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Abstract— Face presentation attack detection (PAD) is essential
to secure face recognition systems primarily from high-fidelity
mask attacks. Most existing 3D mask PAD benchmarks suf-
fer from several drawbacks: 1) a limited number of mask
identities, types of sensors, and a total number of videos;
2) low-fidelity quality of facial masks. Basic deep models
and remote photoplethysmography (rPPG) methods achieved
acceptable performance on these benchmarks but still far from
the needs of practical scenarios. To bridge the gap to real-
world applications, we introduce a large-scale High-Fidelity
Mask dataset, namely HiFiMask. Specifically, a total amount of
54, 600 videos are recorded from 75 subjects with 225 realistic
masks by 7 new kinds of sensors. Along with the dataset,
we propose a novel Contrastive Context-aware Learning (CCL)
framework. CCL is a new training methodology for supervised
PAD tasks, which is able to learn by leveraging rich contexts
accurately (e.g., subjects, mask material and lighting) among
pairs of live faces and high-fidelity mask attacks. Extensive
experimental evaluations on HiFiMask and three additional 3D
mask datasets demonstrate the effectiveness of our method. The
codes and dataset will be released soon.

Index Terms— Face anti-spoofing, high-fidelity mask, con-
trastive context-aware learning.

I. INTRODUCTION

FACE presentation attack detection (PAD) aims to secure
a face recognition system from malicious presenta-

tion attacks (PAs), such as print attacks [1], video replay
attacks [2], and 3D Mask attacks [3]. In recent years,
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face PAD approaches [4]–[10] for 2D attacks have made
great progress, benefiting from the release of several large-
scale, multi-modal and high-quality benchmark datasets
[4], [11]–[13]. However, with the maturity of 3D printing
technology, face mask has become a new type of PA to threaten
face recognition systems’ security. Compared with traditional
2D PAs, face masks are more realistic in terms of color,
texture, and geometry structure, making it easy to fool a face
PAD system designed based on coarse texture and facial depth
information [4]. Fortunately, some works have been devoted
to 3D mask attacks, including design of datasets [14]–[18] and
algorithms [19]–[23].

In terms of the composition of 3D mask datasets, several
drawbacks limit the generalization ability of data-driven
algorithms. From existing 3D mask datasets shown in Tab. I,
one can see some of these drawbacks: (1) Bias of identity.
The number of mask subjects is less than the number of real
face subjects. Even for some public datasets as [17], [20], [28],
[29], the mask and live subjects correspond to completely
different identities, which may produce the model to mistake
identity as a discriminative PAD-related feature; (2) Limited
number of subjects and low skin tone variability.
Most datasets contain less than 50 subjects, with low or
unspecified skin tone variability; (3) Limited diversity of
mask materials. Most datasets [14], [22], [26]–[30] provide
less than 3 mask materials, which makes it difficult to cover
the attack masks that attackers may use; (4) Few scene
settings. Most datasets [14], [26], [27], [30] only consider
single deployment scenarios, without covering complex
real-world scenarios; (5) Controlled lighting environment.
Lighting changes pose a great challenge to the stability of
rPPG-based PAD methods [25]. However, all existing mask
datasets avoid this by setting the lighting to a fixed value,
i.e., daylight, office light; (6) Obsolete acquisition devices.
Many datasets use outdated acquisition devices regarding the
resolution and imaging quality. To alleviate previous issues,
we introduce a large-scale 3D High-Fidelity Mask dataset for
face PAD, namely HiFiMask. As shown in Tab. I, HiFiMask
provides 25 subjects with yellow, white, and black skin
tones to facilitate fair artificial intelligence (AI) and alleviate
skin-caused biases (a total of 75 subjects). Each subject
provides 3 kinds of high-fidelity masks with different materials
(i.e., plaster, resin, and transparent). Thus, a total of 225 masks
are collected. In terms of recording scenarios, we consider
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TABLE I

COMPARISON OF THE PUBLIC 3D FACE ANTI-SPOOFING DATASETS. ‘Y,’ ‘W,’ AND ‘B’ ARE SHORTHAND FOR YELLOW, WHITE, AND BLACK,
RESPECTIVELY. ‘SUB.’, ‘MASK ID.’ AND ‘LIGHT. COND.’ DENOTE ‘LIVE SUBJECTS,’ ‘MASK IDENTITY NUMBERS,’ AND ‘LIGHTING CONDITION,’

RESPECTIVELY. NUMBER WITH ‘*’ DENOTES THIS NUMBER IS STATISTICALLY INFERRED AND THERE MAY BE INACCURACIES

6 scenes, including indoor and outdoor environments with
extra 6 directional and periodic lighting. As for the sensors
for video recording, 7 mainstream imaging devices are used.
In total, we collected 54, 600 videos, of which the live and
mask videos are 13, 650 and 40, 950, respectively.

For 3D face PAD approaches, both appearance-based [17],
[22], [31], [32] and remote photoplethysmography (rPPG)-
based [21], [33], [34] methods have been developed. As illus-
trated in Fig. 1, although both appearance-based method
ResNet50 [24] and rPPG-based method GrPPG [25] perform
well on 3DMAD [14] and HKBU-MARs V2 (briefly named
MARsV2) [26] datasets, these methods fail to achieve high
performance on the proposed HiFiMask dataset. On the one
hand, the high-fidelity appearance of 3D masks makes it harder
to be distinguished from the bonafide. On the other hand,
temporal light interference leads to pseudo ‘liveness’ cues
for even 3D masks, which might confuse the rPPG-based
attack detector. To tackle the challenges about high-fidelity
appearance and temporal light interference, we propose a novel
Contrastive Context-aware Learning framework, namely CCL,
which learns discriminability by comparing image pairs with
diverse contexts. Various kinds of image pairs are organized
according to the context attribute types, which provide rich and
meaningful contextual cues for representation learning. For
instance, constructing face pairs from the same identify with
both bonafide (i.e., skin material) and mask presentation (i.e.,
resin material) could benefit the fine-grained material features
learning. Due to the significant appearance variations between
some ‘hard’ positive pairs, the proposed CCL framework’s
convergence might sometimes be unstable. To alleviate the
influence of such ‘outlier’ pairs and accelerate convergence,
the Context Guided Dropout module, namely CGD, is pro-
posed for robust contrastive learning via adaptively discarding
parts of unnecessary embedding features. Our main contribu-
tions are summarized as follows:
• A large-scale 3D high-fidelity mask face PAD dataset

named HiFiMask is released. Compared with public 3D
mask datasets, HiFiMask has several advantages, such
as realistic masks and amount of data in the term of
identities, sensors and videos. Specifically, It consists of

Fig. 1. Performance of ResNet50 [24] and GrPPG [25] on 3DMAD [14],
MARsV2 [26] and our proposed HiFiMask datasets. Despite satisfying mask
PAD performance on 3DMAD [14] and MARsV2 [26], these methods fail to
achieve convincing results on HiFiMask. (a) Results on appearance changes.
(b) Results on temporal light changes.

54, 600 videos, 75 subjects with 3 kinds of high-fidelity
masks, which is larger at least 16 times than the existing
datasets in terms of data amount.

• We propose a novel Contrastive Context-aware Learn-
ing (CCL) framework to efficiently leverage rich and
fine-grained context between live and mask faces for
discriminative feature representation.

• Extensive experiments conducted on the HiFiMask and
three other public 3D mask datasets demonstrate the
challenges of HiFiMask and the effectiveness of the
proposed method.

II. RELATED WORK

A. 3D Mask Datasets

Recently, several 3D mask face PAD datasets have been
released. As listed in Tab. I, 3DMAD [14] is the first
publicly available 3D mask dataset, which consists of
255 videos from 17 subjects, and the masks are made of
paper and hard resin. Subsequent datasets 3DFS-DB [27],
HKBU-MARs V2 [26], and BRSU Skin/Face/Spoof (briefly
named BRSU) [20] improve previous drawbacks in terms of
acquisition devices, mask types, and lighting environment. The
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recent CASIA-SURF 3DMask (briefly named 3DMask) [22]
has a large number of videos under various lighting conditions
using various recording sensors. Still, it has a limited number
of subjects and mask types. Besides common RGB modality,
several multi-modal mask datasets such as MLFP [29],
ERPA [30], and WMCA [17] extend the study from visible
light to near-infrared and thermal spectrums. Overall, there
are three main limitations of existing 3D mask datasets:
1) a limited number of samples, resulting in potential
overfitting; 2) lack of clear attribute information (e.g., skin
tone and lighting) for evaluating the impact of external
factors; and 3) the masks are not realistic enough in terms
of color texture and structure, and they are recorded under
stable lighting conditions.

B. Face PAD Approaches Based on 3D Mask Datasets

Compared with 2D presentation attacks, 3D mask attacks
are more realistic to live faces in terms of depth shape
and color texture. On the temporal side, several rPPG-based
methods [21], [25], [34], [35] are proposed according to the
evidence that periodic rPPG pulse cues could be recovered
from the live faces but noisy for the mask attacks. Li et al. [25]
was the first to leverage the facial rPPG signals’ frequency
statistics for mask attacks detection. Liu et al. [21], [34], [35]
combined both local rPPG signals and global background
noises to learn consistent rPPG features for mask PAD.

As for metric learning-based PAD approaches, contrastive
loss [36] and triplet loss [37], [38] are utilized to widen
the distance between the live faces and PAs. Recently,
contrastive learning [39]–[42] achieved outstanding perfor-
mance in self-supervised generic object classification. In [43],
supervised contrastive learning is proposed for boosting
performance upon using basic cross-entropy loss. Despite
with similar design philosophy, the proposed CCL is different
from [43] in both data pair generation and dropout regulariza-
tion steps.

The approaches as mentioned above might be unreliable
under the following situations: 1) high-fidelity mask attack
with realistic appearance; 2) dynamic light flashing to disturb
rPPG recovery; 3) metric learning-based constraints obtain
unsatisfactory performance in PAD tasks; and 4) existing
self-supervised or supervised contrastive learning approaches
are not suitable for fine-grained binary classification task like
3D mask PAD. To tackle these issues, we propose a con-
trastive context-aware learning framework to explicitly mine
the discriminative features among bonafide/mask appearance
and complex scenarios.

III. HIFIMASK DATASET

Given the shortcomings of the current mask datasets,
we carefully designed and collected a HiFiMask dataset, which
provides 5 main advantages over previous existing datasets.
Advantage 1: To the best of our knowledge, HiFiMask
is currently the largest 3D face mask PAD dataset, which
contains 54, 600 videos captured from 75 subjects of three
skin tones, including 25 subjects in yellow, white, and black,
respectively. Advantage 2: HiFiMask provides 3 high-fidelity
masks with the same identity, which are made of transparent,
plaster, and resin materials, respectively. As shown in Fig. 2,
our realistic masks are visually difficult to be distinguished

Fig. 2. Samples from the HiFiMask dataset. The first row shows 6 kinds of
imaging sensors. The second row shows 6 kinds of appendages, among which
E, H, S, W, G, and B are the abbreviations of Empty, Hat, Sunglasses, Wig,
Glasses, and messy Background, respectively. The third row shows 6 kinds
of illuminations, and the fourth row represents 6 deployment scenarios.

from live faces. Advantage 3: We consider 6 complex scenes,
i.e., White Light, Green Light, Periodic Three-color Light,
Outdoor Sunshine, Outdoor Shadow, and Motion Blur for
video recording. Among them, there is periodic lighting within
[0.7, 4]Hz for the first three scenarios to mimic the human
heartbeat pulse, thus might interfere with the rPPG-based mask
detection technology [25]. Please see Sec. V-A for corre-
sponding rPPG analysis. Advantage 4: We repeatedly shoot
6 videos under different lighting directions (i.e., NormalLight,
DimLight, BrightLight, BackLight, SideLight, and TopLight)
for each scene to explore the impact of directional lighting.
Advantage 5: 7 mainstream imaging devices (i.e., iPhone11,
iPhoneX, MI10, P40, S20, Vivo, and HJIM) are utilized for
video recording to ensure high resolution and imaging quality.

A. Acquisition Details of HiFiMask

Here we review the HiFiMask acquisition details in terms
of equipment preparation, collection rules, and data pre-
processing.

1) Equipment Preparation: In order to avoid identity infor-
mation to interfere with the algorithm design, the plaster,
transparent and resin masks are customized for real people.
We use pulse oximeter CMS60C to record real-time Blood
Volume Pulse (BVP) signals and instantaneous heart rate data
from live videos. For scenes of White light, Green light,
Periodic Three-color light (Red, Green, Blue and their various
combinations), we use a colorful lighting to set the periodic
frequency of illumination changes which is consistent with the
rang of human heart rate. The change frequency is randomly
set between [0.7,4]Hz and recorded for future research. At the
same time, we use an additional light source to supplement the
light from 6 directions (NormalLight, DimLight, BrightLight,
BackLight, SideLight, and TopLight). The light intensity is
randomly set between 400-1600 lux.

2) Collection Rules: To improve the video quality, we pay
attention to the following steps during the acquisition process:
1) All masks are worn on the face of a real person and
uniformly dressed to avoid the algorithm looking for clues
outside the head area; 2) Collectors were asked to sit in front of
the acquisition system and look towards the sensors with small
head movements; 3) During data collection stage, a pedestrian
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was arranged to walk around in the background to interfere
with the algorithm to compensate the reflected light clues from
the background [21]; 4) All live faces or masks were randomly
equipped with decorations, such as sunglasses, wigs, ordinary
glasses, hats of different colors, to simulate users in a real
environment.

3) Data Pre-Processing: In order to save storage space,
we remove irrelevant background areas from original videos,
such as the part below the neck. As shown in Fig. 2, the
reserved face area is obtained through the following steps.
For each video, we first use Dlib [44] to detect the face in
each frame and save its coordinates. Then find the largest
box from all the frames of in videos to crop the face
area. After face detection, we sample 10 frames at equal
intervals from each video. Finally, we name the folder of
this video according with the following rule: Skin_Subject_
T ype_Scene_Light_Sensor . Note that for the rPPG base-
line [25], we use the first 10-second frames of each video for
rPPG signal recovery without frame downsampling.

To expose the realness of masks in our proposed HiFiMask
dataset, we calculate the similarity between a real face and
its corresponding mask within three popular mask datasets.
As shown in Fig. 3, the similarity calculation is conducted
by FaceX-Zoo [45] and InsightFace [46]. By sampling some
typical examples, we find that the similarity in HiFiMask is
notably higher than in MARsV2 [26] and 3DMask [22].

In Appendix, we show some samples of one subject with
yellow skin tone. Six modules with different background
lighting colors represent 6 kinds of scenes including white,
green, three-color, sunshine, shadow and motion. The top of
each module is the sample label or mask type, and the bottom
is the scene type. Each row in one module corresponds to
7 types of imaging sensors (one frame is randomly selected
for each video), and each column shows 6 kinds of lights.

B. Evaluation Protocol and Statistics

We define three protocols on HiFiMask for evaluation: Pro-
tocol 1-‘seen’, Protocol 2-‘unseen’ and Protocol 3-‘openset’.
The information used in the corresponding protocol is
described in Tab. II.

1) Protocol 1-‘Seen’: Protocol 1 is designed to evaluate
algorithms’ performance when the mask types have been
‘seen’ in training and development sets. In this protocol, all
skin tones, mask types, scenes, lightings, and imaging devices
are presented in the training, development, and testing subsets,
as shown in the second and third columns of Protocol 1 in
Tab. II.

2) Protocol 2-‘Unseen’: Protocol 2 evaluates the general-
ization performance of the algorithms for ‘unseen’ mask types.
Specifically, we further define three leave-one-type-out testing
subprotocols based on Protocol 1 to evaluate the algorithm’s
generalization performance for transparent, plaster, and resin
mask, respectively. For each protocol that is shown in the
fourth columns of Protocol 2 in Tab. II, we train a model
with 2 types of masks and test on the left 1 mask. Note that
the ‘unseen’ protocol is more challenging as the testing set’s
mask type is unseen in the training and development sets.

3) Protocol 3-‘Openset’: Protocol 3 evaluates both discrim-
ination and generalization ability of the algorithm under the

Fig. 3. The similarity of real faces and masks from different datasets.
(a), Images from our HiFiMask. (b), Images from MARsV2. (c), Images from
3DMask. Results of FaceX-Zoo is marked in blue color and InsightFace in
green. Best viewed in color.

TABLE II

STATISTICS OF EACH PROTOCOL IN HIFIMASK. PLEASE NOTE

THAT PROTOCOLS 1, 2, AND 3 IN THE FOURTH COLUMN INDICATE

TRANSPARENT, PLASTER, AND RESIN MASK, RESPECTIVELY

open set scenarios. In other words, the training and developing
sets contain only parts of common mask types and scenarios
while there are more general mask types and scenarios on
testing set. As shown in Tab. II, based on Protocol 1, we define
training and development sets with parts of representative
samples while full testing set is used. Thus, the distribution
of testing set is more complicated than the training and
development sets in terms of mask types, scenes, lighting, and
imaging devices. Different from Protocol 2 with only ‘unseen’
mask types, Protocol 3 considers both ‘seen’ and ‘unseen’
domains as well as mask types, which is more general and
valuable for real-world deployment.

IV. METHODOLOGY

In this section we introduce the Contrastive Context-Aware
Learning (CCL) framework for 3D high-fidelity mask PAD.
CCL train models by contrastive learning meanwhile in a
supervised learning manner. As illustrated in Fig. 4, CCL
contains a data pair generation module to generate input data
by leveraging rich contextual cues, a well-designed contrastive
learning architecture for face PAD tasks, and the Context
Guided Dropout (CGD) module accelerates the network con-
vergence during the early training stages. The complete train-
ing procedure of CCL is described in Alg. 1.

A. Data Pair Generation

To effectively leverage rich contextual cues (e.g., skin,
subject, type, scene, light, sensor, and inter-frame information)
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in HiFiMask datasets, we organize the data into pairs and
freeze some of the contexts to mine the discrimination of other
contexts, e.g., we select a live face and a resin mask face
from the same subject. Then the contrast is the discrepancy
between the material of the live skin and resin. We split the
live and mask faces into fine-grained patterns to generate a
variety of meaningful contextual pairs. As shown in Tab. IV,
we generate contextual pairs in the following way: 1) in
Pattern. 1, we sample two frames from one single video as
one kind of positive context pair; 2) in Pattern. 5, we sample
one fine-grained mask category and the living category with
the same subject as one negative context pair; 3) the positive
and negative context pairs, including but not limited to the
above combinations, are generated as the training set. The
diagrammatic sketch of which contexts are compared in each
pattern can be found in the left part of Fig. 4. The ablation of
the pattern generation is studied in Sec. V-A.

B. Network Architecture

Recently, self-supervised contrastive learning, such as Sim-
CLR [40], BYOL [41], and SimSiam [42], achieved outstand-
ing performance in downstream prediction tasks. The purpose
of these algorithms is to learn effective visual representations
in advance. Therefore, taking the FAS task as a downstream
task for the first time, we consider building the approach on a
self-supervised contrastive learning framework, which aims to
learn useful visual representations in advance. Inspired by the
architectures in self-supervised learning [40]–[42], we extend
the self-supervised batch contrastive approach to the fully-
supervised setting, allowing us to effectively leverage label
information, and propose the CCL framework, consisting of
an online network and a target network for pairwise contrastive
information propagation. At the same time, an extra classifier
is used for explicit supervision. As shown in Fig. 4, well-
organized contextual image pairs are utilized as the inputs
of the CCL. The inputs are sent to the online and target
networks. The online network is composed of three modules:
an encoder network f (with a backbone network and a fully
connected layer), a projector g and a predictor h (with the
same multi-layer perceptron structure). Similarly, the target
network has an encoder f ′ and a projector g′ with different
weights from the online network. As shown in Eq. 1, the
weights of the target network θ ′ perceive an exponential
moving-average [39] of the online parameters θ . We perform
the moving-average after each step by target decay rate τ in
Eq. 2,

θ ′ ← τθ ′ + (1− τ )θ, (1)

τ � 1− (1− τbase) · (cos(πs/S + 1)/2. (2)

The exponential parameter τbase is set to 0.996, s is the current
training step, and S is the maximum number of training steps.
In addition, a classifier head l is added after the encoder f
in order to perform supervised learning. During the inference
stage, only the encoder f and classifier l are applied to perform
the discrimination of mask samples.

In fact, the classifier can be trained jointly with the encoder
and projector networks, and achieve roughly the same results
without requiring two-stage training [42]. Therefore, the CCL
proposed by us is a supervised extension of the self-supervised

contrastive learning. At the same time, the effective visual
representation pre-learning and the downstream FAS task are
completed in one stage.

C. Context Guided Dropout

In classical self-supervised contrastive learning frame-
works [40]–[42], the input images x1 and x2 are augmented
from a source image x . As a result, the similarity loss between
x1 and x2 would decrease to a relatively low level smoothly.
In contrast, our proposed CCL constructs the positive contex-
tual pairs from separate source images, which suffer from high
dissimilarity, leading to unstable convergence. Moreover, the
contextual features (e.g., scenes) might not always be relevant
to the live/spoof cues, leading to a large similarity loss.

Inspired by the dropout operator [47], [48] to randomly
discard parts of neurons during training, we propose Context
Guided Dropout (CGD), which adaptively discards parts of the
‘outlier’ embedding features according to their similarities. For
instance, given the embeddings from positive pairs, we assume
that the abnormal differences between them belong to the
context information. Therefore, we could automatically drop
out the abnormal embeddings with huge dissimilarities after
ranking their locations. For a positive n-dimensional embed-
ding pair z1 and p2, we first calculate the difference vector δi
via

δi = |( z1

||z1||2 )2 − (
p2

||p2||2 )2| (3)

Afterward, we sort δi by descending sequence and record
the index of the largest pd · n values. Here pd is the
proportion of embedding feature channels to be discarded.
And we execute this procedure in a mini-batch to determine
the discarding position. Besides, the discarded embedding
is scaled by a factor of 1/(1− pd), which is similar to
the inversed dropout method. To make CGD more adaptive,
we apply a cosine decay factor to pd during training as
follows

pd ← pd

2
· (1+ cos(2π

qcur

q
)) · �qcur<q/2 (4)

where qcur is the current epoch and q is the training epochs
to be set. �c ∈ {0, 1} is an indicator function which returns 1
if condition c is true. We also visualize the training logs in
Sec. V-A. It can be seen that assembling CGD accelerates the
network convergence during the early training stages, making
the whole CCL training more stable.

D. Overall Loss

As CCL supervises face PAD models with live/mask binary
ground truth, it is straightforward to calculate classification
loss Lcls using Binary Cross Entropy (BCE) function fBC E ,
which is described in Eq. 5. We also adopt the Eq. 6 for
contrastive loss Lcon calculation. To be specific, the CGD
regularization fCG D is firstly applied to the embedding z1,
p2, and then Eq. 7 is applied to calculate the cosine similarity
between normalized z1 and p2.

Lcls = fBC E(c1, y1), (5)

Lcon = fD( fCG D(z1), fCG D(p2)), (6)

fD(z1, p2) = (2 · �y1 �=y2 − 1)· < z1, p2 > +1. (7)
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Fig. 4. The CCL framework. The left part (yellow) denotes our data pair generation manner. Each pair of images is processed by central framework twice,
consisting of an online network ( f , g, h), a target network without gradient backward ( f ′, g′) and a classifier header (l). The right part (blue) denotes the
CGD module, the positive embeddings are pulled closer by CGD.

The overall loss Ltotal can be calculated by the weighted
summation of Lcls and Lcon , i.e., Ltotal = Lcls + λcon ·Lcon ,
where λcon denotes a trade-off hyper-parameter. An ablation
about λcon is conducted in Sec. V-A.

Algorithm 1 Training CCL
Require image set X , label set Y
1: initialize encoder f , projector g, predictor h by θ
2: initialize encoder f ′, projector g′ by θ ′ (θ ′ = θ)
3: while not end of training
4: sample image pairs (x1, x2) ⊆ X 2, corresponding y1, y2
5: compute online branch and classification result on x1

by
6: z1 = h ◦ g ◦ f (x1), c1 = l ◦ f (x1)
7: compute target branch on x2 by
8: p2 = g′ ◦ f ′(x2)
9: do CGD procedure on z1, p2 by
10: z1 ← fCG D(z1), p2← fCG D(p2)
11: do stop gradient on p2
12: compute Lcls , Lcon , Ltotal by Eq. 5, 6, 7
13: compute gradient �θ and update θ by
14: �θ = backward(Ltotal)
15: θ ← θ − learning_rate ·�θ
16: update θ ′ by Eq. 1, update pd by Eq. 4
17: until converged

notation: g◦ f (x) represents the composite function of g and f

V. EXPERIMENTS

In this section, we conduct a series of experiments on the
HiFiMask and other widely used face PAD datasets.

Datasets & Protocols: Four datasets are used in our
experiments: WMCA [17], CASIA-SURF 3DMask (briefly
named 3DMask) [22], HKBU-MARsV2 (briefly named
MARsV2) [26], and the proposed HiFiMask. We perform Intra
Testing on HiFiMask and WMCA datasets with the ‘seen’ and
‘unseen’ protocols, and study Cross Testing performance on
3DMask and MARsV2 datasets when training on HiFiMask.

Performance Metrics: In HiFiMask and WMCA datasets,
Attack Presentation Classification Error Rate (APCER),

Bonafide Presentation Classification Error Rate (BPCER), and
ACER [49] are used for performance evaluation. The ACER on
the testing set is determined by the Equal Error Rate (EER) and
BPCER = 1% thresholds on development sets for HiFiMask
and WMCA, respectively. In the Cross Testing experiments
on 3DMask and MARsV2 datasets, Half Total Error Rate
(HTER) [50] and Area Under Curve (AUC) are adopted as
evaluation metrics.

Architecture: We use a universal network ResNet50 [24],
Aux.(Depth) [4], CDCN [51] and ViT [52] with varying
dimension of the last layer as backbones, and report their
results as baselines. The last full connected(FC) layer in
encoder f and f ′ is set from 2048 dimensions to 128 dimen-
sions for ResNet50 backbone. As in SimCLR [40], a projector
g and g′ is introduced behind encoder. The projector consists
of a hidden FC with 512 dimension output followed by batch
normalization [53] and ReLU layers. The last layer in projector
is FC only with output dimension 128. After the projector,
predictor h has the same architecture as projector.

Optimization: Unless specified, we adopt SGD with weight
decay 0.0001 and momentum 0.9 for the model training. The
total batch size is 256 on eight 2080Ti GPUs. The learning
rate starts with 0.01, and decays by γ = 0.2 once the number
of epoch reaches one of the milestones. Models are trained for
30 epochs with milestones in 15, 21, 26. For ViT backbone,
we used setting from paper, adopting AdamW as optimization
and learning rate of 0.0001.

A. Ablation Study

Here we conduct ablation experiments to verify the contri-
butions of each module of the proposed CCL on Protocol 1 of
the HiFiMask dataset.

1) Effect of Architectures: As shown in Tab. III, we select
ResNet50 [24] as baseline and equip it with five different
contrastive-based learning strategies for comparison, such as
Contrastive Loss [36], Triplet Contrastive Loss [37], Sim-
Siam [42], BYOL [41] and supervised contrastive learning
method SupCon [43] (SC for abbreviation). The results show
that contrastive-based learning is more suitable for mining
the discrepancy between live face and mask material than
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TABLE III

THE ABLATION RESULTS ON THE PROTOCOL 1 OF HIFIMASK

the vanilla ResNet50, with the ACER improvement from
4.7% to 2.9%.

In terms of self-supervised contrastive learning approaches,
SimSiam and BYOL achieve 4.0% and 2.9% ACER on Proto-
col 1 of HiFiMask, respectively. It is clear that BYOL outper-
forms SimSiam by a large margin, indicating the importance
of moving-average when updating network parameters. Based
on the moving-average mechanism, CCL further decreases the
ACER by 0.5% compared with BYOL. This is because CCL
is able to efficiently exploit the elaborated contextual pairs for
fine-grained feature representation while BYOL only considers
the simple augmented views. In Tab. III, we also compare CCL
with the recent supervised contrastive learning method SC.
The CCL achieves better performance (reducing 0.8% ACER)
than SC, which indicates the advances of our context-aware
pair generation and CGD strategies for 3D mask PAD task.

In summary, the proposed CCL extends the self-supervised
contrastive approach to the supervised setting and pulls
together the clusters of points that belong to the same class
while simultaneously pushes apart clusters of samples from
different classes in the embedding space. It allows us to
effectively leverage label information to mine the differences
between face skin and different kinds of mask materials.

2) Effect of Data Pair Generation: An effective Data Pair
Generation can accelerate the model convergence and guide
the network to mine liveness-related features. As shown in
Tab. IV, we performed such ablation experiments by combin-
ing different kinds of image pairs. After adding Sensor, Light,
Scene, Type and Subject image pairs sequentially, our training
set becomes larger with an increasing numbers of contrastive
categories. As a result, the ACER is decreased from 3.9%
to 2.4%, which shows a significant effect of the proposed
contrastive patterns in our experiment. One can observe that
the data pair generated under different patterns has varied
performances.

3) Effect of Data Organization: As illustrated in Tab. V,
we take context such as identity, mask, lighting, imaging
sensor, and frame information into consideration to generate
data pairs with 6 different patterns. We practice these six
patterns to perform experiments on protocol 1 of HiFiMask,
respectively. When only negative pairs are used, it is obtained
an ACER of 43.7%. The main reason is that no positive
samples are available in the training set makes the model
convergence difficult. The mixed-use of multiple positive and
negative pairs can optimize the performance of the model.

4) Effect of CGD: The proposed CGD module can acceler-
ate the model convergence in the early stage of training and

TABLE IV

ABLATION STUDY OF COMBINING DIFFERENT IMAGE PAIRS

TABLE V

PATTERNS TO ORGANIZE IMAGE PAIRS BY ADJUSTING ATTRIBUTES

alleviate the interference of useless information to the model.
As shown in Tab. III, if the CGD is removed, the performance
of three indicators decreases, with an APCER, BPCER and
ACER increasing from 1.8%, 3.0%, and 2.4% to 1.9%, 3.3%,
and 2.6%, respectively.

In the proposed CGD, we aim to manually discard the most
dissimilar neurons in the embedding by finding their location
for a positive embedding pair. In order to verify the effective-
ness of removing embedding points, we introduce two variants
for comparison: ‘reverse’ CGD and ‘BOBE’(Break Out Both
Ends) CGD. The first one removes the embedding points in the
opposite way to the CGD. The second one removes the most
similar and the least similar embedding points at the same
time. Their performance is decreased, as expected, to 2.8%
and 2.7% for ACER. Compared with random dropout, our
CGD discards the abnormal neurons in the embeddings more
pertinently, such as the huge dissimilarities caused by different
source images in the positive sample pairs. The experimental
results verify the correctness of our CGD design concept.
For example, by comparing ‘CCL w/ dropout’ and ‘CCL’ in
Tab. III, our CGD has a performance gain of 0.6% on ACER.
To study the impact of the Context Guided Dropout (CGD)
during the training stage, we also draw the loss curve shown
in Fig. 5. Intuitively, It can be seen that the red line (with
CGD) drops faster than the blue line (without CGD) in the
early training stage, which proves that CGD accelerates the
network convergence during the early training stages making
the whole CCL training more stable.

5) Effect of Parameter λcon and pd: Derived from the
popular dropout operator, we can foresee that the effect
of CGD would be affected by the probability of randomly
abandoning neurons during training time. Also, factor λcon
in Sec. 4.4 controls the relative importance of the CCL loss
Lcon and BCE loss Lcls in overall loss Ltolal . Therefore,
different λcon will affect the performance gains. In order
to eliminate the stochastic behavior of the algorithms and
randomness of the experiments, obtain the best values of pd
and λcon , we repeated the experiment three times for each
systematic change, taking the mean value of the corresponding
ACER as the result. As shown in Fig. 6 (b), when the
probability pd increases from 0 to 25%, the performance
increases from 2.78 to 2.66 for ACER. However, as the pd
continues to increase, some functional neurons are lost, leading
to performance degradation. Similarly, see from the Fig. 6 (a),
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Fig. 5. The contrastive loss during training stage. (Red line: CCL with CGD;
Blue line: CCL without CGD.) Best viewed in color.

when the proportion of Lcon is 0.7, the model reaches the
optimal performance in Protocol 1 of HiFiMask, that is, the
ACER reaches the minimum value of 2.50%. Based on the
above experiments, we fixed the probability pd at 15% and
λcon at 0.7 in subsequent experiments.

6) Effect of rPPG Signal Recovery With Periodic Lights:
Here we show a simple example to illustrate the challenges on
the proposed HiFiMask about the rPPG recovery. We follow
the approach GrPPG [25] to firstly track the facial region
of interests (ROI), and then the intensity values within the
ROI from each color channel are averaged to form the rPPG
signals. As illustrated in the top right sub-figure of Fig. 7(a),
the rPPG signals extracted from mask attack without periodic
light are quite noisy, indicating the weak heartbeat-derived
liveness clues. In contrast, it can be seen from Fig. 7(b) that,
under the scenario with periodic light within [0.7,4]Hz, the
recovered rPPG signals are with rich periodicity. We can also
see from the bottom right sub-figures of Fig. 7(a)(b) that the
power spectral density (PSD) distributions of the extracted
rPPG signals are clear to show periodicity/liveness evidences.
Thus, it would mislead the rPPG-based attack detector for
incorrect decision, i.e., treating the mask face with periodic
light as a live face. Besides qualitative analysis, we also
conduct two experiments on the Protocol 1 using the subsets
w/o and w/ period lights, respectively. As for the former
case, GrPPG [25] can achieve 19.6% EER. However, when
extracting rPPG features under the challenging illumination
variation, the performance (49.1% EER) drops sharply.

In the HiFiMask dataset, as the temporal light conditions
are diverse for both the bonafides and 3D mask attacks,
it is not easily to use current rPPG approaches for robust
PAD. Moreover, the dynamic background with pedestrian
movement makes it more challenging for global noises com-
pensation used in recent rPPG methods [21], [34]. As there
are finger-contacted BVP signals as well as instantaneous
heart rate values as groundtruth for the bonafides, in the
future one possible direction is to design a robust rPPG
extractor and liveness detector even under complex temporal
light interference.

B. Intra Testing

1) Intra Testing on HiFiMask: As shown in Tab. VII, with-
out using the proposed CCL, the ViT with pre-trained achieves
the lowest ACER (i.e., Protocol 1: 3.4%, Protocol 2: 11.4%)
when compared with ResNet50 and CDCN. We integrated

Fig. 6. Ablation studies on (a) CCL and(b) CGD on the Protocol 1 of
HiFiMask.

Fig. 7. Visualization of video samples and their extracted rPPG signal
and power spectral density (PSD). In both cases, i.e., without (a) and with
(b) external periodic light, the top right sub-figures illustrate the rPPG signal
in time domain while the bottom right ones show their PSD in frequency
domain. It can be seen from (b) that with period light, mask attacks could
also contain pseudo ‘live’ pulse clues. Best viewed in color.

the three backbones into CCL framework, and the perfor-
mances are improved consistently. Specifically, the ACERs
of ResNet50, Aux.(Depth), CDCN are decreased from 4.7%,
3.4%, 3.6% to 2.4%, 2.6%, 3.1% on Protocol 1, and from
18.5%, 11.4%, 14.7% to 16.7%, 10.7%, 12.7% on Protocol 2,
respectively.

In protocol 2, ACER of ResNet50, Aux.(Depth) and CDCN
on Protocol 2_1 are 34.0%, 24.1% and 30.9%, respectively.
The reason lies in the appearance of transparent mask varies
from the plaster and resin masks (see Fig. 2). Notably, our
method still steadily reduce the ACER of the three benchmarks
(32.5%, 22.6% and 26.6%, respectively).

The ACER of ResNet50 on Protocol 3 is 20.9%, higher
than 18.5% on Protocol 2, meaning Protocol 3 is more
challenging to face PAD. The reason may be that the larger
‘openset’ between training and testing sets demands for a
higher representation and generalization capabilities algorithm.
In this case, the proposed CCL still obtains better performance,
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TABLE VI

COMPARISON OF THE RESULTS OF PROTOCOLS ‘SEEN’ AND ‘UNSEEN’ ON WMCA. THE VALUES ACER(%) REPORTED ON TESTING SETS
ARE OBTAINED WITH THRESHOLDS COMPUTED FOR BPCER=1% ON DEVELOPMENT SETS. ‘RGB-D’ DENOTES USING BOTH

RGB AND DEPTH INPUTS. METHODS WITH ‘*’ DENOTE USING PRE-TRAINED MODEL

TABLE VII

THE RESULTS OF INTRA TESTING ON THE HIFIMASK. METHODS

WITH ‘*’ DENOTE USING PRE-TRAINED MODEL

with a decrease of 2.3%, 2.4% and 2.4%, respectively. When
training on ViT with/without CCL, we used pre-trained model
from ImageNet.

The results from Tab. VII show that the proposed CCL
provides good generalization with different backbones. One
could thus expect that considering newly emergent networks
within the CCL framework could potentially improve current
performance.

2) Intra Testing on WMCA: The experimental results of
protocols ‘seen’ and ‘unseen’ on WMCA [17] are shown
in Tab. VI. The results in the third column show that
all four widely used face PAD backbones (i.e., ResNet50,
Aux.(Depth), CDCN, and ViT) assembled with CCL can
achieve significantly lower ACER values (with a decrease
of 10.24%, 12.05%, 11.27%, and 2.29% respectively). This
indicates that the proposed CCL effectively leverages the
context cues (e.g., rich attack types) to learn more discrim-
inative features. In terms of the ‘unseen’ protocol, we follow
the same setting as [17]. We can draw similar conclusions
that the proposed CCL benefits the unseen attacks for all
four backbones. To be specific, compared with the vanilla

TABLE VIII

CROSS-TESTING RESULTS ON DIFFERENT DATASETS. METHODS

WITH ‘*’ DENOTE USING PRE-TRAINED MODEL

ResNet50, Aux.(Depth), CDCN, and ViT, the counterparts
with CCL can reduce the values of ACER to 15.39%, 17.92%,
18.64%, and 16.64%, respectively. It is worth noting that the
performance of ‘ViT’ and ‘ViT w/ CCL’ against ‘Replay’
and ‘Glasses’ are poor. We analyze that Transformer identifies
sample from the dependency between face tokens. These two
kinds of spoofing clues only appear in some patch tokens, and
the relationship with other tokens is difficult to model.

C. Cross Testing

1) Cross Testing of Datasets: As shown in Tab. VIII,
we first train a model on 3DMask dataset and directly test on
MARsV2 dataset, and repeat the procedure by exchanging the
two datasets. Then, we train a model on proposed HiFiMask
dataset and test on MARsV2 and 3DMask respectively.

Comparing the results in Tab. VIII, while the training set
is our proposed HiFiMask, the HTER values are relatively
lower and the AUC values higher. For example, HTER values
are 20.61%, 16.56%, 9.31% and 9.82% when training with
HiFiMask and testing with MARsV2 on four architectures
above. These values increase to 37.96%, 45.20%, 44.24% and
34.83% if the training set is set to 3DMask. What’s more, there
is a significant drop of AUC values from 86.87%, 90.81%,
96.31% and 96.72% to 67.05%, 56.13%, 57.05% and 59.86%.
This phenomenon can be observed as well if testing set is
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Fig. 8. Feature distribution comparison on Protocol 1 of HiFiMask using
t-SNE [54]: (a) ResNet50, (b) the proposed CCL. The points with different
colors denote features from different classes (red: real faces; blue: mask
samples). Best viewed in color.

Fig. 9. Visualization of several samples in HiFiMask. The maps are
performed from Aux.(Depth) in the second row and Aux. w/ CCL in the
third row (Red color: the higher the better for live samples; Blue color: the
higher the better for mask samples). Best viewed in color.

3DMask dataset. From this, we can conclude that our proposed
HiFiMask is a well-distributed mask dataset, which has a better
generalization than MARsV2 and 3DMask.

To further evaluate the generalization of CCL, we report the
results of each backbone equipped with our CCL framework.
As shown in Tab. VIII, compared with bare backbones, the
proposed CCL obtains better performance in most configura-
tions. Such as ViT with CCL achieves the best performance
under “HiFiMask to MARsV2” and CDCN with CCL achieves
the best performance under “HiFiMask to 3DMask”.

In Tab. VIII, one can observe that CCL failed to fur-
ther improve the performance of ResNet50 in “3DMask
to MARsV2”, CDCN in “MARsV2 to 3DMask” and
Aux.(Depth) in “HiFiMask to 3DMask”. The main reason
might be that MARsV2 and 3DMask has only a limited
attack types, which inhibits the advantage of our Data Pair
Generation strategy to generate abundant context information.

D. Analysis and Visualization

In this section, we further visually analyze the CCL’s ability
to distinguish different material features. As shown in Fig. 8,
we compare the features learned by ResNet50 and CCL on
HiFiMask (Protocol 1). Compared with ResNet50, the pro-
posed CCL can well distinguish real faces from mask samples.
In addition, we visualize the regression results (heatmaps) by
Aux.(Depth) and Aux.(Depth) with CCL in Fig. 9. We can see
that Aux.(Depth) fails to distinguish the complex mask sam-
ples in the last two columns while the proposed Aux.(Depth)
with CCL provides more correct predictions. It demon-
strates the better discriminative representation capacity of the
proposed CCL.

VI. CONCLUSION

In this paper, we released a large-scale HiFiMask dataset
with three challenging protocols. We hope it will push
cutting-edge research in 3D Mask face PAD. Besides, we pro-
posed a novel CCL framework to learn discriminability
by leveraging rich contexts among pairs of live faces and
mask attacks. Finally we conducted a comprehensive set of
experiments on both HiFiMask and other three 3D mask
datasets, verifying the significance of the proposed dataset and
method.
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