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Divergence-Driven Consistency Training for
Semi-Supervised Facial Age Estimation
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Abstract— Facial age estimation has attracted considerable
attention owing to its great potential in applications. However,
it still falls short of reliable age estimation due to the lack of suf-
ficient training data with accurate age labels. Using conventional
semi-supervised methods to exploit unlabeled data appears to be
a good solution, but it does not yield sufficient performance gains
while significantly increasing training time. Therefore, to tackle
these problems, we present a Divergence-driven Consistency
Training (DCT) method for enhancing both efficiency and per-
formance in this paper. Following the idea of pseudo-labeling and
consistency regularization, we assign pseudo labels predicted by
the teacher model to unlabeled samples and then train the student
model on labeled and unlabeled samples based on consistency
regularization. Based on this, we propose two main promotions.
The first is the Efficient Sample Selection (ESS) strategy, which
is based on the Divergence Score to select effective samples
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from massive unlabeled images to reduce the training time
and improve efficiency. The second is Identity Consistency (IC)
regularization as the additional loss function, which introduces
a high dependency of aging traits on a person. Moreover,
we propose Local Prediction (LP), which is a plug-and-play
component, to capture local semantics. Extensive experiments
on multiple age benchmark datasets, including CACD, Morph
II, MIVIA, and Chalearn LAP 2015, indicate DCT outperforms
the state-of-the-art approaches significantly.

Index Terms— Facial age estimation, semi-supervised, efficient
sample selection, identity consistency.

I. INTRODUCTION

FACIAL age estimation has dramatically advanced in
recent years [1], [2], [3], [4], [5]. Many existing studies

present promising results by designing the network architec-
ture [6], [7], [8], modifying the loss function [5], [9], [10],
and improving the training strategy [11]. Although related
technologies in facial age estimation have yielded considerable
improvements in recent years, facial age estimation still falls
short of reliable age estimation due to the limitations of the
dataset. In other words, the lack of sufficient training data with
exact ages limits the development of the field. Specifically, the
widely used age dataset Morph II only contains 55,134 images,
and it is hard to train a practical and robust age estimator by
only using those images. Compared to limited age datasets,
massive unlabeled face images are an untapped Blue Sea in the
age estimation community. The well-known face recognition
dataset MS-Celeb-1M [12] has almost 100× samples than the
widely used age dataset Morph II [13]. Considering the high
labor costs of labeling, using face images without age labels,
highly correlated with age datasets, will be a new direction to
fuel age estimation.

To bridge the gap between unlabeled datasets and labeled
datasets, we follow the scheme of Semi-Supervised Learn-
ing (SSL) to leverage unlabeled data for facial age estimation.
Specifically, we use pseudo-labeling [14], [15] and consis-
tency regularization [16]. However, when migrating to age
estimation, the high computational load imposed by massive
unlabeled samples did not result in adequate performance
gains and instead significantly increased the training time.
This observation prompts us to rethink the SSL operational
mechanism, i.e.using consistency regularization to constrain
the model to output a similar prediction for the strongly aug-
mented image to the weakly augmented one. During the train-
ing process, the difference between the predictions for different
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augmented versions decreases, and the model’s capability to
characterize the sample gradually increases. The higher the
capability, the less effective it will be to repeatedly learn the
same sample to improve the model capability. Therefore, not
all samples are equally critical to improving the robustness
of the model, and some samples may contribute very little to
training. Hence, how to select effective unlabeled samples for
training is crucial.

The heart of the SSL mechanism is consistency regular-
ization, which assumes that randomness within the neural
network (e.g. with Dropout) or data augmentation trans-
formations should not modify model predictions given the
same input. The widely used consistency regularization is to
minimize the prediction difference between the weakly and
strongly augmented versions of the unlabeled sample, which is
generalizable to most fields. However, this image consistency
only considers the similarity between different views of the
same image and ignores the high correlation of the same
person at different ages. Due to the high dependence of aging
traits on the individual, the differences caused by aging are
much smaller than the differences between people. Using only
image consistency clearly does not fully utilize the identity
correlation existing in age estimation. Thus, how to design a
consistency regularization based on the identity correlation of
age estimation is also critical.

Motivated by the above concerns, we propose a
Divergence-driven Consistency Training (DCT) framework,
which is based on a teacher-student learning scheme. Specifi-
cally, we assign pseudo labels predicted by the teacher model
to unlabeled samples and then train the student model on
labeled and unlabeled samples based on consistency regular-
izations. In DCT, we further propose two novel components to
make the training more efficient and effective. The first one is
the Efficient Sample Selection (ESS) strategy, which is based
on the Divergence Score to select partially effective samples
for improving training efficiency. The second one is Identity
Consistency (IC) regularization, which considers the high cor-
relation of the same person at different ages and will be used
as an additional class constraint. In addition, we observe that
Global Average Pooling (GAP) is widely used in traditional
classification tasks to capture global information on the feature
map. This method, however, neglects local information in favor
of a global view. Based on this, we propose Local Prediction
(LP), which can capture local semantics and be combined with
the original global information.

Our main contributions are as follows:
• We propose DCT, an advanced end-to-end SSL frame-

work, for facial age estimation. By selecting effective
training samples, our ESS significantly alleviates the high
computational load caused by massive unlabeled images
and improves training efficiency. Based on the identity
correlation of aging traits, IC provides additional consis-
tency constraints and achieves more reliable predictions.
To our best knowledge, it is the first attempt to utilize
identity information in an end-to-end manner for facial
age estimation.

• We propose Local Prediction to apply local classifiers to
each patch in the final feature map, which helps the model

concentrate on local semantics. LP can collaborate with
the traditional GP during the training procedure and plug
and play into existing CNNs for classification tasks.

• Extensive experiments on four popular benchmarks,
including Morph II, CACD, MIVIA, and Chalearn LAP
2015, indicate the state-of-the-art performance of DCT.

In the rest of the paper, Sec. II provides the related work.
Sec. III elaborates on the proposed DCT as well as the plug-
and-play LP component. Sec. IV provides rigorous ablation
studies and evaluates the performance of the proposed models
on four benchmark datasets. Sec. V shows the visualization
results. Finally, we draw conclusions in Sec. VI.

II. RELATED WORK

In this section, we first introduce some recent progress in
facial age estimation. Then, previous semi-supervised learning
methods will be reviewed.

A. Facial Age Estimation

Facial age estimation has grown by leaps and bounds in
the last few decades and achieved considerable improvements
with deep learning methods in recent years [4], [8], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29].
Deep learning methods can be categorized into regression,
ranking, classification, and label distribution based methods.
Regression-based approaches, which are most intuitive, treat
age as a continuous value, but only a few [30] achieve
comparable performance with other approaches. The ranking-
based approaches [31], [32] focus on leveraging the relative
correlation among the neighborhood age labels. The work [33]
uses a series of binary classifiers to obtain ordinal information
by judging whether the face is older than a certain age, and the
summation of all output is treated as the estimated age. How-
ever, ranking-based approaches are limited to scalar outputs.
The classification-based methods [9], [34], [35] treat different
ages as independent classes and formulate the age estimation
as a multi-class classification problem. The work [35] proposes
the mean-variance loss in which the mean term is used to
decrease the difference between the mean of the prediction
and ground truth. The variance term is used to reduce the
variance of the prediction. While in label distribution learn-
ing [3], [36], [37], [38], [39], age label is represented as a
Gaussian distribution. The �1 distance regularization proposed
by DLDL-v2 [37] works in conjunction with KL divergence to
penalize the difference between prediction and ground truth.
However, age estimation still confronts a slew of challenges for
further improvement. For lack of training data, SALDL [40]
explored the possibility of semi-supervised learning in age
estimation. However, it did not develop an effective algorithm.
Specifically, it only conducted experiments on Morph and
showed poor performance compared to the above methods
using labeled data only.

Different from previous methods, which only take labeled
data for training, our DCT utilizes unlabeled data to effectively
enhance the discriminative capability of the model. To our best
knowledge, it is the first effective end-to-end semi-supervised
learning framework for facial age estimation.
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B. Semi-Supervised Learning

Recent years have witnessed the rapid development of the
use of unlabeled data fueled by semi-supervised learning [15],
[16], [41], [42], [43], [44]. The underlying settings of most
methods are similar, such as providing supervisory information
via pseudo-labeling, driving model convergence with the goal
of entropy minimization, and moving away from reliance on
labels via consistency regularization. Pseudo-labeling [15],
[43], [44] is the process of labeling unlabeled data based on the
predictive probability provided by a model trained on labeled
data. Consistency regularization [16], [45] entails achieving
the maximum similarity between the different views of images
through weak or strong data augmentation. Many studies on
Semi-Supervised Learning have been conducted [46], [47],
[48], with the main differences focusing on sample selection
and network design. To improve convergence and generaliza-
tion, curriculum learning (CL) [46] proposes starting with easy
samples and progressing to harder samples. Decoupling [47]
introduces the “Update by Disagreement” strategy, which
only updates samples with two classifiers that have different
predictions. JoCoR [48] recommends training two networks
at the same time with samples that have good prediction
agreement between them. These methods, on the other hand,
require all of the unlabeled data and place a strain on computer
resources. Compared to other fields, age estimation is still
constrained by the limited number of labeled samples and
does not fully explore the vast number of unlabeled face
images. Our work aims to use Semi-Supervised Learning to
exploit massive amounts of unlabeled data while maintaining a
certain level of training efficiency without imposing an undue
computational burden.

III. PROPOSED WORK

In this section, we first provide a basic training procedure
of semi-supervised learning in age estimation in Sec. III-A.
We then propose the Divergence-driven Consistency Training
and Local Prediction in Sec. III-B and Sec. III-C, respectively.
Finally, we give the loss function and complete training
procedure in Sec. III-D.

A. Formulation of Teacher Model Training

In this work, we aim to achieve reliable facial age estimation
based on the proposed Divergence-driven Consistency Train-
ing. To elaborate on our proposed approach, we first make
some symbol definitions. We assume the labeled dataset DL

contains n samples and the unlabeled dataset DU contains m
samples. For the training sample, it can be denoted as (xi , yi )
or x̃ j , where xi and x̃ j denote labeled and unlabeled sample, yi

denotes the age label. Moreover, we employ a teacher-student
learning scheme. The teacher and student models contain two
components: a backbone feature extractor φ(·), and a linear
classifier ψ(·). Moreover, we use φw(·) and φs(·) to denote
that the input to the feature extractor is weakly (i.e., using
only crop-and-flip) and strongly (i.e., using ColorJitter and
RandAugment [49]) augmented, respectively.

In the first step, we train a teacher model following the
Label Distribution Learning (LDL) [36], where the network

is trained with a label distribution rather than a standalone
label in consideration of the randomness in facial aging.
More specifically, for the i th sample, its corresponding label
distribution set as a typical Gaussian distribution as:

zk
i = 1√

2πσ
ex p(− (k − yi )

2

2σ 2 ) (1)

where k ∈ [0, . . . , 100] and standard deviation σ is set to
1 according to previous works [36], [37]. In the training
stage, a KL divergence is adopted to minimize the distance
between the ground truth label distribution zi and the predicted
distribution ti . The formula can be represented as:

�kl (zi , ti ) =
K∑

k=0

zk
i log

zk
i

tk
i

(2)

According to the work [50], we employ an expectation regres-
sion to refine the predicted results, and the predicted age can
be obtained as ŷi = ∑K

k=0 ktk
i , where tk

i is the probability
of classifying the input image to age k. To make a better
prediction, a regularization of �1 distance is adopted to further
narrow the gap between the predicted age ŷi and the ground
truth label yi , and it can be denoted as:

�er = |yi − ŷi | (3)

where | · | denotes �1 loss. The overall loss �teacher employed
to train the teacher model can be formulated as:

�teacher = �kl(zi , ti )+ �er (4)

Then, we employ the teacher model to generate pseudo
labels for unlabeled images. More specifically, the predicted
distribution of the weakly (i.e., using only crop-and-flip)
augmented raw image is served as the pseudo label, and we
denote it as z̃ j for short.

The next step is to train a more reliable student model,
which is a crucial part of our DCT. To this end, we propose two
main promotions to the original SSL. Specifically, we propose
Efficient Sample Selection (ESS) to select partially effective
samples for improving the training efficiency and Identity
Consistency (IC) as an additional consistency regularization.
Our DCT integrates two components to improve the overall
accuracy and regularity of facial age estimation. Moreover, the
Local Prediction (LP) will collaborate with the traditional GP
during the DCT training procedure as a whole. The pipeline
of DCT is shown in Figure 1.

B. Divergence-Driven Consistency Training

To deal with the lack of training data in existing datasets,
we introduce Semi-Supervised Learning (SSL) to leverage
unlabeled data for facial age estimation. However, when
migrating to age estimation, the SSL does not show suffi-
cient performance gains and instead significantly increases
the training time. This observation prompts us to rethink the
SSL operational mechanism: the teacher model’s prediction
for the weakly augmented raw image is served as the pseudo
label, and the student model is forced to output a similar
prediction for the strongly augmented raw image with the
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Fig. 1. Pipeline of the proposed DCT. Our DCT starts with a teacher model trained on the labeled dataset. We first use the teacher model to calculate
the Divergence Score of unlabeled samples and then use Efficient Sample Selection to select a subset of unlabeled samples. The teacher model’s predicted
distributions for the weakly augmented samples are used as the pseudo-labels for the selected samples. Then, the labeled and unlabeled samples are combined
for training a student model. During training, we impose Identity Consistency with the Image Consistency (different views of the same image) as the loss
function. Furthermore, we combine Local Prediction with the original Global Prediction. Finally, we give the prediction of the input image.

weakly augmented one. This consistency regularization is, in a
sense, at the heart of the SSL mechanism.

Since the goal of the consistency regularization is to make
the prediction of the strongly augmented image close to that
of the weakly augmented one, the difference between the
two predictions will gradually decrease during the training
process, resulting in a more robust model. From the above
perspective, the prediction difference is a way of expressing
the model’s robustness, which we refer to as “consistency
divergence.” The lower the sample’s consistency divergence,
the model’s capability to characterize the sample gradually
increases. The higher the capability, the less effective it will
be to repeatedly learn the same sample to improve the model
capability. Therefore, not all samples are equally crucial for
improving the model’s robustness, and the samples with minor
consistency divergence contribute very little to representation
learning. Based on this motivation, we present the Divergence
Score (DS) as a criterion for assessing sample effectiveness
after extensive experiments. Specifically, we define the DS
as the consistency difference between the prediction of the
weakly augmented image (i.e., using only crop-and-flip) and
the prediction of the strongly augmented one (i.e., using
ColorJitter and RandAugment [49]). Mathematically, it can be
formulated as:

δ(x̃ j ) = �kl(ψ(φw(x̃ j )), ψ(φs (x̃ j ))) (5)

In the following, we will elaborate the two promotions we
made to the original SSL.

1) Efficient Sample Selection: The first change we made to
the SSL is the sample selection strategy. The SSL usually
requires massive unlabeled data and an iterative learning
scheme, which burdens computing resources. Motivated by
this concern, we propose an Efficient Sample Selection (ESS)
strategy. At the core of our ESS is only selecting effective
samples for training a student model. The introduction of ESS
decouples the performance gain from piling up the number of
unlabelled samples. Our ESS can use far fewer samples and
time to get comparable performance.

Specifically, the ESS chooses the samples based on the DS.
A large δ(x̃ j ) implies that the sample x̃ j has the potential
to improve the model’s robustness. To improve training effi-
ciency, samples with large DS will be chosen for training
a student model, while other samples will be discarded.
After training the teacher model, we calculate the DS for
all unlabeled samples once, and a fraction of those samples
with the highest DS are selected. In particular, we choose
200K unlabeled samples for training out of a total of 1M,
and the forward pass will be reduced from 1M × Nepoch to
200K × Nepoch + 1M. The least epochs we used are 25, and
the forward pass will be reduced to 20% ∼ 24% of what it
would be without ESS.

2) Identity Consistency: The second change we made to the
SSL is consistency regularization. The original consistency
regularization is usually built on the consistency across dif-
ferent views of the same image, which is generalizable to
most fields and we refer to as Image Consistency. In this
paper, we add the other consistency regularization based on
the identity correlation of age estimation, which we refer
to as Identity Consistency. Compared to age labels, which
require high labeling costs, identity labels can be easily
obtained for unlabeled samples using related technologies in
face recognition/cluster [51]. Moreover, benefiting from the
rapid growth of face recognition tasks, we found that there
are many face-related datasets that are highly relevant to our
task, although they are not labeled with age labels. Our task is
precisely to extend the framework to these unlabeled datasets
(such as MS-Celeb-1M, Glint360K, WebFace260M, and so
on). These datasets often have identity labels that precisely
match our needs. Thanks to these large public face datasets,
we can easily obtain lots of photos of the same person at
different ages for training. In our implementation, we employ
the popular MS-Celeb-1M [12], where the identity labels are
provided, as the unlabeled dataset.

Our Identity Consistency unfolds based on the identity
labels. By analogy with the different views of the same picture,
the different ages of the same person also have consistency.
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Fig. 2. Schematic diagram of the proposed consistency regularization. We use a label distribution instead of a standalone label, as shown on the right side
of the figure. The label distribution can be separated into age and shape. For different views of the same image, we use KL divergence to force the prediction
distribution (age and shape) of the strongly augmented view to approximate the weakly augmented view. For different images of the same identity, we use
the Wasserstein distance to force the prediction distribution (only shape) of the strongly augmented view to approximate the weakly augmented view of the
example sample, which has the lowest Divergence Score.

The traditional way in age estimation is to take age labels as
the only category. It considers the commonality of different
people at the same age but ignores the high correlation of
the same person at different ages. This high dependency of
aging traits on a person has been observed before [1], [52]
but has not been effectively used. Therefore, we innovatively
utilize the identity information as an additional consistency
constraint for facial age estimation. Of course, if images of the
same person at the same age existed, there would be stronger
consistency that could be used to constrain the model training.

To exploit this correlation, we force the network to output
similar shapes for the images belonging to the same person.
Inspired by the previous work [53], we employ the Wasserstein
Distance (WD) to impose this consistency regularization based
on Identity Consistency. The WD has a special property
that KL divergence does not have: two different distributions
with the same shape have the same distance with a uniform
distribution. Taking the Gaussian distribution as an example
(see Equ. 1), the same shape means the same σ . Based on it,
we employ the WD to constrain the shape of the distribution
during training. Specifically, since a small DS indicates that the
model learns very well for this sample, it is also more reliable
to use the prediction distribution of this sample as the pseudo-
label. We first select an example sample with the lowest DS for
each identity, which will be done concurrently with the ESS.
We then compute the WD of the example sample’s output
distribution. With the above property of WD, we instruct the
network to narrow the other sample’s distance to be the same
as the example sample, which can be formulated as:

�ic = |�wd(z∗,U)− �wd(zi ,U)| (6)

where �wd(·) denotes WD, U denotes the uniform distribu-
tion, z∗ denotes the example sample’s prediction, and zi is
prediction of sample belongs to the same person with z∗.

C. Local Prediction

In traditional classification tasks, Global Prediction (GP)
is the most widely used scheme. In GP, a Global Average

Fig. 3. Global Prediction vs. Local Prediction.

Pooling (GAP) layer will be used for capturing global and
structural features from the final feature map. Then the final
classification will be performed based on these global features.
However, GP ignores local details while taking the whole
image as a field of view. Driven by this concern, we propose
Local Prediction (LP) to leverage the detailed semantics in the
final feature map. In LP, the GAP will be removed, and every
patch in the final map will have a corresponding classifier.
In the case of ResNet18, we will have a final feature map
of 7 × 7 in size, and the GP and the LP are as shown in
Figure 3. Compared with GP, each classifier in LP conducts the
classification based on local features, which helps the network
concentrate on detailed semantics. Mathematically, the LP can
be formulated as:

�lp = 1

n p

n p∑
p=1

�kl(z, t p) (7)

where p denotes the patch index, n p denotes the number of
patchs in the final feature map. For simplicity, the truth label
distribution or pseudo-label (see Algorithm 1) is denoted by z
without subscript, and the prediction of labeled or unlabeled
data based on the pth patch is denoted by t p without subscript.

In practice, we combine GP and LP in the training phase
to capture both global features and local semantics. While in
the test stage, only a single global classifier in GP is reserved
for age prediction because some edge patches are not very
relevant with age. After training, the patches in the feature
map become more robust than when not using LP, and the
final prediction becomes more reliable as a result.
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Algorithm 1 Training Procedure of DCT
Input:

Labeled training set DL = {(xi , yi , zi )}i=1:n ,
Unlabeled training set DU = {x̃ j } j=1:m ,

Output:
Parameters of φ(·), ψ(·), Prediction p(xi ).

1: /*Learn teacher model on DL .*/
2: Update the network by Equ. 8 until converged.
3: /*Select unlabeled samples by DS.*/
4: Calculate DS by Equ. 5 for whole DU .
5: Sort DU by the DS in descending order and select the

largest m samples as the new DU .
6: /*Add pseudo-label z̃ j for selected samples.*/
7: Teacher model’s predicted distribution for the weakly aug-

mented image is served as the pseudo label.
8: /*Learn student model on DL and DU .*/
9: Update the φ(·) and ψ(·) by Equ. 9 until converged.

10: /*Use student model to give the final prediction of xi .*/
11: p(xi ) = ψ(φ(xi ))
12: return φ(·), ψ(·), p(xi )

D. Summarization

We finally present the complete DCT as:
�dct−t = �teacher + I(�ic)+ I(�lp) (8)

�dct−s = �kl(z, t)+ I(�ic)+ I(�lp) (9)

where the truth label distribution or pseudo-label is denoted by
z without subscript, and the prediction of labeled or unlabeled
data given by GP is denoted by t without subscript. I(·)
denotes indicator function and I(x) = x if x exists else 0.
In our case, whether or not x exists is determined by whether
or not the component is used. Algorithm 1 shows the whole
procedure of our DCT.

IV. EXPERIMENTS

In this part, we first present details on benchmark datasets,
evaluation metrics, and experimental setup. Then, we thor-
oughly evaluate the impacts of each component in DCT and
compare our results with state-of-the-art methods on three
benchmark datasets. Finally, we give the qualitative results
and further analysis.

A. Datasets

To evaluate the effectiveness of our method as a semi-
supervised age estimation paradigm, we use two settings for
evaluation. First, we use an existing age dataset as labeled data
and introduce a face dataset without age labels as unlabeled
data, validating the effectiveness of our method in alleviating
the problem of lack of training data. In this setting, we use four
benchmark datasets for comparison. Second, we divide the
existing age estimation dataset and remove the labels of some
samples as unlabeled data, verifying the superiority of our
method compared to other semi-supervised methods. In this
setting, we use Morph II, the most classical dataset in the age
estimation, to divide the labeled and unlabeled data.

Morph II [13] is one of the widely used public datasets,
which contains 55,134 face images of 13,617 subjects, ranging
from 16 to 77. We used two types of testing protocols in our
evaluations: (1) Partial 80-20 protocol. A subset of 5,493
face images from Caucasian descent followed the work [1]
are used. We randomly split the subnet into two parts: 80%
for training and 20% for testing. (2) Semi-Supervised Learn-
ing (SSL) Setting. Following previous SSL methods [44],
[54], we no longer use the age labels of some samples and
treat them as unlabeled data to better reflect our method’s
superiority. Specifically, this protocol shares the same test
set as the Partial 80-20 protocol while dividing all other
samples into the labeled part and unlabeled part. Specifi-
cally, three types of divisions were used (label/unlabel):
(10%/90%), (30%/70%), (50%/50%).

CACD [55] is a large public cross-age dataset, ranging
from 14 to 62. CACD is collected from the Internet Movie
DataBase (IMDB) and collected from search engines using
celebrity name and year (2004–2013) as keywords, containing
more than 160 thousand images of 2,000 celebrities. However,
the database contains much noise because the age was simply
estimated by query year and birth year of that celebrity.
We employ a subset of 1,800 celebrities for training and
120 cleaned celebrities for testing, where the images are
manually checked and the noise images are removed [1].

Chalearn LAP 2015 [56] is the first competition for
apparent age estimation, and it offers images labeled by at
least 10 users. The average age is used as the final annotation.
Moreover, the dataset offers the standard deviation for each
age label. It collected 4,691 images and was labeled with
the apparent age. This dataset contains training, validation,
and testing subsets with 2,476, 1,136, and 1,079 images,
respectively. We adopt the experimental settings of [1] for
evaluation.

MIVIA [57] contains 575,073 and extracted from the
VGGFace2 [58] dataset. It is worth mentioning that the MIVIA
Age Dataset is the largest publicly annotated dataset available
on age. Images were extracted from the VGGFace2 dataset
and annotated with age using a “knowledge distillation” tech-
nique, making the dataset heterogeneous in terms of face size,
lighting conditions, face pose, gender, and ethnicity. Since the
test set is not available, we randomly divide the MIVIA into
a training set and a validation set at a ratio of 4:1 to validate
the effectiveness of the proposed methods. Specifically, there
are 460,800 images in the training set and 114,273 images in
the test set.

MS-Celeb-1M [12] is used for our unlabeled dataset. Since
the original dataset has many noisy labels, we use a clean
version with 4M images and randomly selected 1M images
for training.

B. Implementation Details

1) Preprocessing: The images are aligned with five land-
marks (including two eyes, nose tip, and two mouth corners)
according to the work [59]. The faces are then cropped and
resized to 224 × 224, and each pixel (ranged between [0,255])
is normalized by subtracting 127.5 and dividing by 128.
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TABLE I

TRAINING SETTING

For data augmentation, we use two types of augmentation:
weakly and strongly augmentation. Weakly augmentation only
includes a random horizontal flip, and strongly augmentation
includes a color jitter (a random sequence of brightness,
contrast, saturation, hue adjustments) and RandAugment [3],
which we set N = 2 and M = 9, where N denotes the number
of transformations to apply, and M denotes the magnitude of
the applied transformations.

2) Training Details: All networks use ResNet-18 (denotes
by 11M) or ResNet-50 (denotes by 23M) as the backbone and
pre-trained on ImageNet and optimized by SGD with Nes-
terov momentum. All models are implemented with Pytorch
on 8 GTX 2080Ti GPUs. In test stage, both the test image and
its flipped copy are fed into the network, and the averaging
prediction is used as the final prediction. More detailed settings
are shown in Table I.

3) Evaluation Metrics: We adopt Mean Absolute Error
(MAE) [1], and the ε-error as metrics for evaluation. The ε-
error is defined as follows.

ε = 1 −
n∑

i=1

ex p(− (ŷi − yi)
2

2σ 2
i

) (10)

where n is the number of samples, yi and ŷi are the age
label and predicted age, σ 2

i is the annotated standard deviation,
respectively.

Moreover, an index called Age Accuracy and Regularity
(AAR) [61] is introduced to take into account prediction
accuracy but also balance prediction:

AAR = max(0; 7 − M AE)+ max(0; 3 − σ) (11)

σ =
√∑n

j=1(M AE j − M AE)2

n
(12)

where MAE denotes the mean absolute error on the entire test
set, n denotes the number of age groups (10 years for a group),
M AE j denotes the MAE that is computed over the samples
whose real age is in j th age group.

C. Ablation Study

We select the CACD and the Morph II to validate the
effectiveness of Divergence-driven Consistency Training and
Local Prediction.

1) Effect of Efficient Sample Selection: As stated earlier,
not all samples are equally crucial for improving the model’s
robustness, and the samples with lower DS contribute very
little to representation learning. Based on this, we propose ESS
for selecting effective samples. To investigate the effectiveness

TABLE II

ANALYSIS OF ESS ON CACD DATASET IN RESNET-18. BOLD INDICATES
THE SETTINGS WE USE. RANDOM INDICATES THAT THE SAMPLES

ARE RANDOMLY SELECTED, SORT INDICATES THAT ALL

UNLABELED SAMPLES ARE SORTED BY ASCENDING ORDER

AND 200K SAMPLES ARE SELECTED FOR EXPERIMENTS,
CONFIDENCE INDICATES THAT THE SAMPLES WITH

HIGH PROBABILITY ON ANY CLASS ARE SELECTED,
ALL INDICATES THAT ALL UNLABELED

SAMPLES ARE USED, AND THE DATA IN

BRACKETS INDICATE THE PERFORMANCE

IMPROVEMENT COMPARED TO THE

TEACHER MODEL. ↓ MEANS THE
LOWER IS BETTER

of ESS, we conduct analyses in two dimensions, including
the number of unlabeled data and the training time. This
way, we can isolate the influence of ESS on training effec-
tiveness and training efficiency. In addition, we present the
teacher model used to quantify the performance gains from the
different experimental settings, which are Random selection,
Sorted selection, and ESS. The evidence is shown in Table II.
It is worth noting that the extra 0.1h in ESS comes from the
selection before the training.

Under Random selection setting, the performance consis-
tently rises with the increase of the unlabeled data, along
with the rapid increase of training time. However, when the
same number of samples (200K) is used, the random selection
strategy lags far behind the ESS in terms of performance,
which verifies the ESS’s effectiveness. When comparing the
training time spent for the comparable performance (4.25 for
ESS, 4.24 for ALL), we find that ESS reduces the time to
almost 1

8 , which verifies the ESS’s efficiency.
Under Sorted selection setting, the samples are sorted by the

DS in ascending order, and we use 200K samples as a size
for different batches. To be specific, “0-200K” indicates the
samples with the smallest DS are selected as unlabeled data,
and “800-1000K” indicates the samples with the largest DS are
selected (Equivalent to ESS 200K). We can see that the larger
the DS of the samples we take, the higher the performance
is obtained. This verifies that samples with larger DS are the
ones that are more needed for model training.
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TABLE III

ABLATION STUDY ON CACD AND MORPH DATASETS. BOLD INDICATES
THE BEST. ↓ (↑) MEANS THE LOWER (HIGHER) IS BETTER

Under Confidence setting, we select samples with high
confidence for comparison. To be specific, when the model
assigns a probability to any class which is above a threshold,
the prediction is selected for training. This selection strategy
has been widely used in previous SSL methods. However,
due to the facial aging randomness, there is no clear corre-
spondence between age and facial aging features. Therefore,
the confidence of the prediction is hard to be defined, and it
achieves a lower performance compared to our method.

Under ESS setting, we evaluate the different ratios of ESS
(Unlabeled Data 100K, 200K, 500K). It can be seen that
ESS performs better when trained with more unlabeled data.
However, the improvement from 200K to 500K is slight
(4.25 → 4.24) while requiring more training time (1.6h →
4.9h), and the improvement from 100K to 200K is relatively
significant (4.29 → 4.25) while adding little training time
(0.8h → 1.6h). To achieve a better trade-off between per-
formance and efficiency, we chose 200K as our final setting.

2) Effect of Different Components: To construct more
detailed ablation experiments for each module, we detach the
IC from the DCT. Thus, as the modules are added, we present
the results for DCT without IC, complete DCT, and DCT with
LP, respectively. The results are shown in Table III.

The first row means a plain ResNet-18 model with KL
divergence is used. For �er , it outperforms the baseline, which
indicates the effectiveness of �1 distance. The performance
shows steady improvement when adding modules to the net-
work. Moreover, with adding those modules one by one to
the network, the AAR also shows an upward trend and the σ
shows an downward trend. It shows that the model achieves a
simultaneous improvement in accuracy and regularity.

D. Comparisons With State-of-the-Art Methods

We compare the proposed DCT with the DEX [34], AgeED
[1], DRFs [62], DHAA [2], BridgeNet [63], AVDL [64], POE
[4], PML [5],ThinAgeNet [37], CR-MTk [25], DOEL [24],
AL-RoR-34 [20] to validate the effectiveness.

1) Results on Morph II: Table IV shows the MAEs of our
approach on the Morph II dataset with different protocols.
According to the results, our model achieves 2.34 (without
an external dataset) and 2.27 (with an external dataset) under
the Partial 80-20 protocol. Noticing that we only use a light
network (i.e., ResNet-18) to achieve the best performance
among all models except PML. Moreover, our DCT achieves
2.28 (without an external dataset) and 2.17 (with an external

TABLE IV

MAE COMPARISONS ON CACD AND MORPH II DATASET. BOLD
INDICATES THE BEST (* INDICATES THE MODEL IS PRETRAINED

ON EXTERNAL DATASET AND WE USE MS-CELEB-1M
FOLLOWING THE WORK [65])

TABLE V

COMPARISONS ON THE TEST SET OF CHALEARN LAP 2015 DATASET.
BOLD INDICATES THE BEST (* INDICATES THE MODEL IS PRETRAINED

ON EXTERNAL DATASET AND WE USE MS-CELEB-1M)

dataset) on a comparable model (i.e., ResNet-50), which out-
performs all the previous state-of-the-art methods regardless
of using the external dataset.

2) Results on CACD: As shown in Table IV, we compared
our model with the state-of-the-art models on CACD. Our
method DCT achieves the lowest MAE of 4.13 on ResNet-
18 and 4.09 on ResNet-50. Compared with the state-of-the-
art DHAA that was trained on a much bigger model, our
DCT decreases the MAE by 0.22 years on ResNet-18 and by
0.26 years on ResNet-50, which are large margins. Obviously,
the results show that our DCT significantly works well in an
uncontrolled environment.

3) Results on Chalearn LAP 2015: We further compared
our model with the state-of-the-art models on the ChaLearn
LAP 2015. As a competition dataset of apparent age esti-
mation, the Chalearn LAP dataset is more special than other
public datasets. Following the previous work [2], we finetune
the model on both training and validation sets after pretraining
on a large additional age dataset, i.e., the IMDB-WIKI dataset
or the MS-celeb-1M dataset. As shown in Table V, our DCT
outperforms the previous state-of-the-art methods on the test
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TABLE VI

COMPARISONS ON MIVIA DATASET. BOLD INDICATES THE BEST

Fig. 4. Comparisons of MAE by age group on MIVIA dataset.

set. We also report the performance on the validation set
with only finetuning on the training set. More specifically,
our model achieves the lowest MAE of 2.872 and the lowest
ε-error of 0.242 on the validation set. Moreover, our DCT
achieves a decrease in the ε-error by 0.01 on the test set,
which is a large margin. The results on MAE and ε-error both
show the superiority of the proposed method.

4) Results on MIVIA: MIVIA is the competition dataset
for the Guess The Age Contest 2021. For fair comparisons,
we create the baseline model, which has the same architecture
as our teacher model. Table VI shows the MAE, σ , AAR
results for MIVIA. Specifically, our method achieves an MAE
of 2.15 in the children and teenager (1 ∼ 20), an MAE of
1.70 in adults (21 ∼ 60), and an MAE of 1.98 in the elderly
(61 ∼ 81). Overall, our DCT achieves the lowest MAE of
1.74, the lowest σ of 1.02, and the highest AAR of 7.24. The
MAE for each age group is shown in the Figure 4. From the
Table VI and Figure 4, we observe that our proposed DCT
effectively improves the performance across all ages.

E. Comparisons With Other Semi-Supervised Learning
Methods

We compare the proposed DCT with the Noisy Student [15],
FixMatch [44], SimPLE [54] to validate the effectiveness
as a SSL method. The experiments are performed based on
varying label proportions. Moreover, a baseline method of

TABLE VII

MAE COMPARISONS ON MORPH II DATASET WITH OTHER
SEMI-SUPERVISED LEARNING METHODS. LDL INDICATES

MODIFIED VERSION AND BOLD INDICATES THE BEST

only employing the labeled data for training is also taken for
comparison and we denote it as ’Supervised (use labeled data
only)’. All experiments are conducted with the same settings
and the experimental results are shown in Table VII.

Compared with the baseline method, our method reduces
the MAE of 0.48, 0.39, and 0.30 years under the 10%, 30%,
and 50% label proportion settings, respectively. The steady
improvements in various settings show the proposed method
is a strong semi-supervised learning paradigm for facial age
estimation. Compared with the existing popular SSL methods,
our method has absolute advantages and outperforms them by
a quite large margin on all settings (see the first three rows
of Table VII). To be specific, on the 10% label proportion
setting, the MAEs of all the three methods (FixMatch, Noisy
Student, and SimPLE) are more than 5 years, while our method
achieves a much lower MAE of 2.65 years. The main reason
for the high estimation errors of the three methods is that
they were designed for general image classification rather than
age estimation, where the correlations of the adjacent ages are
neglected. In other words, previous SSL methods designed
for general classification tasks are not suitable for the age
estimation task. Considering this, we replace the traditional
classification scheme with label distribution learning (LDL) in
these three methods, and then we can make a fair comparison
between them and our proposed method. The corresponding
results of the revised version of the three methods are shown
in the middle three rows of Table VII. It can be seen that
our method still outperforms these modified methods, which
further verifies the effectiveness of the proposed method.

V. VISUALIZATION AND ANALYSIS

A. Qualitative Results

To better demonstrate the effectiveness of our DCT intu-
itively, we conduct extensive experiments on multiple age
benchmark datasets, including CACD, Morph II, MIVIA, and
Chalearn LAP 2015. The predicted results of our DCT and the
ground truth labels are shown in Figure 5. We observe that
our DCT shows excellent performance on all datasets. The
reliable and poor predictions are shown in red and blue color,
respectively. In many cases, our DCT is able to predict the
age of faces accurately. Failures may come from two causes,
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Fig. 5. Visualization of samples on Morph II, CACD, MIVIA, and Chalearn LAP 2015 datasets. The ground truth label are the black text below the face
image, and the predicted age of our DCT are shown below the age label. The Mean Absolute Error of each age dataset (MAE) is also shown. Reliable
predictions are shown in red color, and poor predictions are shown in blue color. Images with heavy makeup are shown in the green box, and images with
large pose variations are shown in the purple box.

Fig. 6. t-SNE visualizations of the features extracted by (a) +�er , (b) DCT, and (c) DCT with LP on the test set of Morph II dataset under Partial 80-20
protocol. Each color denotes an age category. The age features lie in a manifold structure, and the age increases along counterclockwise. Best viewed in
color.

i.e., heavy makeup (e.g., images in the green box) and large
pose variations (e.g., images in the purple box).

B. Feature Visualization

We visualize the features of Baseline (+�er ), our DCT and
DCT with LP by tSNE [67]. Figure 6 (a) shows that the feature
distribution is relatively scattered. Figure 6 (b) shows that
our DCT generates more compact features than Baseline in
the same age (e.g., points with purple color in the red box).
Figure 6 (c) shows the feature extracted by DCT with LP stays
closer and thus be more reliable for facial age estimation than
the DCT, indicating the effectiveness of our method.

C. Patch-Wise MAE Analysis on LP

The results of pixel-wise MAE on with or without Local
Prediction are shown in Figure 7. The MAE of each pixel is

Fig. 7. Pixel-wise MAE results over Chalearn LAP 2015. The darker the
block color, the lower the MAE.

calculated by using the corresponding classifier in LP. We can
find that MAE errors on almost all pixels are reduced, which
shows the proposed LP really improve the discriminative

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on December 09,2022 at 05:58:53 UTC from IEEE Xplore.  Restrictions apply. 



BAO et al.: DIVERGENCE-DRIVEN CONSISTENCY TRAINING FOR SEMI-SUPERVISED FACIAL AGE ESTIMATION 231

capability on each pixel. It also means that the proposed
LP helps to capture more comprehensive and effective local
features, which facilitates achieving more reliable predictions
(see Table III). We observe that the pixel-wise MAE changes
with position. Overall, the pixel point prediction accuracy
is relatively low at the edges and relatively high at the
middle. The best prediction accuracy is located at the right
of the center. Compared to the left panel, the right panel is
significantly darker in color overall.

VI. CONCLUSION

In this paper, we propose a novel Divergence-driven Con-
sistency Training for facial age estimation. Based on the
conventional semi-supervised methods, we propose ESS and
IC. The former is based on the Divergence Score to select
effective samples from massive unlabeled images to reduce the
training time and improve efficiency. The latter is consistency
regularization based on the identity correlation of facial age
estimation to impose an additional class constraint. Extensive
experiments on multiple age benchmark datasets, including
CACD, Morph, MIVIA, and Chalearn LAP 2015, indicate
that the proposed method outperforms the state-of-the-art
approaches significantly.
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