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Attention-Based Pedestrian Attribute Analysis
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Abstract— Recognizing the pedestrian attributes in surveil-
lance scenes is an inherently challenging task, especially for
the pedestrian images with large pose variations, complex back-
grounds, and various camera viewing angles. To select important
and discriminative regions or pixels against the variations, three
attention mechanisms are proposed, including parsing attention,
label attention, and spatial attention. Those attentions aim at
accessing effective information by considering problems from
different perspectives. To be specific, the parsing attention
extracts discriminative features by learning not only where to
turn attention to but also how to aggregate features from different
semantic regions of human bodies, e.g., head and upper body. The
label attention aims at targetedly collecting the discriminative
features for each attribute. Different from the parsing and label
attention mechanisms, the spatial attention considers the problem
from a global perspective, aiming at selecting several important
and discriminative image regions or pixels for all attributes.
Then, we propose a joint learning framework formulated in
a multi-task-like way with these three attention mechanisms
learned concurrently to extract complementary and correlated
features. This joint learning framework is named Joint Learning
of Parsing attention, Label attention, and Spatial attention for
Pedestrian Attributes Analysis (JLPLS-PAA, for short). Exten-
sive comparative evaluations conducted on multiple large-scale
benchmarks, including PA-100K, RAP, PETA, Market-1501, and
Duke attribute datasets, further demonstrate the effectiveness of
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the proposed JLPLS-PAA framework for pedestrian attribute
analysis.

Index Terms— Pedestrian attribute analysis, attention
mechanism, pedestrian parsing.

I. INTRODUCTION

V ISUAL analysis of pedestrian attributes such as gender,
age, body shape, etc., has become a thriving research

field in recent years [1]–[8], on account of its wide range
of possible applications, such as person retrieval [9], [10],
person re-identification [5], [11], video-based business
intelligence [12] and so on. In the area of pedestrian attributes
analysis, the related technologies have obtained significant
improvement in performance owing to the success of deep
learning [13]–[16]. However, hampered by arbitrary human
poses, different camera viewing angles, occlusions and back-
ground clutter, the automatical pedestrian attribute recognition
remains a challenging problem.

How human beings are able to recognize objects effortlessly
and efficiently has aroused a great interest. It has been pro-
posed in the literature that these recognizing processes are
conducted by exploiting attention mechanisms to access the
effective information [17], [18]. To be specific, the atten-
tion mechanisms contain many different natural recognition
behaviors of human beings. For example, when looking at
and analyzing a person, our humans would like to focus
on the foreground while ignoring the background. More-
over, we would turn our attention to a specific region when
analyzing one particular attribute of a person. A conceiv-
able example is that we tend to focus on one’s upper-body
region when recognizing his/her clothes type. With the recent
rapid development of deep learning, these attention mecha-
nisms originated from the human visual system have gained
their popularity for their capability to help the network to
focus on the most discriminative features to solve chal-
lenging recognition problems, and therefore been extensively
studied [19]–[27].

In this paper, we formulate a new framework for pedestrian
attributes analysis based on the attention mechanisms. Differ-
ent from the previous works [22]–[24], [28] that formulate the
attention for image-based recognition mainly from a spatial-
view, temporal-view and/or channels-view, our attention mech-
anisms for pedestrian attribute analysis are formulated from a
more rich point of view. Specifically speaking, we propose
three attention mechanisms for pedestrian attributes analy-
sis including parsing attention, label attention and spatial
attention. These three components are then incorporated into
a unified network to extract discriminative and correlated
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complementary information for achieving a more reliable
attribute recognition.

The parsing attention in this study is formulated
with the assistance of pedestrian parsing. Pedestrian
parsing [29], [30] aiming at parsing a pedestrian into different
semantic regions, e.g., hair, face and upper body, can provide
the location cues to indicate the specific body regions at pixel-
level. Therefore, we take full advantage of pedestrian parsing
to construct our parsing attention mechanism in a split-and-
aggregate way. More specifically, the features from different
semantic human regions are first split under the guidance of
pixel-level location cues generated by the pedestrian parsing,
which leads to more detail and location-oriented features.
Then, the attention module learns how to aggregate these split
features. Since the features are split and so refined in advance,
this mechanism helps us to learn more attention-oriented and
therefore discriminative features even when there are large
variations in the pedestrian images.

The label attention mechanism is another novel mechanism
of conquering the difficulty CNN faces when dealing with
multi-attributes analysis. When employing a CNN to extract
the features for dozens of attributes analysis, the feature
representations may hardly be optimal for all attributes at the
same time. This problem comes from the fact that different
attributes are often related with different human body regions.
For example, we mainly look at a pedestrian’s upper body
region to judge his/her clothing style while look at the feet to
judge his/her shoes color. As a consequence, the performance
of features obtained from the overall area taking all attributes
into consideration may be less optimal than that of the fea-
tures obtained from each of the attribute corresponding areas.
To overcome this problem, we formulate a label attention
mechanism by assigning several attention maps for each label,
where the features from the most relevant regions are enhanced
while the irrelevant features are suppressed for each attribute.
In this attention mechanism, the attention map is learned only
under image-level supervisions, which is different from the
parsing attention supervised by pixel-level labels and image-
level labels.

A spatial attention module is also incorporated into the
network which learns to localize the most discriminative image
regions for all attributes with only image-level supervisions.
We should notify that this attention module is different from
the previous two kinds of attentions. Unlike parsing attention
which is formed based on the pixel-level indicators generated
using an external network, the spatial attention discovers the
discriminative regions through self-learning and image-level
supervisions. Moreover, different from the label attention that
localizes the relevant regions for each attribute, the spatial
attention is designed for all classification tasks. It can then be
apparently seen that these three attention mechanisms capture
the discriminative features from different perspectives and
therefore are complementary correlated.

In order to synergize the three different mechanisms more
effectively, we formulate a three-branch CNN architecture for
pedestrian attributes analysis with each branch corresponding
to one attention mechanism. In the literature, a mainstream
architecture which integrates different attention mechanisms
is to take a series structure [23], [27]. However, the prediction

performances of this structure are not always that satisfying,
let alone its difficulties in training. One possible explanation
for the inaccuracy is that there may be cases where the
information suppressed in a certain attention mechanism is
actually useful in the next attention mechanism. In other
words, the series structure may suppress some information
in advance before it can play a role. Nevertheless, our
CNN architecture is constructed in a multi-task-like or parallel
way where the three branches are synergistically correlated
and jointly learned instead of being independent. Under this
parallel structure, correlated complementary information can
be extracted from different views so as to achieve more reliable
predictions.

The main contributions of our work can be summarized
as follows: (1) We put forward the novel idea of learning
different attention mechanisms concurrently in a multi-task-
like way to explore the correlated complementary information.
To the best of our knowledge, this is the first attempt to
jointly learn multiple attention mechanisms in a multi-task-
like learning manner. (2) We propose three kinds of attention
mechanisms for pedestrian attribute analysis which are parsing
attention, label attention and spatial attention. Parsing attention
is formulated under the guidance of pixel-level location cues
while label attention and spatial attention aim at selecting
the important and discriminative regions for each attribute
and all attributes, respectively. The three attention mecha-
nisms considering problems from different perspectives are
correlated and complementary. Moreover, as far as we know,
these attention mechanisms have not been scrutinized in the
literature. (3) We also annotate a new pedestrian parsing
dataset with abundant annotations at pixel-level for achieving
better parsing performance. This dataset will be released to the
community. Extensive comparative evaluations demonstrate
the superiority of the proposed method over several benchmark
datasets including PA-100K, RAP, PETA, Market-1501 and
Duke attribute datasets.

II. RELATED WORK

1) Pedestrian Attribute Recognition: Recent years have
seen a substantial application potential of pedestrian attribute
analysis in video surveillance system, which also promotes
the field to become a hot research topic. Earlier methods
shedding light on pedestrian attributes recognition typically
model each attribute independently based on hand-crafted
features such as Gabor [11], [32] and color [33] with SVM or
AdaBoost classifiers. The rapid development of deep
learning [14]–[16], [34], [35] lately leads to a great
successes in pedestrian attribute analysis and appro-
aches [2]–[4], [6], [36]–[38] modeling a multi-task network
to analyze all attributes have been extensively investigated.
For example, Zhu et al. [2] propose a multi-label CNN to
predict multiple attributes together in a unified framework.
Li et al. [36] propose a deep multi-attribute recognition
(DeepMAR) method for pedestrian attributes recognition.
They also verify that modeling all attributes together in a
single network can explore the correlation between different
attributes better and capture more complementary features.
Wang et al. [3] formulate an end-to-end encoder/decoder
recurrent network for pedestrian attribute analysis, which aims
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Fig. 1. The overview of the proposed network architecture. The network consists of three branches, where each branch is incorporated with a specific attention
mechanism, including parsing attention (PA), label attention (LA) and spatial attention (SA). The network is constructed based on the SE-BN-Inception [24],
which is a light CNN architecture in the SE-Net family [24]. More detailedly, the CNNs module f�B consists of nine inception blocks [31] and nine SE
blocks [24] with each inception block followed by a SE block. The module f�L , f�S , f�P have the same structure, where a inception block followed by
a SE block are included in each module. To the end, all three branches are jointly learned concurrently with each branch followed by a loss layer.

to explore attribute context and correlation. Lin et al. [5]
propose a discriminative CNN embedding for both person
re-identification and attributes recognition, yielding promising
performance in both tasks. Moreover, Liu et al. [6] pro-
pose a multi-directional attention mechanism for fine-grained
pedestrian analysis. In this study, we establish another atten-
tion based method which is different from Liu’s work [6].
Furthermore, three different concurrently learned attention
mechanisms are proposed to consider the prediction problem
from different perspectives.

2) Pedestrian Parsing: Methods [29], [39]–[41] proposed
for pedestrian parsing in the early stage rely heavily on training
set and lack the ability of accurately fitting object boundaries.
However, the present Fully Convolutional Networks (FCNs)
which was a category of network architectures has shown its
effectiveness and efficiency for segmentation tasks [42]–[47].
When it comes to the specific networks in this category,
Long et al. [42] first propose a Fully Convolutional Net-
works (FCNs) for pixel-wise prediction which is originally
used in sematic segmentation, and improve the state-of-the-
art performance by a big margin at that time. More recently,
Zhao et al. [45] propose another network in this category
named as the Pyramid Scene Parsing Network (PSPNet) for
scene parsing which ranks the 1st place in ImageNet Scene
Parsing Challenge 2016. Considering how FCNs category
achieves a great performance in the segmentation tasks, we are
encouraged to construct our pedestrian parsing network based
on FCNs. Nevertheless, we are aware of the fact that the low
resolution of pedestrian images in surveillance scenes will
have a negative influence on the performance of the FCNs. For
example, Xia et al. [30] employ FCN-32 and FCN-16 [42] for
pedestrian parsing while get low performance. As a result, it is
inappropriate to directly apply those existing frameworks to
pedestrian parsing and some adjustments should be appended
to those frameworks.

3) Attention: Attention models [19]–[27], [48] have aroused
great enthusiasm in recent years. In the literature, a recurrent
attention convolutional neural network architecture to detect
the discriminative regions for fine-grained image recognition is
proposed by Fu et al. [21]. Wang et al. [22] propose a residual
attention network that is constructed by stacking multiple
attention modules. Moreover, a various of experiments are

also conducted in their work to show the effectiveness of
the proposed network. Li et al. [23] propose an attention
mechanism that consists of spatial and temporal attention for
person re-identification. In more recent work, Hu et al. [24]
propose Squeeze-and-Excitation Networks (SE-Net) for image
classification, where a channels attention mechanism is pro-
posed to recalibrate channel-wise feature responses. With
its superior performance, the SE-Net won first place in
ILSVRC 2017. Shen et al. [48] propose sharp attention
networks for person re-identification, and achieve promising
performance. Inspired by these works, we establish a new
attention network which is expected to achieve better perfor-
mances. Specially, one of our innovations lies in the adoption
of three different kinds of attention mechanisms with two of
which are newly developed. The three attention mechanisms
are not only incorporated into a unified network and learned
jointly, but also, extract the most discriminative features from
different views and reach a mutual complementary to obtain
better prediction performances.

III. OUR APPROACH

A. The Overall Design

The overview of the proposed network architecture for
pedestrian attributes analysis is shown in Fig. 1. The pro-
posed network architecture is constructed based on the
SE-BN-Inception [24], which is a light CNN architecture in
the SE-Net family. As is presented in the overview, the pro-
posed network architecture utilizes a parallel structure where
each of the three branches is incorporated with a specific
attention mechanism from parsing attention, label attention
and spatial attention. Since different attention mechanisms
have different perspectives, they are expected to capture the
correlated complementary information and discover optimal
per-branch discriminative feature representations. To this end,
we formulate a joint learning scheme with the following
principles: (1) low-level features are shared for all branches.
It can be seen from the Fig. 1 that all three branches
receive common low-level features before performing the
respective CNNs. This shared learning inspired by multi-task
leaning [49], [50] can facilitate not only the inter-attention
common learning, but also the knowledge transfer between
different attentions. Nevertheless, it also helps to reduce the
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number of parameters and the risk of overfitting. (2) all
branches are learned concurrently and seperately with the
shared label supervisions. All branches are learned seperately,
which means that after receiving the shared label supervisions,
the backpropagation training processes of the three branches
are parallel. These separate learning processes agree with the
nature that perspective of problem analysis varies from one
attention mechanism to another, which helps each branch to
extract the discriminative features. On the other hand, since
different branches are actually synergistically correlated for
their sharing of common low-level features, learning con-
currently facilitates the network to discover the correlated
complementary features. Note that each branch is assigned
with a separate objective loss function but all of them, at the
same time, share the same label supervisions.

B. End-to-End Network Framework

We assume that a training set with m samples is denoted
as D = {Ii , {y j

i }T −1
j=0 }, i = 0, . . . , m, where y j

i indicates the
label for j th task of the image Ii and T denotes the number
of the tasks needed to be analyzed. In the proposed network,
a convolutional layer, a BatchNorm layer, a scale layer and
a pooling layer are first employed to extract the low-level
features IBi . Mathematically, this process is represented as:

IBi = Conv (Ii ) . (1)

After that, the extracted low-level features IBi would be
input into the first parsing attention module (PA-I) to obtain
the features IPi . A parsing attention in low-level layers is
implemented here for the reason that the split-and-aggregate
structure resided in this module will provide more discrimi-
native and thus effective features for the following network.
To be specific, since the low-level features IBi are in large size,
e.g. 56 × 56, it is available to clearly split the features from
different semantic human regions to obtain some more detailed
and location-oriented features without loss of information
before aggregating. This splitting process serves as a pre-
refined procedure which helps to provide some more attention-
oriented features even when there are large variations in the
pedestrian images.

As is shown in Fig. 1, Three more non-linear mappings
are further employed to extract high-level features XL

i , XS
i

and XP
i for label attention module, spatial attention module

and the second parsing attention module (PA-II), respectively.
The above non-linear mappings are implemented by different
CNNs: the bottom CNNs module f�B shared for all attention
modules with parameters �B and other three CNNs modules
f�L , f�S and f�P specifically designed for each attention
module with parameters �L, �S and �P . Note that the
last three CNNs modules have the same structure but with
various parameter values. The above non-linear mappings can
be represented as:

X κ
i = f

(
IPi ; �B,�κ

)
κ ∈ {L,S,P} (2)

Finally, the high-level features XL
i , XS

i and XP
i are

imported into the corresponding attention modules to extract

Fig. 2. The network architecture of the pedestrian parsing network.

the discriminative features for pedestrian attributes recogni-
tion. The different attention mechanisms and the objective loss
functions for different branches will be introduced in following
subsections.

C. Parsing Attention Mechanism

The parsing attention mechanism aims at learning the
discriminative features under the pixel-level supervisions of
human body regions, which are generated by a pedestrian
parsing network. We give a lucid illustration in this section
by first introducing the pedestrian parsing network employed
to generate the pedestrian parsing map and then presenting the
structure of the proposed parsing attention module.

1) Pedestrian Parsing Network: Our pedestrian parsing
network is constructed based on PSPNet [45], which is a
popular parsing framework and ranks the 1st place in Ima-
geNet Scene Parsing Challenge 2016. The overall architecture
of the proposed Pedestrian Parsing Network (PPN) can be
found in Fig. 2, and more detailed information about the
architecture can refer to the project.1 Due to the low resolution
of pedestrian images captured in surveillance scenes, however,
there is a need for us to make the following proper changes
to the existing pedestrian parsing network.

• Subsampling. The pedestrian images captured in surveil-
lance scenes are usually in low resolution, e.g., 128×48 in
VIPeR dataset, while images in PSPNet [45] usually have
a high resolution. Consequently, huge information loss
will occur if we simply use the subsampling rate of 1

8 as
in PSPNet. In order to avoid this huge loss, we adopt the
subsampling rate of 1

2 twice ( 1
4 in total) for each image in

our network. More specially, the stride of conv3_1_3 × 3
and conv3_1_1 × 1_proj is changed from 2 to 1.

• Skip connections. Skip connections can merge both
low-level and high-level features together to generate
more abundant features. There are two skip connections
in our pedestrian parsing network as shown in Fig. 2.
One skip connects conv4 1 and conv5 3 concat with a
convolutional and a BatchNorm layer. The other skip used
to connect conv4 23 and conv5 3 is also equipped with
a convolutional and a BatchNorm layer. The reason why
we adopt the skip connection is that it not only helps the
information to exchange between different layers, but also
is propitious to collect more abundant context information
to generate a more reliable parsing map.

The pedestrian parsing network is utilized to generate
the parsing maps of pedestrian images for parsing attention

1https://github.com/hszhao/PSPNet
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modules. For the sake of clarity, we use ϕ(Ii ) to denote the
generated parsing map for the image Ii . It is noteworthy that
the parsing map ϕ(Ii ) can also be regarded as a probability
map which consists of the probabilities of assigning each pixel
to different semantic pedestrian regions. Here, we assume
that the parsing map contains S pixels and all images are
needed to be parsed into C regions. For example, S equals
to 861 when the paring map has the size of 41 × 21, and
C equals to 9 if the semantic regions include hair, face,
u-clothes (upper clothes), arms, l-cloth (lower clothes), legs,
shoes, accessories and background. Then, we rewrite ϕ(Ii ) as
a scalar set {ϕ(Ii )

c
s}, s = [0, S − 1], c = [0, C − 1], where

ϕ(Ii )
c
s denotes the probability of the sth grid belonging to the

cth region.
2) Parsing Attention Module: In this paper, we propose two

parsing attention modules with one implemented in low-level
layers and the other in high-level layers. Both of the parsing
attention modules capture the discriminative and attentive
features through a split-and-aggregate way. To be precise,
features from different semantic human regions are first split
according to the pedestrian parsing map and then aggregated
using convolutional operations. In this way, the module learns
where to pay attention to and how to aggregate the features
from different regions, which provides more discriminative
and more parsing-attention-oriented features for the following
work and especially for the final attribute classification. The
proposed parsing attention modules are shown in Fig. 3.
In both modules, we conduct a probability updating operation
and a replicated operation on the parsing map before employ-
ing it to split the features. The probability updating operation
is shown in Eq. (3).

ϕ̄(Ii )
c
s =

⎧⎨
⎩

1 c = arg max
ς

{ϕ(Ii )
ς
s , ς =[0, C − 1]}

ϕ(Ii )
c
s otherwise

(3)

If the sth grid, compared to all other regions, is more likely
to belong to the cth region, then the ϕ̄(Ii )

c
s would be set to 1,

which can safeguard the information integrity of each semantic
region as much as possible in the later attention feature
fusion stage. Otherwise, its probability value would remain
unchanged, which is used to partially reserve the information
of that pixel to reduce the information loss caused by an
error prediction. Moreover, the resize and replicated operation
R(·) is then applied to each of the updated parsing maps
corresponding to different semantic regions. More specifically,
for each semantic region, the operation R(·) first resizes its
parsing map into the size of corresponding features maps
through 2D bilinear interpolation. After that, R(·) further
replicates the resized parsing map into parsing maps which
have the same channels as input features. Furthermore, it is
just by conducting this replication that we can carry out the
element-wise production normally to implement the splitting
operation. As a result, the splitting features for the cth semantic
region in the first attention module can then be obtained via:

φ(Ii )
c
low = IBi ⊗ R(ϕ̄(Ii )

c) (4)

Fig. 3. The network structure of the proposed parsing attention modules:
(a) the first parsing attention module (PA-I) and (b) the second parsing
attention module (PA-II). GAP denotes the Global Average Pooling, and
⊗ represents the element-wise production.

where ⊗ denotes the element-wise production. The final
splitting features are the ensemble of that of each semantic
region, where φ(Ii )low = [φ(Ii )

0
low, · · · , φ(Ii )

C−1
low ].

However, the splitting operation in the second module is
different from that of the first module in two aspects. The
first difference comes from the fact that feature maps in low-
level layers often have a small number of channels (e.g. 64),
while feature maps in high-level layers usually contain a large
number of channels (e.g. 1024). Therefore, a convolutional
layer with only 128 kernels is first conducted on the high-
level features XP

i to reduce the channel dimension (shown
in Fig. 3), which can effectively release the computation bur-
den and reduce the number of parameters in a later aggregating
stage. This convolution step can be formulated by

φ(Ii )
c
high = Conv(XP

i ) ⊗ R(ϕ̄(Ii )
c) (5)

Similarly, the final splitting features are also the concate-
nation of that of each semantic region, where φ(Ii )high =
[φ(Ii )

0
high , · · · , φ(Ii )

C−1
high ]. On the other hand, the second

difference lies in that we add a global branch to the module.
This idea of branch adding originates from an unsatisfying
fact that features in high-level are usually in small size
(e.g. 7 × 7) where the boundaries between different regions
are ambiguous and features from a single region may be
split into different parts. Consequently, the integrity of the
feature will be jeopardized. In order to preserve this integrity,
a global branch which concatenates the splitting features with
the global features is added into the module as is shown
in Fig. 3. It then generates some more comprehensive features.

In both low-level and high-level modules, after the splitting
process, a few layers like convolutional layers, pooling layers
and so on are employed to learn how to aggregate features
from different regions, which as a whole is called the split-
and-aggregate. This framework serves as a very useful tool
in providing more attention-oriented features even when there
are large discrepancies among different pedestrian images.
In particular, the splitting process plays the role of a pre-
refined procedure and aggregating integrates these informa-
tion together for the subsequent network operations. For the
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sake of clarity, the detailed structure is provided in Fig. 3.
As is shown in the figure, the first parsing attention module
generates the discriminative features IPi for high-level layers,
and the second parsing attention module produces the dis-
criminative features xPi for the subsequent attribute classifiers.
Moreover, the second parsing attention module is followed
by T softmax classifiers, and the cross-entropy losses are
employed to train the network. The objective loss function
in the parsing branch for the j th attribute can be defined by:

J P
j = − 1

m

⎡
⎣m−1∑

i=0

K j−1∑
k=0

δ(y j
i , k)ρ

j
k log(p j

k (xPi ))

⎤
⎦ (6)

In the above equation, p j
k (xPi ) = exp((θPjk )

T
xPi )∑

l exp((θPjl )
T

xPi )
denotes

the probability of assigning the features xPi the kth class
for the j th attribute with K j denoting its number of classes.

Besides, {θPj l }
K j
l=1 denotes the parameters of the j th softmax

classifier; δ(q1, q2) is the Kronecker delta function, where
δ(q1, q2) = 1 if q1 = q2, and δ(q1, q2) = 0, otherwise; K j

indicates the number of classes of the j th attribute. Moreover,
ρ

j
k is a penalty coefficient used to alleviate the imbalanced

data problem in pedestrian attribute classification. In our

experiments, we set ρ
j
k =

√
1

2r j
k

, where r j
k represents the ratio

of the kth class in the j th attribute. To be specific, ρ
j
k becomes

larger along with r j
k decreasing, which shifts the bias of the

classifier to favor the minority class. The sum of losses for all
attributes in the parsing attention branch can be denoted as:

JP =
∑

j
J P

j (7)

D. Label Attention Mechanism

One common strategy of attention in CNN networks is to
employ a region selection sub-network which is implemented
by generating the attention masks to perform feature recalibra-
tion [22], [24]–[26]. Inspired by the above works, we propose
a novel label attention mechanism that aims at specially
selecting fine-grained discriminative pixels and regions for
each attribute. This can be achieved by incorporating a sub-
network to generate different selection masks for different
attributes. The structure of the proposed label attention module
is shown in Fig. 4 (a).

We denote the input features as XL
i ∈ Rn×h×w , where n, h

and w denote the number of channels, height and width of
the feature tensor, respectively. In the proposed label attention
module, XL

i would be first forward propagated into two sub-
networks, where one is used to extract higher-level features
and also reduce the number of channels for the feasibility of
training, and the other one is used to generate the selection
masks. The higher-level features can be denoted as:

XL, f ea
i = WL, f ea

2 · ReLU(WL, f ea
1 · XL

i ) (8)

where WL, f ea
1 and WL, f ea

2 are the parameter matrixes of two
convolutional layers in the sub-network for feature extraction.

The attention masks are produced in a similar way but with
an additional softmax function to select important pixels and
regions. The attention masks can be generated by:

ML
i = so f tmax(WL,mask

2 · ReLU(WL,mask
1 · XL

i )) (9)

where WL,mask
1 and WL,mask

2 are the parameter matrixes
of two convolutional layers in the sub-network for mask
generation. The softmax function is employed to spatially
normalize each attention mask, where it is conducted along
with the height and width dimension. In our implementation,
the two sub-networks have the same structure except for the
softmax layer. It ensures the features XL, f ea

i and the attention
masks ML

i to have the same dimensions, which is necessary

in the later fusion stage. In fusion, the features XL, f ea
i are

recalibrated by multiplying with the mask ML
i element-by-

element to produce the attentive features XL,at t
i , which can

be represented as:

XL,at t
i = XL, f ea

i ⊗ ML
i (10)

The attentive features XL,at t
i ∈ R(r×T )×h×w have r × T

channels with each r channels capturing the discriminative
features specially for each attribute. For clarity, the attentive
features XL,at t

i are further denoted as an ensemble of the
features of T attributes, i.e., XL,at t

i = [XL,at t
i,0 , · · · ,XL,at t

i,T −1]
and XL,at t

i, j ∈ Rr×h×w . To constrain that each r channels
generate the attentive features only for a specific attribute,
multiple constrained subnetworks are employed. Each of the
T constrained subnetworks consists of a convolutional layer,
a global average pooling layer and a classifier corresponding to
a specific attribute of the total T attributes. To mention it, each
of the T constrained subnetworks only connects with different
r channels in XL,at t

i . In other word, the j th constrained subnet-
work is only connected with the features XL,at t

i, j . In this way,

XL,at t
i, j is learned with a constrained subnetwork under the

supervision of the labels of j th attribute only, which prompts
the module to generate the attention-oriented and discrim-
inative features for each attribute specially. However, since
employing multiple subnetworks seems to be very tedious, we
can replace them by group convolutional layers [13], [51]. For
the sake of convenience, we use xcons

i, j to denote the features
that were generated by the global average pooling layer for the
j th attribute, and the cross-entropy loss is employed to train
the classifiers. The objective loss function for the j th classifier
can be written as:

J cons
j = − 1

m

⎡
⎣m−1∑

i=0

K j −1∑
k=0

δ(y j
i , k)ρ

j
k log(pk(xcons

i, j ))

⎤
⎦ (11)

In the above equation, pk(xcons
i, j ) = exp((θcons

jk )T xcons
i, j )∑

l exp((θcons
jl )T xcons

i, j )
denotes

the probability of assigning the features xcons
i, j to the kth class

for the j th attribute, and {θ cons
j l }K j

l=1 denote the parameters of
the j th softmax classifier. And the sum loss for all attributes
also can be represented as J cons = ∑

j J cons
j .
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Fig. 4. The network structure of (a) the proposed label attention (LA) where
GAP denotes the Global Average Pooling and (b) the spatial attention module
(SA) where the global sum layer is abbreviated as sum, and ⊗ denotes the
element-wise production.

In our implementation, we set r × T � n, which is
inspired by the encoder-and-decoder in the work [3], [52].
More specially, the input features XL

i are first encoded
into the features XL,at t

i with a smaller number of channels
(e.g. 1 × T , 2 × T ), and then decoded by a subsequent
non-linear maps with a large number of channels (e.g. 512),
including two convolutional layers, a global average pooling
layer and a fully connected layer as shown in Fig. 4 (a). Let
xLi denote the features of the final fully connected layer, and
T softmax classifiers are employed for attribute classifications.
The loss function for j th classifier J j

L is similar to Eq. (6),
and it is omitted here for convenience. The sum of losses for
all attributes in the label attention branch can be written by
J L = ∑

j J L
j .

E. Spatial Attention Mechanism

The spatial attention mechanism, as shown in Fig. 4 (b), is
proposed to recalibrate the feature responses for selecting the
important pixels and regions for all attributes. By following
the works [23], [24], [28], we employ a small subnetwork to
generate the attention mask. However, the truth is that attention
masks often only cover small and most discriminative regions
of object of interest when supervised by only a classification
loss [53]. Therefore, multiple subnetworks are employed to
generate different attention masks, which enables the selected
features to be more abundant and comprehensive. We denote
the input features by XS

i . Assume we employ v attention
masks in total, and the νth attention mask is represented as
MS

i,ν . In spatial attention mechanism, MS
i,ν is produced by

two convolutional layers and a softmax layer:

MS
i,ν = so f tmax(WS,mask

2,ν · ReLU(WS,mask
1,ν · XS

i )) (12)

Similar to the previous label attention, the softmax function
is also employed to spatially normalize each attention mask.
Then, an element-wise multiplication is conducted between
XS

i and MS
i,ν to generate the attentive features XS,at t

i , i.e.

XS,at t
i,ν = XS

i ⊗ MS
i,ν (13)

After importing each XS,at t
i,ν into its corresponding global sum

layer and fully connected layer, we obtain the resulting higher-
level features and all these features are then concatenated
together. We use xSi to denote the concatenated features, and
T softmax classifiers are used for attributes classification. The
loss function for the j th classifier J S is similar to Eq. (6), and
it is omitted here for convenience. The sum of losses for all
attributes in this branch can be represented as J S = ∑

j J S
j .

One thing we need to clarify is that though we have not
utilized any pooling layers in this module, these spatial atten-
tion modules themselves can be actually treated as pooling-like
operations. Concretely, when it comes to the global average
pooling, we can find that it is conducted by first assigning
an equal probability to each pixel and then taking the sum of
them. Similarly, the probability assignment in our module is
achieved by employing an element-wise production. However,
one advantage of our module compared to the global average
pooling is that the probability assigned to each pixel of the
input feature is different and is learned automatically by the
network. As a result, our pooling-like module has the nature
of being more adaptive and therefore more effective.

F. The Loss Function

The total loss J is the sum of the loss functions correspond-
ing to all branches, which can be defined by

J = J P + J L + λJ cons + J S (14)

where λ is the weighting parameter for the constrained sub-
networks and we set λ = 0.2 in our experiments. Under the
guidance of J , the network learns to extract the discriminative
features from different views. The three branches are jointly
learned concurrently to explore the correlated and complemen-
tary information. In the test stage, the average results of three
branches are used as the final prediction.

IV. EXPERIMENTS

A. Datasets and Settings

1) Pedestrian Attribute Datasets: We conduct experiments
on pedestrian attribute analysis with five popular datasets:
PA-100K [6], RAP [54], PETA [32], Market-1501 attribute [5]
and Duke attribute [5] datasets.

PA-100K dataset is the largest dataset for pedestrian
attribute classification where 100,000 pedestrian images from
598 outdoor scenes are included in total. 26 commonly used
attributes, like gender, age, handbag, upper-clothing, etc.,
are annotated in this dataset. Following the settings in [6],
the dataset is divided into 3 data subsets for evaluation:
80,000 images for training, 10,000 images for validation and
10,000 images for testing.

RAP dataset contains 41,585 pedestrian images captured
by indoor scenes of a shopping mall. Each image in this
dataset is annotated with 72 attributes, viewpoints, occlusions
and body parts. We follow the official protocol provided by
Li et al. [54], where 51 attributes with a positive label
ratio above 1 % are employed for evaluation. Following
the work [54], we evaluate our model on this dataset with
5 random splits, where 33,268 images are used for training and



TAN et al.: ATTENTION-BASED PEDESTRIAN ATTRIBUTE ANALYSIS 6133

8,317 images are used for testing in each resulting data subset.
The final performance is the average over all data subsets.

PETA dataset provides 19,000 images collected from var-
ious outdoor scenes. Each image is annotated with 61 binary
and 4 multi-class attributes. Following the evaluating proto-
col [32], 35 binary attributes, including 15 important attributes
and 20 difficult yet interesting attributes, are selected for
evaluation. The dataset is randomly split into 3 parts, where
9,500 images are used for training, 1,900 images are used for
validation and the rest 7,600 images are used for testing.

Market-1501 attribute dataset contains 32,688 images
of 1,501 identities. 10 binary attributes (such as gender and
sleeve length) and 2 multi-class attributes (e.g. colors of upper
body clothes) are annotated for each identity. Note that this
dataset is annotated in the identity level. We evaluate our
model on this dataset following the work [5] where the whole
dataset is split into 751 identities for training and 750 identities
for testing.

Duke attribute dataset contains 34,183 images from
1,812 identities. 8 binary attributes and 2 multi-class attributes
are annotated for each identity. Similar to Market-1501
attribute dataset, this dataset is also annotated in the identity
level. Following the work [5], the dataset is split into two
parts where 16,522 images for training and 17,661 images for
testing.

2) Pedestrian Parsing Datasets: The existing datasets, e.g.,
PennFudan dataset [39] and PPSS [29] are not suitable for the
task of facilitating attribute analysis. For PennFudan dataset,
the amount of images contained in the dataset is too small
(only 169 images are included) to be conducted for our
cases. As for the PPSS dataset, though many pedestrians in
this dataset are occluded, those occluded regions are still
annotated based on an approximate estimation, which may be
detrimental to our attribute analysis. Most importantly, both
datasets do not provide the annotation of accessories, which
is also an important part of pedestrian analysis. Due to the
above considerations, we decide to collect a new dataset for
pedestrian parsing.

a) Image labeling: Most of the annotation tools [55] are
based on superpixels, but they are ineffective for the pedestrian
images in surveillance scenes, since these images often have
low resolutions and occlusions. Here, we propose a useful
interactive algorithm for an accurate pixel-level annotation and
the labeling pipeline can be found in Fig. 5 (a). Our labeling
algorithm mainly includes the following steps:

Step 1: boundary labeling. Manually label the boundary for
each semantic region, e.g., hair, face and legs. In this way, each
part can be localized precisely. The boundary line should be
closed, which is necessary for finding the regions in the next
step.

Step 2: region labeling. Find the closed regions according
to the boundaries, and then annotate each region with pre-
defined categories, e.g., hair, face and legs. Specially, region
labeling can reduce the complexity of pixel-level labeling and
accelerate the annotation process.

Step 3: boundary assigning. Assign each boundary pixel
to a category according to the k-NN classification algorithm.
For each boundary pixel xi, j , at first we make the decision

Fig. 5. (a) The labeling pipeline for accurate pixel-level annotation. (b) Some
samples from our VIPeR parsing dataset.

with 1-NN, and the label li, j is assigned by

li, j = arg max
c

Nc (15)

where Nc denotes the number of pixels that belongs to the
c-th category in 1-nearest grids. If there are two categories
with the same maximum number, we would assign the label
to pixel xi, j using 2-NN, 3-NN and so on.

Moreover, considering that VIPeR is a very classical dataset
for person re-identification and there are many accessories on
the pedestrians of that dataset, we annotate VIPeR dataset
with the proposed labeling algorithm. There are nine regions
annotated in total, including “hair”, “face”, “u-clothes” (upper
clothes), “arms”, “l-cloth” (lower clothes), “legs”, “shoes”,
“accessories” and “background”. Some sample images are
given in Fig. 5 (b).

b) Training protocols: The VIPeR parsing dataset con-
tains 1,264 images from 632 pedestrians where each pedestrian
has two images. When evaluating on PA-100K and RAP
datasets, all images are employed to train the pedestrian
parsing network so as to generate a promising parsing map.
Considering that there is an overlap between VIPeR and PETA
datasets, the images occurring in the test set of PETA therefore
would not be used to train the pedestrian parsing network
when we conduct experiments on PETA dataset. When it
comes to specific steps of our experiment, 476 images are
removed from the VIPeR dataset and the rest 788 images are
used for training. Moreover, in order to figure out whether the
proposed network structure has evident improvements com-
pared to the baseline structure, we are supposed to evaluate
the performance of our pedestrian parsing network and the
baseline network. To this end, we divide the data into two
parts which are the training set with the first 532 pedestrians
images and the testing set containing the last 100 ones,
respectively.

B. Implementation Details

In our experiments, we first train the pedestrian parsing
network, and then keep its weight parameters unchanged to
generate the parsing map for attributes inference. The input
size of the pedestrian parsing network is 161 × 81. Due
to the lack of training data, we initialize the network with
the pretrained model provided by [45], and then pretrain the
network with ATR dataset [56], which is the largest clothes
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TABLE I

THE PARSING RESULTS ON VIPER PARSING DATASET. THE RESULTS OF DEEPLAB AND PSPNET ARE RE-IMPLEMENTED BY US

Fig. 6. Parsing results of PPN on PA100K, PETA, RAP, Market-1501 and Duke datasets. Both good and bad results are given in the figure.

parsing dataset. Finally, the network is finetuned on the VIPeR
parsing dataset. The weight decay and the momentum are set
to 0.0005 and 0.9, respectively. The learning rate is started with
0.001 and reduced by a factor of 10 along with the number
of iterations increases. For pedestrian attribute recognition,
the input size of the bottom layers is 224 × 224. The weight
decay and the momentum are set to be the same as above. The
learning rate is started with 0.0001 with the consideration that
there are dozens of attributes needed to be analyzed, and it is
reduced by a factor of 10 along with the number of iterations
increases. All models are trained and tested with Caffe [57]
on GTX 1080Ti GPU.

C. Evaluation Metrics

For pedestrian attribute classification, when evaluating on
PA-100K, PETA and RAP datasets, five criteria are employed
following the works [3], [6], [54], including a label-based
criteria, mean accuracy (mA), and four instance-based crite-
ria, accuracy (Accu), precision (Prec), recall and F1. When
evaluating on Market-1501 and Duke attribute datasets, we
employ the accuracy for evaluation according to the work [5].
For pedestrian parsing, the per-pixel accuracy is employed for
evaluation according to the previous works [29], [39].

D. Pedestrian Parsing Results

The quantitative results of our pedestrian parsing network
on the VIPeR parsing dataset are given in Table I. PSPNet
employs 1

8× subsampling in their network for scene pars-
ing. However, due to that the pedestrian images captured in
surveillance scenes are usually presented with low resolu-
tion, 1

8× subsampling easily results in features vanishing for
pedestrian parsing. With this fact taken into consideration,
1
4× subsampling is employed in our network. Moreover,
the skip connections are employed in our network to cap-
ture the features at multi-level. Compared with the baseline

method, PSPNet, the performance can be improved by 6.32
when using 1

4× subsampling. Moreover, the performance can
be further improved by 0.70% when skip connections is used.
Additionally, compared the basedline PSPNet, we find that
the improvements are primarily presented in small categories,
e.g., hair, face, arms, legs. It also shows our method helps
to avoid the feature vanishing in local regions. Moreover,
we also re-implemented two popular methods, Deeplab [44]
and Attention+SSL [46], for comparisons. The results are also
presented in Table I. And the proposed method also performs
better than them. Additional quantitative results on PA-100K,
PETA, RAP, Market-1501 and Duke attribute datasets are
shown in Fig. 6. Note that three datasets don’t provide the
ground truth labels for the raw images, so only the raw images
and parsing results are listed in Fig. 6.

E. Detailed Analysis on Each Attention Mechanism

1) Analysis on Parsing Attention Mechanism: We propose
two parsing attention modules in our network, with one for low
layers and another for high layers, which are denoted as PA-I
and PA-II, respectively. The plain SE-Net [24] is employed
as a baseline method called the pedestrian attribute analysis
(denoted as PAA). To notify, for the sake of simplicity, PA-I
and PA-II together will be directly denoted by PA in the
following work.

At first, we investigate how to set the number of semantic
regions C in parsing maps would be better for attribute
recognition. We take four different settings (C = 1, 2, 5, 9)
for experiments, and the experiments are conducted with
PA-I module. More specifically, there is only one part and the
parsing map is filled with 1 everywhere when C = 1. Actually,
it is also same as the network PAA without using parsing
attention modules. Moreover, the parsing map is split into
background and foreground parts when C = 2, and the parsing
map is split into head, upper-body, lower-body and accessories
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TABLE II

THE ANALYSIS OF THE NUMBER OF SEMANTIC
REGIONS IN PA-I ON PA-100K DATASET

TABLE III

THE ANALYSIS OF THE PARSING ATTENTION ON PA-100K DATASET

parts when C = 4. When C = 9, all the 9 semantic regions that
have been mentioned above are employed. The experimental
results are shown in Table II. The best performance is achieved
by using C = 9, which demonstrate that the fine-grained
parsing can be a better choice than coarse-grained parsing for
assisting attribute recognition. Thus, all the parsing modules in
the following experiments would choose fine-grained parsing
for experiments.

Here, we analyze those two modules PA-I and PA-II
step-by-step, and the experimental results are summarized
in Table III. Both two parsing attention modules are useful
to extract the discriminative features for pedestrian attribute
analysis, where the average performances among five criteria
are improved by 0.36% and 0.40%, respectively. When both
parsing attention modules are employed, the average perfor-
mance can be improved by 0.71% compared with the baseline
PAA. Thus, we would take both two parsing attention modules
together in our following experiments.

2) Analysis on Label Attention Mechanism: The label atten-
tion mechanism first encodes the features with r ×T channels,
with each r channels features specially extracted for each
attribute. r is a hyperparameter in the mechanism, and we con-
duct the experiments with various r to search its optimal value.
The experiments are also conducted on the PA-100K dataset,
and the results are shown in Table IV. When r = 0, it denotes
the plain network without label attention mechanism used.
As is shown in the table, the label attention mechanism really
works by extracting discriminative features to achieve better
performance. When r is small, the encoded features can’t
reserve enough information for dozens of attribute analysis.
When r is large, the encoded features may contain redundant
information, which may be detrimental for attribute analysis.
The best results are achieved with r = 4, and we also take
r = 4 in later experiments.

3) Analysis on Spatial Attention Mechanism: The spatial
attention mechanism employs multiple attention masks to
enable the selected features to be more abundant and compre-
hensive. Assume that v attention masks are employed in total.
The experiments with various v are conducted on PA-100K.
Experimental results are shown in Table V. When v = 0,

TABLE IV

THE ANALYSIS OF THE LABEL ATTENTION ON PA-100K DATASET

TABLE V

THE ANALYSIS OF THE SPATIAL ATTENTION ON PA-100K DATASET

TABLE VI

THE ANALYSIS OF THE JOINT LEARNING OF THREE

ATTENTION MECHANISMS ON PA-100K DATASET

it denotes the plain network without label attention mecha-
nism used. In order to facilitate the comparison, the average
performance among five criteria is also listed in the Table. The
conclusion is similar, where a small number of masks can not
reserve enough information and a large number of masks may
contain redundant information. The best results are achieved
when v = 6, and it will be used in later experiments.

4) Joint Learning of Three Attention Mechanisms: In this
section, we analyze the joint learning mechanism step-by-step.
We start from the network with single attention mechanism.
Then, two attention mechanisms are jointly learned, where the
label attention and spatial attention are used for experiments.
Finally, we test the model with a joint learning of three
attention mechanisms. The results are shown in Table VI. The
JLLS-PAA represents the Joint Learning of Label attention
and Spatial attention for pedestrian attribute analysis, and it
achieves the better performance compared with the model with
single attention mechanism. When three attention mechanisms
are employed, the performance can be further improved where
the correlated complementary features are captured. Further-
more, an additional model incorporated with three spatial
attention branches (denoted as PAA + 3×SA) is employed for
comparisons. PAA + 3×SA can only improve the performance
slightly although it involves more parameters compared with
PAA + SA. This demonstrates that the performance improve-
ments of JLPLS-PAA mainly come from the joint learning
of different attention mechanisms rather than involving more
parameters.
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TABLE VII

THE COMPARISONS ON PA-100K DATASET

F. Comparison to the Prior Arts

In this Section, we mainly compare the proposed meth-
ods with previous methods. The backbone of those meth-
ods, e.g., AlexNet [13], CaffeNet [57], Inception_v2 [58],
GoogleNet [59], DenseNet-201 [60], ResNet-50 [15] and
SE-BN-Inception [24], are also clarified.

1) Results on PA-100K Dataset: For PA-100K dataset,
we compare our approach with DeepMar [36], M-net [6] and
HP-net [6]. The comparisons are summarized in Table VII.
All three attention mechanisms can improve the performance
for pedestrian attribute analysis. In addition, the joint learning
of three attention mechanisms can further improve the perfor-
mance. The proposed JLPLS-PAA achieves the best accuracy
on PA-100K dataset given all five evaluation metrics. To be
specific, JLPLS-PAA outperforms the second best method
HP-net [6] by 7.40%, 6.70%, 3.86%, 5.64% and 4.74% on
mA, Accu, Prec, Recall and F1 respectively. It is a huge
improvement, and it also shows clearly the benefits of the
proposed JLPLS-PAA for pedestrian attribute recognition.

2) Results on RAP Dataset: Table VIII summarizes the
comparisons on RAP dataset. The methods used for com-
parison include CNN+SVM [54], ACN [38], DeepMar [36],
VeSPA [4] and JRL [3]. As is shown in Table VIII, different
attention mechanisms enhance the performance for different
criteria. For example, the parsing attention and label attention
mainly improve the performance on Accu, Prec and F1, while
the spatial attention mainly improves the performance on
mA and recall. This also shows that the different attention
mechanisms are complementary. The joint model JLPLS-PAA
achieves the best accuracy by given four metrics except Prec.
(Ours 78.56%, and the best 80.12% achieved by ACN [38]).
However, ACN [38] achieves much lower performance on the
other metrics compared with JLPLS-PAA , e.g., 81.25% by
JLPLS-PAA vs. 69.66% by ACN on mA. For the other four
metrics, our JLPLS-PAA improves the second best results by
3.44%, 0.56%, 1.78% and 0.39% on mA, Accu, Recall and
F1 respectively.

3) Results on PETA Dataset: For PETA dataset, we com-
pare our approach with CNN+SVM [54], ACN [38],
DeepMar [36], VeSPA [4] and JRL [3]. The experimental
results are shown in Table IX. The proposed three attention
mechanisms also show their effectiveness on this dataset,
with considerable performance promotions. When the joint
learning strategy, the performance is further improved by a
lot. Compared with the baseline method PAA (a plain SE-Net

TABLE VIII

THE COMPARISONS ON RAP DATASET

TABLE IX

THE COMPARISONS ON PETA DATASET

for pedestrian attribute analysis), our JLPLS-PAA improves
the average performance among five criteria by 1.85%. The
proposed JLPLS-PAA outperforms the prior arts on the given
four metrics of Accu, Prec, Recall and F1. On the metrics
of mA, the proposed JLPLS-PAA achieves the second best
result and the best result are achieved by JRL. Note JRL
is an ensemble model of multiple networks, where 10 RNN
networks are included in total and each RNN network employs
6 Alexnet networks to extract features. Compared with JRL,
our model is more slight and is constructed based on a single
network. On the whole, our model achieves the comparable
performance with JRL by using a single network on PETA
dataset.

4) Results on Market-1501 Attribute Dataset: Market-
1501 attribute dataset is a newly released dataset, hence only
a small amount works have been evaluated on this dataset.
For Market-1501 attribute dataset, we compare our approach
with PedAttriNet [5], APR [5]. The works [63], [64] evaluate
their model on the Market-1501 attribute dataset with different
evaluation protocol. Therefore, those two works [63], [64]
are not selected for comparisons. The comparisons are shown
in Table X. All three attention mechanisms can yield the
performance improvements on this dataset. The joint learning
of three attention mechanism further improves the performance
to 87.88%, which outperforms the previous best method
by 2.55%.

5) Results on Duke Attribute Dataset: Similar to the com-
parisons on market-1501 attribute dataset, we also compare our
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TABLE X

THE COMPARISONS ON MARKET-1501 AND DUKE ATTRIBUTE DATASETS

Fig. 7. The performance improvements for parsing attention, label attention
and spatial attention with the joint learning framework on PA-100K dataset.

method with PedAttriNet [5], APR [5]. Each single attention
mechanism and their joint learning form show their effec-
tiveness on this dataset. Our proposed JLPLS-PAA achieves
the state-of-the-art performance with an accuracy of 85.24%,
which is 5.12% higher than the previous best method [5].

V. DISCUSSIONS

A. Analysis on the Joint Learning

We formulate a joint learning framework for parsing atten-
tion, label attention and spatial attention mechanisms, by
considering the complementarity between different attention
mechanisms. We evaluate the performance of each attention
branch of the joint learning model, aiming at testing the
effects on each branch taken by the joint learning. As is
shown in Fig. 7, learning three attention branches concurrently
and jointly can achieve better performance compared with
learning each attention mechanism separately and individually.
The improvements also validate the complementarity between
three attention mechanisms, and learning them concurrently
and jointly helps to extract the correlated and complementary
features.

B. Learning in a Parallel Way or Serial Way?

In the proposed framework, three proposed attention mech-
anisms are learned in a parallel way, where each attention
mechanism is incorporated into a separate branch and all
branches are synergistically correlated and jointly learned.
To further validate the effectiveness of the joint learning
framework, a serial learning model is also formulated for com-
parisons. We take label and spatial attention mechanisms for
analysis, and the experimental results are shown in Table XI.
SLLS-PAA represents Serial Learning of Label attention and
Spatial attention for Pedestrian Attribute Analysis, and JLLS-
PAA denotes Joint/parallel learning of Label attention and
Spatial attention for Pedestrian Attribute Analysis. As shown
in Table XI, JLLS-PAA performs better than SLLS-PAA on
all five metrics. Compared with parallel framework, serial
framework may hardly be satisfied for all attention modules

TABLE XI

THE COMPARISONS OF THE LEARNING A PARALLEL
WAY OR SERIAL WAY ON PA-100K DATASET

Fig. 8. The comparisons of different attention mechanisms on PA-100K
dataset.

to extract effective features. For example, there may be cases
where the information suppressed in a certain attention mecha-
nism is actually useful in the next attention mechanism. What’s
more, the serial framework is more difficult to train than the
parallel framework because the branch in the serial framework
is deeper and contains more parameters than the branch in
parallel framework.

C. Comparisons to Other Attention Mechanisms

We also compare the proposed attention mechanisms with
other mechanisms, e.g., Harmonious Attention (HA) [28]
and Convolutional Block Attention Module (CBAM) [65].
We implement those two attention modules by placing them
behind the last convolutional layer (same to the proposed LA,
SA and PA-II). The experimental results are shown in Fig. 8.
Compared with HA and CBAM, the proposed LA, SA and PA
modules perform better. It also validate the effectiveness of the
proposed LA, SA and PA modules for pedestrian attributes
analysis. In our experiments, the performance drops when
incorporating the CBAM into the network. CBAM contains
two components: channel and spatial attentions, and those
components are formulated in a serial way to extract attentive
features. The performance degradation may due to such serial
components may hardly be learned with very limited data.

D. Efficiency Analysis

In this section, we mainly analyze the efficiency of the
proposed method, including: parameters, memory complexity
and speed. For comparison, the efficiency of some popular
models like JRL [3] and VAA [62] would also be analyzed.
The efficiency analysis is shown in Table XII. The most costly
part is the Pedestrian Parsing Network (PPN), which is con-
structed based on ResNet-152. For the recognition networks
(e.g., PAA, PAA+PA, PAA+SA, PAA+LA, JLLS-PAA and
JLPLS-PAA), they are very efficient with fewer parameters,
less memory complexity and faster speed compared with the
previous methods, e.g., JRL and VAA. JLPLS-PAA needs PPN
to generate the parsing maps, which is slight costly. Thus,
JLLS-PAA, which is implemented without parsing attention
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TABLE XII

THE COMPARISONS ON PARAMETERS, MEMORY COMPLEXITY AND SPEED

Fig. 9. Visualizations of the mean pedestrian image and 11 selected
label attention maps on PA-100K dataset. Each attention map is drawn with
averaging the activations among all images in the test set (10 thousand images
in total).

modules, can be regarded as a trade off between memory loss
cost and evaluation performance. JLLS-PAA also can achieve
comparative performance but with drastically fewer cost com-
pared with JRL and VAA as shown in Table IX and XII.
Note that all the models are tested with Caffe [57] on GTX
1080Ti.

E. Visualizations of Label Attention

Fig. 9 shows the average label attention maps on the test
set of the PA-100K dataset. We select 11 label attention maps
in total, including gender, backpack, handbag and so on. The
bright pixels represent the regions that the network focuses on
for the corresponding label, and those regions are various for
different labels. As is shown in Fig. 9, the network focuses
head and upper body regions for gender attribute, and focuses
head region for hat attribute. Moreover, for the attributes
related to upper body e.g. short sleeve, up-stride and up-logo,
the label attention mechanism also learns to select the regions
of upper body. For the attributes related to lower body e.g.
lower pattern, trousers and shorts, it also learns to focus the
regions of lower body. The visualizations also qualitatively
show the effectiveness of label attention mechanism.

F. Visualizations of Spatial Attention

Fig. 11 shows the average responses of the spatial atten-
tion masks on the test set of the PA-100K dataset. As is

Fig. 10. Visualizations of the mean pedestrian image and six spatial attention
maps on PA-100K dataset. The spatial attention map is drawn with averaging
the activations among all images in the test set (10 thousand images in total).
The 1th , 2th , 3th , 4th , 5th and 6th spatial attention map may mainly select the
features from upper body, thigh, shank, head, arms and human body except
for head.

Fig. 11. The accuracy results (mA) of the proposed JLPLS-PAA and the
baseline method PAA on PETA dataset.

shown in Fig. 11, the attention models primarily focus on the
foreground regions while suppressing the background regions.
Each spatial attention mask aims to select the discriminative
features from different human parts, e.g. head, upper body.
In the spatial attention mechanism, all the selected features are
gathered together with a concatenation operation, which can
form more comprehensive features to achieve better recogni-
tion results.

G. Analysis on the Improvements

To analyze the improvement on each attribute, we draw
the accuracy results on PETA dataset of the proposed
JLPLS-PAA and PAA methods. Compared with the baseline
PAA, the proposed JLPLS-PAA improve the performances of
almost all attributes. Besides, the JLPLS-PAA outperforms
PAA especially on these attributes with region-based saliency,
e.g., “footwearSandals”, “accessorySunglasses”.

VI. CONCLUSION

The large variations of pedestrian images, e.g. large pose
variations, complex backgrounds and various camera viewing
angles, make the task of recognizing the pedestrian attributes a
challenging work. In this paper, parsing attention, label atten-
tion and spatial attention have been developed to select the
important and discriminative regions for pedestrian attribute
analysis against the variations. Different attention mechanisms
extract discriminative features by considering the problems
from different perspectives, which are correlated and comple-
mentary. Moreover, a joint learning framework of the above
three attention mechanisms has been formulated in a multi-
task-like way to capture the correlated and complementary
features. Various experiments conducted on PA-100K, PETA,
RAP, Market-1501 and Duke attribute datasets further demon-
strate the effectiveness of the proposed method.
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