589 . 
[20] H. Soyel , H. Demirel , 3D facial expression recognition with geometrically local-

ized facial features, in: Proceedings of the International Symposium on Com-
puter and Information Sciences, 2008, pp. 1–4 . 

[21] H. Tang , T.S. Huang , 3D facial expression recognition based on properties of

line segments connecting facial feature points, in: Proceedings of the IEEE
International Conference on Automatic Face & Gesture Recognition, 2008,

pp. 1–6 . 
[22] K. Yurtkan , H. Demirel , Entropy-based feature selection for improved 3d facial

expression recognition, Signal Image Video Process. 8 (2) (2014) 267–277 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100002338
https://doi.org/10.13039/501100004602
https://doi.org/10.13039/501100012226
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0001
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0001
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0001
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0001
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0001
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0002
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0002
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0002
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0002
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0002
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0003
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0003
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0003
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0003
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0003
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0004
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0004
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0004
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0004
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0004
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0005
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0005
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0005
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0006
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0007
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0007
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0007
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0008
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0008
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0008
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0009
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0010
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0010
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0010
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0010
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0010
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0010
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0011
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0011
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0011
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0011
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0011
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0012
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0012
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0012
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0013
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0013
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0013
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0013
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0014
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0014
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0014
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0015
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0016
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0017
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0017
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0017
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0017
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0017
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0018
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0018
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0018
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0018
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0018
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0019
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0019
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0019
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0019
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0019
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0019
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0020
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0020
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0020
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0021
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0021
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0021
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0022
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0022
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0022


Y. Fu, Q. Ruan and Z. Luo et al. / Signal Processing 161 (2019) 74–88 87 

[  

 

 

[  

 

 

[  

 

 

 

[  

 

[  

 

 

[  

 

 

 

[  

 

 

[  

 

[  

 

 

 

 

[  

 

[  

[  

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

[  

 

[  

 

 

[  

[  

 

 

[  

 

[  

 

[  

 

 

 

[  

 

[  

 

[  

 

 

 

[  

 

[  

 

[  

 

[  

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

23] S. Berretti , B. Ben Amor , M. Daoudi , A. Del Bimbo , 3D facial expression recogni-
tion using sift descriptors of automatically detected keypoints, Visual Comput.

27 (11) (2011) 1021–1036 . 
[24] X. Li , Q. Ruan , G. An , Analysis of range images used in 3d facial expression

recognition, Comput. Inf. 35 (2016) 1001–1019 . 
25] W. Zeng , H. Li , L. Chen , J.M. Morvan , X.D. Gu , An automatic 3D expression

recognition framework based on sparse representation of conformal images,
in: Proceedings of the IEEE International Conference and Workshops on Auto-

matic Face and Gesture Recognition, 2013, pp. 1–8 . 

26] H. Ujir , M. Spann , I.H.M. Hipiny , 3D facial expression classification using 3d
facial surface normals, in: Proceedings of the Eighth International Conference

on Robotic,Vision,Signal Processing & Power Applications, 2014, pp. 245–253 . 
[27] H. Ujir , M. Spann , Surface normals with modular approach and weighted vot-

ing scheme in 3d facial expression classification, Int. J. Comput. Inf. Technol. 3
(05) (2014) 909–918 . 

28] H. Li , L. Chen , D. Huang , Y. Wang , 3D facial expression recognition via multi-

ple kernel learning of multi-scale local normal patterns, in: Proceedings of the
International Conference on Pattern Recognition, 2012, pp. 2577–2580 . 

29] P. Lemaire , M. Ardabilian , L. Chen , M. Daoudi , Fully automatic 3D facial ex-
pression recognition using differential mean curvature maps and histograms

of oriented gradients, in: Proceedings of the Joint ACM Workshop on Human
Gesture and Behavior Understanding, 2013, pp. 1–7 . 

30] X. Zhao , D. Huang , E. Dellandr ́l ̧e a , L. Chen , Automatic 3D facial expression
recognition based on a Bayesian belief net and a statistical facial feature

model, in: Proceedings of the International Conference on Pattern Recognition,
2010, pp. 3724–3727 . 

[31] I. Mpiperis , S. Malassiotis , M.G. Strintzis , Bilinear models for 3d face and facial

expression recognition, IEEE Trans. Inf. Forensics Secur. 3 (3) (2008) 498–511 . 
32] B. Gong , Y. Wang , J. Liu , X. Tang , Automatic facial expression recognition on

a single 3D face by exploring shape deformation, in: Proceedings of the ACM
International Conference on Multimedia, 2009, pp. 569–572 . 

[33] E.J. Cand ́l ́ls , B. Recht , Exact matrix completion via convex optimization, Found.
Comput. Math. 9 (6) (2009) 717 . 

34] D.L. Donoho , Compressed sensing, IEEE Trans. Inf. Theory 52 (4) (2006)
1289–1306 . 

[35] Z. Lin , A review on low-rank models in data analysis, Big Data Inf. Anal. 1 (2/3)
(2017) 139–161 . 

36] Y. Xu , D. Zhang , J. Yang , J.Y. Yang , A two-phase test sample sparse represen-

tation method for use with face recognition, IEEE Trans. Circuits Syst. Video
Technol. 21 (9) (2011) 1255–1262 . 

[37] O. Taheri , S.A. Vorobyov , Sparse channel estimation with l P -norm and
reweighted l 1 -norm penalized least mean squares, in: Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, 2011,
pp. 2864–2867 . 

38] X. Wang , C. Navasca , Adaptive low rank approximation for tensors, in: Pro-

ceedings of the IEEE International Conference on Computer Vision Workshop,
2015, pp. 939–945 . 

39] Y. Shen , J. Fang , H. Li , Exact reconstruction analysis of log-sum minimization
for compressed sensing, IEEE Signal Process. Lett. 20 (12) (2013) 1223–1226 . 

40] L. Yang , J. Fang , H. Li , B. Zeng , An iterative reweighted method for tucker de-
composition of incomplete tensors, IEEE Trans. Signal Process. 64 (18) (2016)

4 817–4 829 . 

[41] D.R. Hunter , K. Lange , A tutorial on MM algorithms, Am. Stat. 58 (1) (2004)
30–37 . 

42] S. Zhang , J. Ang , J. Sun , An alternating direction method for solving con-
vex nonlinear semidefinite programming problems, Optimization 62 (4) (2013)

527–543 . 
43] M. Yamagishi , I. Yamada , Over-relaxation of the fast iterative shrinkage-thresh-

olding algorithm with variable stepsize, Inverse Probl. 27 (10) (2011)
105008–105022 . (15) 

44] L. Yin , X. Wei , Y. Sun , J. Wang , M.J. Rosato , A 3D facial expression database

for facial behavior research, in: Proceedings of the International Conference on
Automatic Face and Gesture Recognition, 2006, pp. 211–216 . 

45] A. Savran , N. Alyüz , H. Dibeklio ̆glu , O. Çeliktutan , B. Gökberk , B. Sankur ,
L. Akarun , Bosphorus database for 3D face analysis, in: Proceedings of the Bio-

metrics and Identity Management, 2008, pp. 47–56 . 
46] T.C. Faltemier , K.W. Bowyer , P.J. Flynn , A region ensemble for 3d face recogni-

tion, IEEE Trans. Inf. Forensics Secur. 3 (1) (2008) 62–73 . 

[47] C. Shan , S. Gong , P.W. Mcowan , Facial expression recognition based on local
binary patterns: a comprehensive study, Image Vision Comput. 27 (6) (2009)

803–816 . 
48] L.D. Lathauwer , B.D. Moor , J. Vandewalle , A multilinear singular value decom-

position, SIAM J. Matrix Anal. Appl. 21 (4) (20 0 0) 1253–1278 . 
49] H. Li, J. Sun, D. Wang, Z. Xu, L. Chen, Deep representation of facial geomet-

ric and photometric attributes for automatic 3d facial expression recognition,

arXiv: 1511.03015 (2015). 
50] Y. Xu , Alternating proximal gradient method for sparse nonnegative tucker de-

composition, Math. Program. Comput. 7 (1) (2015) 39–70 . 
[51] M. Filipovi ́c , A. Juki ́c , Tucker factorization with missing data with application
to low-rank tensor completion, Multidimens. Syst. Signal Process. 26 (3) (2015)

1–16 . 
52] Y. Xu , R. Hao , W. Yin , Z. Su , Parallel matrix factorization for low-rank tensor

completion, Inverse Probl. Imaging 9 (2) (2017) 601–624 . 
53] J. Wang , L. Yin , X. Wei , Y. Sun , 3D facial expression recognition based on

primitive surface feature distribution, in: Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2, 2006,

pp. 1399–1406 . 

54] H. Soyel , H. Demirel , Facial expression recognition using 3D facial feature dis-
tances, in: Proceedings of the International Conference Image Analysis and

Recognition, 2007, pp. 831–838 . 
55] S. Berretti , A.D. Bimbo , P. Pala , B.B. Amor , M. Daoudi , A set of selected sift fea-

tures for 3D facial expression recognition, in: Proceedings of the International
Conference on Pattern Recognition, 2010, pp. 4125–4128 . 

56] W. Zeng , H. Li , L. Chen , J.M. Morvan , X.D. Gu , An automatic 3D expression

recognition framework based on sparse representation of conformal images,
in: Proceedings of the IEEE International Conference and Workshops on Auto-

matic Face and Gesture Recognition, 2013, pp. 1–8 . 
[57] K. Yurtkan , H. Demirel , Feature selection for improved 3d facial expression

recognition, Pattern Recognit. Lett. 38 (1) (2014) 26–33 . 
58] A. Azazi , S.L. Lutfi, I. Venkat , Analysis and evaluation of surf descriptors for au-

tomatic 3d facial expression recognition using different classifiers, in: Proceed-

ings of the Information and Communication Technologies, 2014, pp. 23–28 . 
59] H. Li , H. Ding , D. Huang , Y. Wang , X. Zhao , J.M. Morvan , L. Chen , An efficient

multimodal 2d + 3d feature-based approach to automatic facial expression
recognition, Comput. Vision Image Understand. 140 (SCIA) (2015) 83–92 . 

60] Z. Chen , D. Huang , Y. Wang , L. Chen , Fast and light manifold CNN based
3d facial expression recognition across pose variations, in: Proceedings of

the 2018 ACM Multimedia Conference on Multimedia Conference, ACM, 2018,

pp. 229–238 . 
[61] M. Hollander , D.A. Wolfe , E. Chicken , Nonparametric Statistical Methods, Taylor

& Francis Ltd., 1999 . 
62] H. Soyel , H. Demirel , 3D facial expression recognition with geometrically local-

ized facial features, in: Proceedings of the International Symposium on Com-
puter and Information Sciences, 2008, pp. 1–4 . 

63] H. Tang , T.S. Huang , 3D facial expression recognition based on automatically

selected features, in: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, 2008, pp. 1–8 . 

64] L. Ji , M. Przemyslaw , W. Peter , Y. Jieping , Tensor completion for estimating
missing values in visual data, IEEE Trans. Pattern Anal. Mach. Intell. 35 (1)

(2013) 208–220 . 
65] C. Liu , J. Yuen , A. Torralba , Sift flow: dense correspondence across scenes

and its applications., IEEE Trans. Pattern Anal. Mach. Intell. 33 (5) (2011) 

978–994 . 
66] D. Navneet , T. Bill , Histograms of oriented gradients for human detection, in:

Proceedings of the IEEE Society Conference on Computer Vision & Pattern
Recognition, 2005, pp. 886–893 . 

[67] Z. Zhang , M. Lyons , M. Schuster , S. Akamatsu , Comparison between ge-
ometry-based and Gabor-wavelets-based facial expression recognition using

multi-layer perceptron, in: Proceedings of the IEEE International Conference
on Automatic Face & Gesture Recognition, 1998 . 

Yunfang Fu is currently a Ph.D. candidate of Institute
of Information Science at Beijing Jiaotong University, PR

China. She is also an Associate Professor of School of

Computer Science & Engineering at Shijiazhuang Univer-
sity, PR China. She received her master degree of engi-

neering in Instrument Science and Technology from Yan-
shan University, PR China in 2013. Her research interests

include tensor analysis, signal processing, pattern recog-
nition. 

Qiuqi Ruan received the B.S. and M.S. degree from Bei-
jing Jiaotong University in 1969 and 1981, respectively. He

has published 3 books in the image processing and infor-
mation science and more than 100 papers, and achieved

a national patent. He is currently a professor and doc-
torate supervisor in Beijing Jiatong Univerisity and a se-

nior member of IEEE. His main research interests include

digital signal processing, computer vision, pattern recog-
nition, and virtual reality etc. 

http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0023
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0023
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0023
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0023
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0023
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0024
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0024
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0024
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0024
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0025
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0026
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0026
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0026
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0026
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0027
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0027
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0027
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0028
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0028
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0028
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0028
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0028
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0029
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0029
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0029
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0029
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0029
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0030
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0030
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0030
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0030
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0030
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0031
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0031
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0031
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0031
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0032
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0032
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0032
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0032
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0032
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0033
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0033
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0033
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0034
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0034
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0035
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0035
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0036
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0036
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0036
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0036
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0036
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0037
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0037
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0037
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0038
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0038
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0038
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0039
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0039
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0039
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0039
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0040
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0040
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0040
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0040
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0040
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0041
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0041
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0041
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0042
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0042
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0042
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0042
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0043
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0043
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0043
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0043
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0044
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0044
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0044
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0044
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0044
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0044
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0045
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0045
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0045
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0045
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0045
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0045
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0045
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0045
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0046
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0046
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0046
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0046
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0047
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0047
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0047
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0047
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0048
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0048
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0048
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0048
http://arxiv.org/abs/1511.03015
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0049
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0049
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0050
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0050
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0050
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0051
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0051
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0051
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0051
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0051
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0052
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0052
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0052
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0052
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0052
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0053
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0053
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0053
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0054
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0054
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0054
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0054
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0054
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0054
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0055
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0055
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0055
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0055
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0055
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0055
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0056
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0056
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0056
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0057
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0057
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0057
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0057
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0058
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0058
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0058
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0058
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0058
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0058
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0058
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0058
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0059
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0059
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0059
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0059
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0059
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0060
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0060
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0060
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0060
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0061
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0061
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0061
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0062
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0062
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0062
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0064
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0064
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0064
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0064
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0064
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0065
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0065
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0065
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0065
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0066
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0066
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0066
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0067
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0067
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0067
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0067
http://refhub.elsevier.com/S0165-1684(19)30108-2/sbref0067


88 Y. Fu, Q. Ruan and Z. Luo et al. / Signal Processing 161 (2019) 74–88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ziyan Luo received her Ph.D. degree in Operations Re-

search from Beijing Jiaotong University. She is currently
an Associate Professor at the State Key Laboratory of Rail

Traffic Control and Safety at Beijing Jiaotong University.

She was a research associate at The Hong Kong Poly-
technic University (2010,2015), and a visiting scholar at

Stanford University (2011–2012) and at National Univer-
sity of Singapore (2015–2016). Her research interests in-

clude tensor analysis and computation, sparse and low-
rank optimization methods, etc. 

Yi Jin received the Ph.D. degree in Signal and Information
Processing from the Institute of Information Science, Bei-

jing Jiaotong University in 2010. She is currently an Assis-

tant Professor in the School of Computer Science and In-
formation Technology, Beijing Jiaotong University. She was

a visiting scholar in Nanyang Technological University of
Singapore (2013–2014). She has served as the guest edi-

tor for special issues in Mathematical Problems in Engi-
neering. Her research interests include computer vision,

pattern recognition, image processing and machine learn-

ing. 
Gaoyun An received the B.S. degree in Biological En-
gineering and Ph.D. degree in Signal and Information

Processing from Beijing Jiaotong University in 2003 and

2008, respectively, Beijing, China. Currently, he is an as-
sociate professor in Institute of Information Science, Bei-

jing Jiaotong University, Beijing, China. His main research
interests include image processing, computer vision and

pattern recognition. 

Jun Wan received his Ph.D. degree from the Institute of

Information Science, Beijing Jiaotong University, Beijing,
China, in 2015. He is currently an assistant professor at

the National Laboratory of Pattern Recognition (NLPR), In-

stitute of Automation, Chinese Academy of Science (CA-
SIA). His main research interests include computer vision,

machine learning, especially for gesture and action recog-
nition, facial attribution analysis (i.e. age estimation, facial

expression, gender and race classification). He has pub-
lished papers in top journals, such as JMLR, TPAMI, TIP,

and TCYB. He has served as the reviewer on several top

journals and conferences, such as JMLR, TPAMI, TIP, TMM,
TSMC, PR, ICPR2016, CVPR2017, ICCV2017, FG2017. 


	FERLrTc: 2D+3D facial expression recognition via low-rank tensor completion
	1 Introduction
	2 Related works
	2.1 Related works on 3D and 2D+3D FER
	2.2 Related works on tensors
	2.2.1 Notations and tensor basics
	2.2.2 Multilinear tensor definitions
	2.2.3 Tensor low-rank representation
	2.2.4 Tensor sparse representation


	3 The proposed FERLrTC approach
	3.1 The low-rank tensor completion model
	3.2 Solving the tensor completion model
	3.2.1 Optimization of 
	3.2.2 Optimization of A(n)’s
	3.2.3 Optimization of 
	3.2.4 Rank reduction strategy (RRS)


	4 Experimental evaluation
	4.1 Implementation details
	4.1.1 Databases and preprocessing
	4.1.2 Algorithm initialization
	4.1.3 Tensor reconstruction and classification prediction

	4.2 Evaluation and comparison on BU-3DFE database
	4.2.1 Experimental protocol
	4.2.2 Results on BU-3DFE database

	4.3 Evaluation and comparison on bosphorus database
	4.3.1 Experimental protocol
	4.3.2 Results on bosphorus database
	4.3.3 Comparison with other methods

	4.4 Validation of FERLrtc on synthetic data
	4.4.1 Synthetic method
	4.4.2 Compared algorithms and experiment protocol
	4.4.3 Parameters setting
	4.4.4 Results on synthetic data

	4.5 Discussion
	4.5.1 Effectiveness of a 4D tensor model based on feature-Level fusion for 2D+3D FER
	4.5.2 Selection of feature descriptors
	4.5.3 Complexity analysis
	4.5.4 Convergence analysis
	4.5.5 Effectiveness of the rank reduction strategy for 2D+3D FER


	5 Conclusion and future work
	Acknowledgments
	Appendix A A majorization function of  in (7)
	Appendix B Derivation of the Eq.&#x00A0;(15)
	Appendix C Proof of convergency of the objective function
	References


