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Abstract—The ChaLearn large-scale gesture recognition chal-
lenge has run twice in two workshops in conjunction with the
International Conference on Pattern Recognition (ICPR) 2016
and International Conference on Computer Vision (ICCV) 2017,
attracting more than 200 teams around the world. This chal-
lenge has two tracks, focusing on isolated and continuous gesture
recognition, respectively. It describes the creation of both bench-
mark datasets and analyzes the advances in large-scale gesture
recognition based on these two datasets. In this article, we discuss
the challenges of collecting large-scale ground-truth annotations
of gesture recognition and provide a detailed analysis of the
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current methods for large-scale isolated and continuous gesture
recognition. In addition to the recognition rate and mean Jaccard
index (MJI) as evaluation metrics used in previous challenges, we
introduce the corrected segmentation rate (CSR) metric to eval-
uate the performance of temporal segmentation for continuous
gesture recognition. Furthermore, we propose a bidirectional long
short-term memory (Bi-LSTM) method, determining video divi-
sion points based on skeleton points. Experiments show that the
proposed Bi-LSTM outperforms state-of-the-art methods with an
absolute improvement of 8.1% (from 0.8917 to 0.9639) of CSR.

Index Terms—Bidirectional long short-term memory
(Bi-LSTM), gesture recognition, RGB-D.

I. INTRODUCTION

HUMAN action and gesture recognition have received
a lot of attention from the computer vision commu-

nity. In the past few years, several famous action and gesture
datasets have been released, such as the NTU RGB+D
dataset [7], MSR-Action3D dataset [8], CAD-60 [9] and
CAD-120 dataset [10], DHG2016 dataset [11], SHREC17
dataset [12], RGBD-HuDaAct dataset [13], SYSU 3-D
human–object interaction (3DHOI) dataset [14], HMDB51
dataset [15], UCF101 dataset [16] and Kinetics datasets [17],
CGD [1], multimodal gesture dataset [2], Sheffield gesture
dataset [4], NIVIDIA gesture dataset [5], and EgoGesture
dataset [6]. These datasets pushed the advance of the state-
of-the-art research for action and gesture recognition [18],
[19]. Interestingly, the data size of action datasets is much
larger than gesture datasets in terms of both the amount of
data and the number of classes. For example, the Kinetics
dataset includes 600 action classes and 500 000 video clips
while only limited data are provided for gesture recognition
(i.e., the Sheffield dataset contains about ten classes, 1080
videos). The main reasons for this are: 1) actions can be more
easily captured than gestures, such as the Kinects dataset from
YouTube videos; 2) the gesture can be seen as a semiotic sign
highly dependent on the cultural context (i.e., Chinese number)
while the action is goal-directed motion sequence (i.e., play
football). Therefore, if a large amount of gestures is needed,
it requires a lot of human-labor costs; and 3) actions tend
to focus on the body information with large motions (such
as hugging and sports) while gestures are produced as part
of deliberate actions and signs, involving the motion of the
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up body, especially the arms, hands, and fingers. Furthermore,
facial expressions are also considered to be involved in gesture
recognition. The previous leads to high complexity of col-
lecting large gesture recognition datasets. In addition, because
of the different nature between signs and gestures, there is
no guarantee existing action datasets are suitable for training
systems for gesture-based recognition scenarios, such as sign
language recognition and human–computer interaction, where
not only the body part motion is needed but also the seman-
tic language and facial expressions. Due to the above reasons,
one can see that the released gesture datasets in Table I are
very limited in size. This hinders further developments of deep
learning-based methods in gesture recognition.

To this end, we present two large-scale datasets with RGB-
D video sequences, namely, the ChaLearn-isolated gesture
dataset (IsoGD) and the continuous gesture dataset (ConGD)
for the tasks of isolated and continuous gesture recogni-
tion, respectively. Both of them consist of more than 47 000
gestures fallen into 249 classes performed by 21 perform-
ers. Besides, we organized two ChaLearn large-scale ges-
ture recognition challenge workshops in conjunction with
the International Conference on Pattern Recognition (ICPR)
2016 [20] and International Conference on Computer Vision
(ICCV) 2017 [21]. The datasets allowed for the development
and comparison of different algorithms, and the competition
and workshop provided a way to track the progress and dis-
cuss advantages and disadvantages learned from the most
successful and innovative entries.

The main contributions are summarized as follows.
1) We discuss the challenges of creating two large-scale

gesture benchmark datasets, namely, the IsoGD and
ConGD, and highlight developments in both isolated
and continuous gesture recognition fields by creating
the benchmark and holding the challenges. We analyze
the submitted results in both challenges and review the
published algorithms in the last three years.

2) A new temporal segmentation algorithm called the bidi-
rectional long short-term memory (Bi-LSTM) segmen-
tation network is proposed, which is used to determine
the start and end frames of each gesture in the continu-
ous gesture video. Compared with the existing methods,
the main advantage of the proposed method is to avoid
the need for prior assumptions.

3) A new evaluation metric called the corrected segmen-
tation rate (CSR) is introduced and used to evaluate
the performance of temporal segmentation. Compared
with the published methods, the proposed Bi-LSTM
method improves state-of-the-art results. The superiority
of temporal segmentation is about 8.1% (from 0.8917
to 0.9639) by CSR on the testing sets of the ConGD
dataset.

The remainder of this article is organized as follows. We
describe datasets, evaluation metrics, and organized challenges
in Section II. In Section III, we review the state-of-the-art
methods focusing on both datasets. We propose a new algo-
rithm for temporal segmentation in Section IV and present
experimental results on the two proposed datasets in Section V.
Finally, we conclude this article in Section VI.

TABLE I
COMPARISONS WITH RGB-D GESTURE DATASETS

II. DATASET INTRODUCTION AND CHALLENGE TASKS

A. Motivation

Benchmark datasets can greatly promote the research devel-
opments in their respective fields. For example, the ImageNet
Large-Scale Visual-Recognition Challenge [22] (ILSVRC) is
held every year from 2010 to 2017, which includes several
challenging tasks, including image classification, single-object
localization, and object detection. The dataset presented in
this challenge contains 1000 object classes with approxi-
mately 1.2 million training images, 50 000 validation images,
and 100 000 testing images, which greatly promotes the
development of new techniques, particularly those based
on deep learning architectures, for image classification and
object localization. Several other datasets have been also
designed to evaluate different computer vision tasks, such as
human pose recovery, action and gesture recognition, and face
analysis [2], [23], [24].

Nevertheless, there are very few annotated datasets with a
large number of samples and gesture categories for the task of
RGB-D gesture recognition. Table I lists the publicly available
RGB-D gesture datasets released from 2011 to 2017. Most
datasets include less than 20 gesture classes (e.g., [3] and [4]).
Although the CGD dataset [1] has about 54 000 gestures, it
is designed for the one-shot learning task (only one training
sample per class). The multimodal gesture dataset [2], [23]
contains about 13 000 gestures with 387 training samples per
class, but it only has 20 classes.

In order to provide the community with a large dataset
for RGB-D gesture recognition, here we take benefit of the
previous CGD dataset [1] by integrating all gesture categories
and samples to design two new large RGB-D datasets for ges-
ture spotting and classification. In Table I, the new IsoGD and
ConGD datasets show a significant increase in size in terms
of both the number of categories and the number of samples
in comparison to state-of-the-art alternatives.

B. Dataset Introduction

As previously mentioned, our datasets were derived from
the CGD dataset [1] which was designed for the “one-shot
learning” task. The CGD dataset contained 540 batches (or
subfolders), and all batches of CGD had 289 gestures from 30
lexicons and a large number of gestures in total (54 000 ges-
tures in about 23 000 RGB-D video clips), which makes it a
very valuable material to carve out different tasks. This is what
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TABLE II
SUMMARY OF ISOGD AND CONGD DATASETS

we did by creating two large RGB-D gesture datasets: 1) the
IsoGD1 and 2) ConGD2 datasets. For detailed information
about gesture annotation, refer to [25]. Finally, we obtained
249 unique gesture labels from 30 gesture lexicons and 47 933
gestures in 22 535 RGB-D videos.

The detailed lexicons are shown in Fig. 1. One can see that
it has wide gesture lexicons, such as ChineseNumbers,
GestunoDisaster, GangHandSignals, ItalianGestures,
TrafficPoliceSignals, and so on. Each gesture lexicon
has 8–13 classes. One of the intentions for this is to make it
feasible for people to use a branch of these lexicons to train
their own model for their specific application. In Fig. 1, the
pink boxes indicate different gesture classes in the IsoGD and
ConGD datasets. The gray boxes are not used in our datasets
because the number of samples from the MotorcycleSignals
is very limited. In order to keep data balance, we omitted this
lexicon. Other boxes with the same color indicate the same
gesture we have merged from the CGD dataset. The details
of the merged gesture classes ID in both IsoGD and ConGD
datasets are released.3

C. Dataset Statistics

The statistical information is shown in Table II. For the
ConGD dataset, it includes 47 933 RGB-D gestures in 22 535
RGB-D videos. Each RGB-D video can represent one or more
gestures, and there are 249 gestures labels performed by 21
different individuals. For the IsoGD dataset, we split all videos
of the ConGD dataset into isolated gestures, obtaining 47 933
gestures. Each RGB-D video represents one gesture instance,
having 249 gestures labels performed by 21 individuals.

D. Evaluation Metrics

For both datasets, we provide training, validation, and test
sets. In order to make it more challenging, all three sets include
data from different subjects, which means the gestures of one
subject in validation and test sets will not appear in the training
set. According to [25], we introduced the recognition rate r
and mean Jaccard index (MJI) J̄acc as the evaluation criteria
for the IsoGD and ConGD datasets, respectively.

For continuous gesture recognition, the MJI J̄acc metric is
commonly used as the comprehensive evaluation [2], [25].
However, it does not provide a specific assessment of either
the classifier or the temporal segmentation strategy. Therefore,
this metric makes it difficult to evaluate if a high-performance
score is attributed to the classifier or the considered temporal
segmentation strategy. For the classifier, the recognition rate

1http://www.cbsr.ia.ac.cn/users/jwan/database/isogd.html
2http://www.cbsr.ia.ac.cn/users/jwan/database/congd.html
3http://www.cbsr.ia.ac.cn/users/jwan/database/GestureLexiconsID.pdf

TABLE III
SUMMARY OF PARTICIPATION FOR BOTH CHALLENGES

TABLE IV
SUMMARY OF THE RESULTS IN OUR CHALLENGES

(r: RECOGNITION RATE)

can be used as the evaluation metric, which is similar to that of
isolated gesture recognition. The CSR ECSR is the first evalu-
ation metric designed to evaluate the performance of temporal
segmentation. The CSR ECSR is based on intersection-over-
union (IoU) and is defined as

ECSR(p, l, r) =
∑n

i=0
∑m

j=0 M
(
pi, lj, r

)

max(n, m)
(1)

where p is the target model’s predicted segmentation for each
video, which is constituted by positions of the starting and
ending frames. l is the ground truth, which has the same form
as p. n and m are the number of segmentation in the model’s
prediction and the ground truth, respectively. M is the func-
tion to evaluate whether the two sections match or not with a
predefined threshold r, as described as follows:

M(a, b, r) =
{

1, IoU(a, b) ≥ r
0, IoU(a, b) < r

(2)

where a is the segmentation result that needs evaluation and b
is the ground truth. The IoU function is defined below, which
is similar to its definition for object detection [26]

IoU(a, b) = a ∩ b

a ∪ b
= max(0, min(ae, be)−max(as, bs))

max(ae, be)−min(as, bs)
(3)

where as and ae represent the starting frame and the ending
frame of the segmentation a. bs and be are in a manner analo-
gous to as and ae. If IoU(a, b) is greater than the threshold r,
we consider that they are matched successfully.

E. Challenge Tasks

Both large-scale isolated and continuous gesture challenges
belong to the series of ChaLearn LAP events,4 which were
launched in two rounds in conjunction with the ICPR (Cancun,
Mexican, December 2016) and ICCV (Venice, Italy, October
2017). This competition consisted of a development phase
(June 30, 2016 to August 7, 2016 for the first round, and April
20, 2017 to June 22, 2017 for the second round) and a final

4http://chalearnlap.cvc.uab.es/
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Fig. 1. Gesture lexicons in IsoGD and ConGD. The pink boxes indicate different gesture classes. The gray boxes are not used in our datasets because the
number of samples from the MotorcycleSignals is very limited. In order to keep data balance, we omitted this lexicon. Other boxes with the same color
indicate the same gesture we have merged from CGD.

evaluation phase (August 7, 2016 to August 17, 2016 for the
first round, and June 23, 2017 to July 2, 2017 for the second
round). Table III shows the summary of the participation for
both gesture challenges. The total number of registered par-
ticipants of both challenges is more than 200, and 54 teams
have submitted their predicted results.

For each round, training, validation, and test datasets were
provided. Training data were released with labels, validation
data were used to provide feedback to participants in the
leaderboard, and test data were used to determine the win-
ners. Note that each track had its own evaluation metrics. The
four tracks were run in the CodaLab platform.5 The top three

5https://competitions.codalab.org/

ranked participants for each track were eligible for prizes. The
performances of winners are shown in Table IV.

III. REVIEW OF STATE-OF-THE-ART METHODS

In recent years, the commercialization of affordable RGB-
D sensors, such as Kinect, made it available depth maps,
in addition to classical RGB, which are robust against
illumination variations and contain abundant 3-D structure
information. Based on this technology, we created the IsoGD
and ConGD datasets [25], which has been already used by
several researchers to evaluate the performance of gesture
recognition models. In this section, we provide a review
of state-of-the-art methods using both datasets, pointing out
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Fig. 2. Graphical representation of categories of RGB-D-based gesture
recognition methods.

advantages and drawbacks, comparing them, and providing
discussion for future research directions.

We summarize the recognition task into two main cate-
gories, namely, isolated and continuous gesture recognition,
which are shown in Fig. 2. For the task of isolated gesture
recognition, 2-D CNN-based methods [41], [42] learn spa-
tial features while 3-D CNN-based methods [27]–[29], [31],
[33], [34], [39], [43] learn spatiotemporal features. In order to
obtain a tradeoff between highly discriminative features (such
as 3-D spatiotemporal features) and computation complex-
ity, 2-D CNN over dynamic images encoding spatiotemporal
information have been explored in [21], [28], [32], [35], [40],
and [44]. Recurrent neural networks (RNNs) [45] or its variant
long short-term memory (LSTM) [46] have been also applied
to analyze sequential information in videos [29], [35], [37],
[38], [43]. However, the task of continuous gesture recognition
involves additional challenges to the ones of classical isolated
gesture recognition. In continuous gesture recognition, there
may be several gestures in a video to be recognized in time.
This task uses to be addressed either in a frame-by-frame fash-
ion [36], [39] or by a temporal segmentation strategy [34],
[35], [38], [40]. A detailed comparison of methods and their
basic features evaluated on isolated and continuous gesture
recognition datasets is shown in Tables V and VI, respectively.
Below, we briefly review common techniques used in gesture
recognition, such as preprocessing strategies, CNN models,
and fusion strategies [47].

A. Preprocessing

In the case of the RGB modality, it is highly affected by
illumination changes, while the depth modality is insensitive to
illumination variations, though it may present some noisy read-
ings based on environmental factors, such as surface reflec-
tions. In order to overcome previous issues, Miao et al. [27]
implemented the Retinex theory [60] to normalize illumina-
tion of RGB videos, and used a median filter to denoise depth
maps. Asadi-Aghbolaghi et al. [61] utilized a hybrid median
filter and an inpainting technique to enhance depth videos.

The second category of preprocessing is based on frame uni-
fication and video calibration. The reason for frame unification
is to fix the same dimension for all inputs in CNNs. After

TABLE V
STATE-OF-THE-ART METHODS REVIEW ON ISOGD

TABLE VI
STATE-OF-THE-ART METHODS REVIEW ON CONGD. OUR METHOD

ACHIEVES THE BEST PERFORMANCE UNDER METRICS OF MJI AND

CSR@IOU = 0.7 (THE HIGHER THE BETTER)

a statistical analysis of frame number distribution of train-
ing data on the IsoGD dataset, Li et al. [31] fixed the frame
number of each clip as 32 to minimize the loss of motion
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path in the temporal dimension. The same criterion has been
used by most subsequent methods [27], [29], [31], [34], [43].
Meanwhile, although the RGB and depth videos are captured
concurrently by many devices, for example, the Kinect sensor,
RGB, and depth images are not accurately registered spatially.
Such a spatial misalignment may affect multimodality fusion.
Therefore, Wang et al. [49] proposed a self-calibration strat-
egy based on a pinhole model to register multimodal data.
Similarly, Asadi-Aghbolaghi et al. [61] exploited the intrinsic
and extrinsic parameters of cameras to warp the RGB image
to fit the depth one.

For continuous gesture recognition, temporal segmentation
is widely applied to split continuous gestures into several
isolated gestures. For example, Chai et al. [38] first took
such a segmentation strategy for continuous gesture recog-
nition. It assumes all gestures begin and end with performers’
hands down. Then, the video can be characterized as succes-
sive gesture parts and transition parts. A similar idea is used
in [34], [35], and [40]. Camgoz et al. [36] conducted such a
temporal segmentation in a different way. They treat the seg-
mentation process as a feature to learn and use the likelihood to
split the videos into multiple isolated segments, which is done
by localizing the silence regions, where there is no motion.
Then, the motion of the hand palm and finger movements
are fed into a Bi-LSTM network for gesture spotting [59].
Although the work of Hoang et al. [59] uses Bi-LSTM, similar
to us, our architecture and inputs are different, and we achieve
higher recognition performance, as shown in Table VI.

B. Deep Learning-Based Methods

Due to the overwhelming advantage of deep learning ver-
sus handcrafted feature-based methods, next, we briefly review
deep learning-based methods, which are grouped into 2-D
CNNs, 3-D CNNs, and RNN/LSTM for gesture recognition,
and Faster R-CNN for hand detection.

2-D CNNs: 2-D CNNs, such as AlexNet [41], VGG [42],
and ResNet [62], have shown great performance dealing with
still-image recognition tasks. There are several methods [32],
[49], [63] that implement the 2-D CNN to extract spatial
features. In order to extend 2-D CNN to consider temporal
information, Wang et al. [32], [35] used rank pooling [64]
to generate dynamic depth images (DDIs) and computed
dynamic depth normal images (DDNIs) and dynamic depth
motion normal images (DDMNIs) to wrap both the motion
information and the static posture in an image. The counter-
part work of Wang et al. [51] uses RGB videos to generate
visual dynamic images (VDIs). The work of Wang et al. [28]
extends the DDIs for both body and hand level representa-
tion, which are called body-level DDIs (BDDIs) and hand-
level DDIs (HDDIs), respectively. Zhang et al. [44] used
an enhanced depth motion map (eDMM) to describe depth
videos and a static pose map (SPM) for postures. Then, two
CNNs are used to extract features from these representa-
tions. Wang et al. [49] used the scene flow vector, which is
obtained by registered RGB-D data, as a descriptor to gener-
ate an action map, which is subsequently fed into AlexNet for
classification.

3-D CNNs: 3-D CNNs such as C3D [65] were proposed
to extend 2-D CNNs to compute spatiotemporal features.
Li et al. [31], [78] utilized 3-D CNN to extract features from
RGB-D, saliency, and optical-flow videos. Zhu et al. [33], [43]
proposed a pyramid 3-D CNN model, in which the videos are
divided into three 16 frame clips, performing prediction in
each of them. Final recognition is obtained by means of score
fusion. Such a pyramid 3-D CNN model is also employed
by [28], [29], and [35]. Liu et al. [34] and Wang et al. [35]
extended 3-D CNN in a similar fashion for continuous gesture
recognition, first splitting the continuous gestures into isolated
ones using temporal segmentation. In [36], 3-D CNN is used
in a framewise fashion, with the final classification given by
posterior estimation after several iterations.

RNN/LSTM: The RNN [45], or its variation, LSTM [46]
is a kind of network where connections between units form
a directed cycle. The special structure of RNN-like models
allows for sequential input analysis. Chai et al. [38] used two
streams of RNN to represent features of RGB-D videos and
used LSTM to model the context. Pigou et al. [37] first used a
ResNet to extract features of gray-scale video, and then used a
bidirectional LSTM [66] to process both temporal directions.
Zhu et al. [43] used convolutional LSTM (ConvLSTM) with 3-
D CNN input to model the sequential relations between small
video clips. The 3-D CNN + LSTM scheme is also employed
in [29], [35], and [52].

Faster R-CNN: The faster R-CNN [67] was initially
proposed for object detection tasks. Some works in ges-
ture recognition used object detection algorithms for hand
detection [21], [28], [34], [35], [38]. Chai et al. [38] used
faster R-CNN to detect hands for recognizing begin–end
gesture instances. The same strategy is applied in related
works [34], [35]. Some methods further combined global and
local hand regions to boost recognition performance [21], [28].

Attention Models: Some attention-aware methods [54], [68]
have been applied for gesture recognition. For example,
Narayana et al. [54] proposed a focus of the attention network
(FOANet) which introduced a separate channel for every focus
region (global, right/left hand) and modality (RGB, depth,
and flow). Zhang et al. [68] proposed an attention mechanism
embedding into the ConvLSTM network, including attention
analysis in ConvLSTM gates for spatial global average pooling
and fully connected operations. Li et al. [57] proposed a spa-
tiotemporal attention-based ResC3D network to focus on the
gesture itself. These attention-based methods have shown high
performances for gesture recognition, as shown in Table V.

C. Multimodality Fusion Scheme

For the task of RGB-D gesture recognition, fusion mecha-
nisms are widely considered [28], [32], [33], [35], [43], [51].
This kind of scheme consolidates the scores generated by
networks that are fed with different modalities. Among
these methods, the averaging [28], [33], [35], [43] and
multiply [32], [51] score fusions are two of the most fre-
quently applied. Li et al. [31], Zhu et al. [33], and
Miao et al. [27] adopted feature-level fusion. The former
methods [31], [33] directly blend the features of RGB and
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depth modalities in a parallel or serial way, which simply
average or concatenate. Considering the relationship between
features from different modalities that share the same label,
Miao et al. [27] adopted a statistical analysis-based fusion
method—canonical correlation analysis, and Li et al. [31]
adopted an extension version of discriminative correlation
analysis, which tries to maximize the inner class pairwise cor-
relations across modalities and intraclass differences within
one feature set. Hu et al. [50] paid more attention to the
fusion scheme and designed a new layer comprised of a group
of networks called the adaptive hidden layer, which serves
as a selector to weight features from different modalities of
data. Lin et al. [52] developed an adaptive scheme for setting
weights of each voting subclassifier via a fusion layer, which
can be learned directly by the CNNs.

D. Other Techniques to Boost Performance

Multiple Modalities: Based on the available RGB and
depth data modalities in the proposed datasets, additional data
modalities have been considered by researchers. Li et al. [78]
generated saliency maps to focus on image parts relevant to
gesture recognition and used optical flow [31] to learn fea-
tures from RGB image motion vectors. Wang et al. [49] and
Asadi-Aghbolaghi et al. [61] extended optical flow from RGB
videos to construct RGB and depth optical flow from RGB and
depth videos, respectively. Another strategy uses the skeleton
information as an extra modality via regional multiperson pose
estimation (RMPE) [21], [69].

Data Augmentation: Data augmentation is another com-
mon way to boost performance. Miao et al. [27] focused
on data augmentation to increase overall dataset size while
Zhang et al. [44] mainly augmented data to balance the
number of samples among different categories, including
translation, rotation, the Gaussian smoothing, and contrast
adjustment.

Pretrained Models: Some C3D-implemented
methods [31], [33], [43] are pretrained on external datasets,
such as sports-1M [70]. In terms of cross-modality finetuning,
Zhu et al. [43] first trained the networks with RGB and depth
data from scratch and then finetuned the depth one with the
model trained from RGB data. The same process is done for
the RGB model. The result of cross-modality finetuning [43]
showed an improvement of 6% and 8% for RGB and depth
inputs, respectively.

E. Summary of State-of-the-Art Methods

We summarize the previous methods features and compare
them in Tables V and VI for isoGD and conGD gesture recog-
nition datasets, respectively. All methods are published in the
last three years. For isolated gesture recognition on the IsoGD
dataset, Table V, all methods except [25] are based on deep
learning. The recognition rate is improved by 58% from the
24.19% of the handcrafted method of [25] to the 82.17% of
the 2-D CNN fusion strategy of [54]. For continuous gesture
recognition on the ConGD dataset, Table VI, the performance
has also been improved considerably for both MJI and CSR
metrics since 2017.

F. Discussion

In this section, we review the techniques on both isolated
and continuous gesture recognition based on RGB-D data.
After the release of the large-scale IsoGD and ConGD datasets,
new methods have pushed the development of gesture recog-
nition algorithms. However, there are challenges faced by
the available methods that allow us to outline several future
research directions for the development of deep learning-based
methods for gesture recognition.
Fusion of RGB-D Modalities: Most methods [28], [32], [33],
[35], [43] considered RGB and depth modality as a separate
channel and fused them at a later stage by concatenation or
score voting, without fully exploiting the complementary prop-
erties of both visual modalities. Therefore, cooperative training
using RGB-D data would be a promising and interesting
research direction.

Attention-Based Mechanism: Some methods [34], [38], [54]
used hand detectors to first detect hand regions and then
designed different strategies to extract local and global fea-
tures for gesture recognition. However, these attention-based
methods need hard to train specialized detectors to find hand
regions properly. It would be more reasonable to consider
sequence modeling self-attention [71], [72] and exploit it for
dynamic gesture recognition.

Simultaneous Gesture Segmentation and Recognition: The
existing continuous gesture recognition works [28], [34], [40],
[48] first detect the first and end points of each isolated gesture,
and then train/test each segment separately. This procedure
is not suitable for many real applications. Therefore, simul-
taneous gesture segmentation and recognition would be an
interesting line to be explored.

Joint Structure Learning: A structure attention mechanism
can be further explored. Some works [52], [54] train each
attention part (i.e., arm, gesture) separately and fuse the scores
of several waterworks to obtain the final recognition result.
However, it cannot consider the structure information among
the relationships of body parts. We believe gesture recognition
will benefit from joint structure learning (i.e., body, hand, arm,
and face).

Efficient and Fast Networks: We discussed different works
that benefited from the fusion and combination of different
trained models and modalities. However, these are highly
complex strategies from a computational perspective. For real
applications, lightweight networks would be preferred.

Besides, there is one criticism encountered from the chal-
lenges. In real gesture-based applications (i.e., sign language
recognition), the interval of neighbor gestures sometimes
would be not obvious. However, in the ConGD and CGD
datasets, the presence of silence between neighbor gestures
always happens. In future work, the release of the annotated
continuous sign language datasets without nonobvious silences
would push further the research in the field.

IV. TEMPORAL SEGMENTATION BENCHMARK

Here, we propose a benchmark method, namely, the Bi-
LSTM network, for temporal segmentation. Before it, we
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Fig. 3. Gray point (x̄, ȳ) is determined by averaging all detected key points.
(xi, yi) is the absolute coordinate of the ith key point, and (x′i, y′i) is the relative
coordinate of the ith key point. We calculate the relative coordinates of key
points in each frame and feed them to the Bi-LSTM network.

illustrate the drawbacks of the current temporal segmentation
methods.

A. Drawbacks of Temporal Segmentation Methods

1) Handcrafted Hand Motion Extraction: Some meth-
ods [25], [28], [40], [48] first measure the quantity of
movement (QoM) for each frame in a multigesture sequence
and threshold the QoM to obtain candidate boundaries. Then,
a sliding window is adopted to refine the candidate bound-
aries to produce the final boundaries of the segmented gesture
sequences in a multigesture sequence. However, it captures not
only hand motions but also the background movements that
may be harmful to temporal segmentation.

2) Unstable Hand Detector: Some methods [34], [38] used
the faster R-CNN [73] to build the hand detector. Due to
the high degree of freedom of human hands, it is very hard
to tackle some intractable environments, such as hand-self
occlusion and drastically hand shape changing. The errors of
hand detection would considerably reduce the performance of
temporal segmentation.

3) Strong Prior Knowledge Requirement: Most previous
methods (e.g., [25], [34], [38], [40], and [48]) use prior knowl-
edge (e.g., a performer always raises hands to start a gesture
and puts hands down after performing a gesture). The strong
prior knowledge (i.e., the hand must lay down after performing
another gesture) is not practical for real applications.

In contrast to the previous methods, we did not only use
human hands but also the arm/body information [34], [38].
Moreover, we designed a Bi-LSTM segmentation network to
determine the start–end frames of each gesture automatically
without requiring specific prior knowledge.

B. Proposed Bi-LSTM Method

We treat the temporal segmentation as a binary classification
problem. The flowchart is shown in Fig. 3. We first use the
convolutional pose machine (CPM) algorithm6 [74]–[76] to
estimate the human pose, which consists of 60 keypoints (18
keypoints for human body and 21 keypoints for left and right
hands, respectively). The keypoints are shown in the left part
of Fig. 3. Therefore, the human gesture/body from an image is
represented by these keypoints. For the t-th frame of a video,
the gesture is represented by a 120-D (2×60) vector Vt in the
following:

Vt = {(xi − x̄, yi − ȳ), i = 1, . . . , 60} (4)

6https://github.com/CMU-Perceptual-Computing-Lab/openpose

TABLE VII
TEMPORAL SEGMENTATION (CSR) METHODS COMPARISON ON

VALIDATION AND TEST SETS ON THE CONGD DATASET

where the coordinate of the ith keypoint is represented
by (xi, yi), the average coordinate of all detected key-
points is denoted by (x̄, ȳ), and x̄ = (1/n′t)

∑n′t
k=1 xk, ȳ =

(1/n′t)
∑n′t

k=1 yk, n′t is the number of detected keypoints of
frame t.

We use the data {(Vt, gt)|t = 1, . . . , m} to train the Bi-
LSTM network [66], where m is the total number of frames
in the video, and gt is the start and end frames indicator of
a gesture, that is, gt = 1 indicates the start and last frames
of a gesture, and gt = 0 for other frames. The Bi-LSTM
network combines the bidirectional RNNs (BRNNs) [77] and
the LSTM, which captures long-range information in bidirec-
tions of inputs. The LSTM unit H is implemented by the
following composite function:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ
(
Wxf xt +Whf ht−1 + bf

)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 + bo)

ht = ottanh(ct) (5)

where σt is the activation function, and it, ft, ct, ot, and ht are
the input gate, forget gate, output gate, cell activation vector,
and the hidden vector at time t, respectively. For the Bi-LSTM,
the network computes both the forward and backward hidden
vectors

−→
h t and

←−
h t at time t, and the output sequence yt as

yt = W−→
h ty

−→
h t +W←−

h ty

←−
h t + by. (6)

We design four hidden layers in the Bi-LSTM network in
Fig. 3. Notably, if a frame is within the segment of a gesture,
we annotate it as the positive sample; otherwise, it is treated
as negative. To mitigate the class imbalance issue, we assign
different weights to the positive and negative samples. The
objective function is defined as

J(θ) = − 1

m

⎡

⎣
m−1∑

c=0

1∑

i=0

ωi log
eθT

i xc

∑k
j=0 eθT

j xc

⎤

⎦ (7)

where θ is the parameter matrix of the softmax function
and wi is the weight used to mitigate the class imbalance
issue. According to our statistics, the ratio of the positive
and negative samples is approximately 1:40. Thus, we set
(w0/w1) = 40 (w0 is the weight penalty of positive samples)
to balance the loss terms of positive and negative samples in
the training phase.
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Fig. 4. Comparison of the first ten classes of the ConGD dataset for MJI
metric. For most of the classes (six out of ten classes), our method achieves
the best performance. From Table VI, the MJI of our method, Liu et al. [34]
and Zhu et al. [58] for all classes are 0.7179, 0.6103, and 0.7163, respectively.
Note that we only show MJIs of the first ten classes.

Fig. 5. Examples of failure cases by the CPM method [76] for keypoint
detection, especially for hand keypoints. Gestue ID: (a) 1, (b) 6, (c) 7,
and (d) 10.

Fig. 6. CSR curve of the proposed Bi-LSTM method on the ConGD dataset.
Up: test set. Bottom: validation set.

Fig. 7. Some results of the proposed Bi-LSTM method on three longest
sequence videos of the ConGD dataset. Green point: ground truth of the
segmentation point. Blue line is the confidence of the nonsegmentation point.

The gradient of the objective function is computed as

�θv J(θ) = − 1

m

⎡

⎣
m−1∑

c=0

k∑

i=0

ωixc

⎛

⎝I[v=j] −
eθT

i xc

∑k
j=0 eθT

j xc

⎞

⎠

⎤

⎦ (8)

where �θv J(θ) is the gradient with respect to the parameter
θv, and I[v=j] is the indicator function, that is, I[v=j] = 1 if and
only if v = j.

In this way, we use the learned model by the Bi-LSTM
network to predict the probability of each frame whether it is
the start or end frames. If the probability value of a frame is
large than 0.5, this frame is treated as start or end frames.

V. EXPERIMENTS

In this section, we evaluate and compare our proposed ges-
ture recognition by the segmentation strategy on the ConGD
dataset. First, the experimental setup is presented, including

the running environments and settings. Then, the performances
and comparisons on the ConGD dataset are given.

Our experiments are conducted on an NVIDIA Titan Xp
GPU. The input of the Bi-LSTM network is a 120-D vector.
We use the Adam algorithm to optimize the model with the
batch size 120. The learning rate starts from 0.01 and the
models are trained for up to 50 epochs.

The performance of the proposed Bi-LSTM method for tem-
poral segmentation is shown in Table VII, which achieves
0.9668 and 0.9639 for CSR@IoU = 0.7 on both validation
and testing sets of ConGD. After temporal segmentation, we
use the model of [52] to perform final gesture recognition.
The results are also shown in Table VI, where MJI = 0.6830
and 0.7179 on the validation and test sets, respectively. Based
on MJI and CSR, our method achieves the best performance.
Although the metric of MJI depends on both temporal segmen-
tation and final classification, the recognition performance of
MJI can still benefit from an accurate temporal segmentation,
such as the proposed Bi-LSTM method.

We also provide comparisons for each category on the
ConGD dataset in Fig. 4. Here, our method (overall MJI:
0.6830 for the validation set and 0.7179 for the test set)
is compared with two state-of-the-art methods [34] (overall
MJI: 0.5163 for the validation set and 0.6103 for the test set)
and [58] (overall MJI: 0.5368 for the validation set and 0.7163
for the test set) for each category.

For illustration purposes, we show MJIs scores of the first
ten classes in Fig. 4. It shows that our method achieves the
best performance among competing methods for most classes
(six out of ten classes). Some cases of failure of our approach
are shown in Fig. 5. They are mainly produced by self-
occlusions and hand keypoints detection failures, which lead
to inaccurate inputs used by our models. As future work, more
accurate hand pose detection strategies would enhance the
overall performance of the proposed solution.

Fig. 6 shows the CSR curve in each epoch under different
IoU thresholds from 0.5 to 0.9. One can see that when the IoU
threshold is between 0.5 and 0.8, the CSR is very stable after
three epochs. When IoU is equal to 0.9, the training epochs
for the CSR increases. This is because the correct condition
is more strict (> 90% overlapped region will be treated as the
correct one) and it will cost more time to seek the best CSR.
Our proposed Bi-LSTM method can obtain very stable results
under different IoU thresholds. For example, even the IoU is
equal to 0.9, the CSR of our method still is higher than 0.9.
Alternative temporal segmentation methods [34], [36], [37],
[40] are relatively inferior (the best is about 0.81 in [34])
on the validation set. Also, our Bi-LSTM can obtain the best
performance on the test set of the ConGD dataset.

Then, we randomly select 1000 video sequences in the
ConGD datasets to check for computational requirements. It
required about 0.4 s under the GPU environment [NVIDIA
TITAN X (Pascal)] and 6 s on the CPU environment [Intel Core
i7-5820K@3.30 GHz] for the proposed Bi-LSTM method.
It demonstrates the proposed Bi-LSTM method is ultrahigh-
speed processing (∼0.4 ms/video-GPU, ∼6 ms/video-CPU).
We note that the processing time of the CPM algorithm is
about 283 ms/f on the GPU environment.
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Finally, we selected the three longest video sequences of the
ConGD dataset, and the segmentation results of the proposed
Bi-LSTM method are shown in Fig. 7. The green points are
the ground truth of the segmentation point, while the blue line
is the confidence of positive responses. These three videos
have more than 100 frames and contain at least five gestures.
Compared with the videos with a fewer number of gestures,
the dense gestures make it hard to find the segment points
accurately. However, our Bi-LSTM method can mark the start
and end points of each gesture, and the segmentation for all
the gestures are with confidence over 0.8.

VI. CONCLUSION

In this article, we proposed IsoGD and ConGD datasets
for the task of isolated and continuous gesture recognition,
respectively. Both datasets are the current largest datasets for
dynamic gesture recognition. Based on both datasets, we have
run challenges in ICPR 2016 and ICCV 2017 workshops,
which attracted more than 200 teams around the world and
pushed the state of the art for gesture recognition. Then,
we reviewed the last 3-years methods for gesture recogni-
tion based on the provided datasets. Besides, we proposed the
Bi-LSTM method for temporal segmentation. We expect the
proposed datasets to push the research in gesture recognition.
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