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CKDF: Cascaded Knowledge Distillation
Framework for Robust Incremental Learning
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Abstract— Recently, owing to the superior performances,
knowledge distillation-based (kd-based) methods with the exem-
plar rehearsal have been widely applied in class incremental
learning (CIL). However, we discover that they suffer from
the feature uncalibration problem, which is caused by directly
transferring knowledge from the old model immediately to the
new model when learning a new task. As the old model confuses
the feature representations between the learned and new classes,
the kd loss and the classification loss used in kd-based methods
are heterogeneous. This is detrimental if we learn the existing
knowledge from the old model directly in the way as in typical
kd-based methods. To tackle this problem, the feature calibration
network (FCN) is proposed, which is used to calibrate the existing
knowledge to alleviate the feature representation confusion of the
old model. In addition, to relieve the task-recency bias of FCN
caused by the limited storage memory in CIL, we propose a novel
image-feature hybrid sample rehearsal strategy to train FCN
by splitting the memory budget to store the image-and-feature
exemplars of the previous tasks. As feature embeddings of images
have much lower-dimensions, this allows us to store more samples
to train FCN. Based on these two improvements, we propose the
Cascaded Knowledge Distillation Framework (CKDF) including
three main stages. The first stage is used to train FCN to
calibrate the existing knowledge of the old model. Then, the new
model is trained simultaneously by transferring knowledge from
the calibrated teacher model through the knowledge distillation
strategy and learning new classes. Finally, after completing the
new task learning, the feature exemplars of previous tasks are
updated. Importantly, we demonstrate that the proposed CKDF
is a general framework that can be applied to various kd-based
methods. Experimental results show that our method achieves
state-of-the-art performances on several CIL benchmarks.

Index Terms— Feature calibration, hybrid exemplars, cascaded
knowledge distillation, incremental learning.

I. INTRODUCTION

MANY computer vision applications in the real world
require the capability that can incrementally learn about
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Fig. 1. The overview of widely used basic knowledge distillation-based
framework [4]–[7].

Fig. 2. It illustrates how to recognize fruits incrementally (e.g., learn to
recognize cactus and rambutan orderly) by a child.

new classes while preserving the existing knowledge. For
example, for construction safety, a system that can identify
whether a worker is wearing a safety vest or a hard hat is
wished to add the ability to detect improper footwear [1]. How-
ever, most deep learning approaches suffer from catastrophic
forgetting [2], [3] when the past data are unavailable.

To alleviate catastrophic forgetting, kd-based approaches
with the exemplar rehearsal have been proposed [4]–[7].
As shown in Fig. 1, this kind of methods commonly have the
same process of transferring knowledge from the old network
immediately to the new model when learning new classes in
CIL.

In this work, we focus on this kind of methods. To visu-
alize the learning process, we compare kd-based approaches
with the process of a child’s incremental learning in Fig. 2.
It shows the learning process by a child to recognize fruits
incrementally.

When a child sees a cactus, he may learn simple knowledge,
such as the appearance of shape and color of cactus (i.e.,
ellipsoidal, piliferous and green). After he knows the char-
acteristics of cactus, we take away the cactus and show him a
rambutan. At the first sight, the child might wrongly recognize
the rambutan as a cactus because of the same characteristics
he learned (e.g., ellipsoidal and piliferous). After one corrects
him, he can compare the rambutan with the cactus and
correct the existing knowledge through experience (feature)
replay. The child then adjusts the relative importance of the
features of cactus and would make feature calibration in
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Fig. 3. The kd loss in kd-based methods encourages the new model to mimic
the output of the old model while the CE loss computed by using the new data
encourages the output of the new model at the positions of learned classes to
zero.

Fig. 4. The comparison of various kd-based methods using different models
as the old model in Fig. 1 on CIFAR-10 and CIFAR-100. Each experiment
has 2 incremental learning batches. CKDF-adapted methods are the methods
which adapt the basic kd-based methods by our approach (CKDF). LwF-UE
(LwF Using Exemplars) is an extended version of LwF [1] which improves
LwF by using exemplars of old classes in this work.

his brain to deepen understanding of cactus. For example,
cactus is thorny but not piliferous and compared with the
shape (ellipsoidal), the features of thorny and color are more
important to distinguish cactus from rambutan. And the child
also learns a new distinctive feature that cactus is inedible.
By the comparison with the calibrated knowledge of cactus,
he will also acquire a more comprehensive knowledge of
rambutan, such as piliferous, red, edible and ellipsoidal.

As the above example illustrates, the child does not sim-
ply preserve the fixed existing knowledge but calibrates the
existing knowledge via adjusting the relative importance of
cactus features and extracting new characteristics from cactus
to solve the conflict between the old knowledge of cactus
and the knowledge of rambutan before he learns to recognize
rambutan. On the contrary, typical kd-based methods try to
preserve the old knowledge of the previous task model by min-
imizing the knowledge distillation loss (kd loss) to encourage
the new model to mimic the output of the old model [1], [4]–
[7]. However, this feature learning strategy in typical kd-based
methods suffers from some problems. For example, typical
kd-based methods would suffer from the task-recency bias
caused by the data imbalance problem in CIL [5], [8], [9].
Besides, Ahn et al. [10] validate that the kd loss computed
by using the old model directly in typical kd-based methods
preserves this bias and reduces the performances of kd-based
methods. In this work, we discover that typical kd-based
methods would suffer from a new problem, which is referred
to as the feature uncalibration problem.

Fig. 5. Overview for the new model training of our approach employing the
image-feature hybrid storage strategy. For displaying our approach in detail,
we give details of the feature adaptation algorithm [7] at stage 3.

A. Feature Uncalibration Problem

As the original training data of old classes and the data of
new classes are usually out-of-distribution (OOD) in CIL, the
old model confuses the feature representations between the old
classes and the new classes, and the confusion problem may
become more serious when there are similar classes between
the old and new tasks (cf. Sec. V). This is detrimental to kd-
based methods. First, the kd loss in typical kd-based methods
encourages the preservation of the old model’s confused deci-
sion boundary in the new model (encourages the new model
to mimic the output of the old model). Moreover, because of
the confusion problem, the kd loss and the classification cross-
entropy (CE) loss, which are computed by using the new data
are heterogeneous (Typical kd-based methods use data of the
new classes to compute the kd loss and the CE loss, cf. Fig. 3).
Typical kd-based methods ignore this problem and compute
the kd loss at each training iteration by directly using the old
model with the confused decision boundary, so they suffer
from the confusion problem (cf. Fig. 4 and Sec. V). Overall,
we refer to the above phenomenon as the feature uncalibration
problem in this work.

Fig. 4 briefly shows the feature uncalibration problem in
typical kd-based methods. As shown in Fig. 4, gt kd-based
methods that use the ground-truth model as the old model in
Fig 1 improve basic kd-based methods by large margins. That
is because the ground-truth model is trained with all training
data from all tasks in CIL and it has no feature uncalibration
problem. So our main goal in this work is to obtain a
feature calibrated teacher model which is ideally without the
feature uncalibration problem since the ground-truth model is
unavailable in the CIL setting.
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From the above observations, we believe that it is impor-
tant to deal with the feature uncalibration problem. There-
fore, in this paper, a feature calibration network to cali-
brate the existing knowledge of the old model to separate
the feature representations between the previous and current
tasks is proposed. Furthermore, owing to the limited mem-
ory budget, the task-recency bias [8] usually occurs in the
image-exemplar rehearsal stage. Inspired by the child incre-
mental learning through experience (feature) replay, we pro-
pose an image-feature hybrid sample rehearsal strategy to train
the FCN. The main advantage of this strategy is that a large
number of samples from previously learned tasks can be stored
and used.

Based on the above improvements, we propose CKDF with
three stages to train the new model when learning the new
task in CIL. Fig. 5 is the overview framework of the proposed
CKDF. At stage 1, we train the FCN to calibrate the existing
knowledge of the old model to relieve the feature uncalibra-
tion problem. At stage 2, we generate the feature calibrated
teacher model (FCTM) by attaching FCN to the fixed feature
extractor (FE) of the old model. And we transfer knowledge
from FCTM instead of the old model when learning the new
classes. At last, we adapt the old feature exemplars to be
in the right feature space of the new model through feature
adaptation [7]. Both stages 1 and 2 utilize the kd technique
to train the models. And stage 2 is very similar to typical kd-
based methods but we use FCTM instead of the old model
to make knowledge transferring. Compared with typical kd-
based methods, our approach has additional two stages (stages
1 and 3) in each new task and we store feature exemplars to
train FCN. From Fig. 4, we can see that the proposed CKDF
improves the performances of three basic kd-based methods
(iCaRL [4], BiC [5] and LwF-UE, an extended version of LwF
[1] in this work) by [1.66%, 4.02%] and [1.46%, 2.03%] in
the term of average accuracy [11] on the experiments with
2 incremental learning batches on CIFAR-10 and CIFAR-100,
respectively. Besides, these results also reflect that the feature
uncalibration problem exists in typical kd-based methods.

We note that CKDF is a general framework for kd-based
methods with the exemplar rehearsal. It can be easily used to
adapt and improve typical kd-based methods by training FCN
and transferring knowledge from FCTM instead of the old
model in training the new model while keeping other processes
of the methods unchanged.

In summary, the main contributions of the work include:

1) We discover that typical kd-based approaches suffer
from the feature uncalibration problem. To tackle the
problem, we propose the FCN to calibrate the existing
knowledge of the old model to separate the feature
representations between the previous and current tasks.
To the best of our knowledge, it is the first solution to
deal with this problem in CIL.

2) To relieve the task-recency bias in FCN, we propose
an image-feature hybrid exemplar rehearsal strategy.
It can keep the lower-dimensional feature embeddings
of images to reduce the memory footprint significantly.
So we can store more samples to train an effective FCN.

3) To combine FCN and the image-feature hybrid exemplar
rehearsal strategy, we propose a simple, effective and
general framework (CKDF) that can be easily extended
to various kd-based methods.

4) Experiments demonstrate that the performances of three
kd-based methods have been improved significantly
when combined with the proposed CKDF and achieved
state-of-the-art performances on several CIL bench-
marks.

II. RELATED WORK

A. Continual Learning and Catastrophic Forgetting

CIL belongs to Continual Learning [12] and the core
problem is catastrophic forgetting. Many methods aiming
to solve the problem have been proposed in different task
settings. Generally, these methods can be divided into three
categories [13].

1) Regularization Approaches: The first is regularization
approaches [14]–[20]. This family introduces an extra regu-
larization term in the loss function, to consolidate previous
knowledge when learning on new data. However, regulariza-
tion approaches are not designed specifically for CIL and can
not generalize well on convolution networks [21].

2) Parameter Isolation Approaches: The second category
is parameter isolation approaches [22]–[27]. This family dis-
tributes different model parameters to each task preventing
any possible forgetting. Generally, the model in these works
will become bigger and bigger with learning new tasks incre-
mentally. Moreover, the approaches require a task oracle,
activating corresponding masks or task branches during pre-
diction, so parameter isolation approaches are applicable to
tasks incremental learning but not CIL.

3) Replay Approaches: The third one is replay
approaches [4]–[7], [9], [28]–[33], they store samples
in raw format or generate pseudo-samples with a generative
model. These previous task samples are replayed while
learning a new task to alleviate forgetting. The previous
replay methods usually make exemplar management by a
random or herding [4] strategy. Recently, Liu et al. [34]
propose a dynamic memory management strategy that is
optimized for the incremental phases and different object
classes, which improves several replay methods obviously.
Most previous works do not use all the samples as the model
inputs to train the new classifier network immediately but
utilize the kd technique [4]–[7], [9], [30] or the manifold
learning technique [28], [31], [33] to constrain optimization
of the new task loss to prevent the task interference. Liu et al.
recently propose AANets [35] including stable blocks and
plastic blocks, which can learn automatically to trade off
stability and plasticity [36] during training the new model in
an end-to-end way to improve replay methods significantly.
Especially, Tao et al. [37] propose a novel topology-preserving
method that constructs and grows the elastic Hebbian graph
restrictively to preserve the feature space topology of old
classes to alleviate forgetting when learning new classes,
and they extend the approach to tackle the few-shot class-
incremental learning problem (FSCIL) in [38]. Inspired by
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the above works, Liu et al. [39] and Dong et al. [40] develop
the approaches preserving the structural knowledge of old
classes for CIL and FSCIL, respectively. But all of these
works did not address the feature uncalibration problem. Our
approach belongs to replay methods for CIL and we focus
on the kd-based methods. Different from the previous works,
we focus on relieving the feature uncalibration problem to
improve the performance of kd-based methods. There are also
some works that fix the FE or the first part of the convolution
layers of FE and train other parts of the model [41], [42]
while the performances of these approaches are limited.

B. Knowledge Distillation-Based Methods

LwF [1] is the first work to introduce the kd technique into
CIL. LwF does not store exemplars but just uses data of the
current task to make knowledge transferring. After that, most
kd-based methods combine the kd technique with the exemplar
rehearsal [4]–[7]. Most of them perform well and achieve the
state-of-the-art performances. Here, we summarize the popular
strategies for training the network and handling catastrophic
forgetting.

1) Problem Formulation: We are given a dataset D =
{(x, y)|x ∈ X , y ∈ Y} where X is a set of images with labels
Y belonging to the classes in C. In the CIL setting, C is split
to T subsets C1, C2, . . . , CT , where C = C1 ∪C2 ∪· · ·∪CT and
Ci ∩ C j = ∅ for i �= j . We denote Dt as the dataset of class
set Ct , X t = {x |(x, y) ∈ Dt } and Y t = {y|(x, y) ∈ Dt }
as the new training images and labels of the new classes
at task t . We denote Ê t as all the stored image exemplars
of the old classes at task t for experience replay methods
and Ê t = ∅ when methods do not store image exemplars.
We denote D̂t = Dt ∪ Ê t , X̂ t = {x |(x, y) ∈ D̂t }, Ŷ t =
{y|(x, y) ∈ D̂t } as all the observable dataset, all the available
images and labels at task t , respectively. At task t , we have a
model f t−1

θ,W which has incrementally learned the old classes

Ĉt−1 = {C1, C2, . . . , Ct−1}. Now, observing the new classes
Ct , the goal is to train a new model f t

θ,W that can perform

classification on all the classes Ĉt with the dataset D̂t .
2) Training Strategy: Most previous works of kd-based

methods have the common process that trains the new model
by minimizing two losses: the CE loss and the kd loss.
We denote the learned classifier typically a convolutional
neural network by fθ,W : X → R

N , where N is the number
of learned classes. The learned classifier can be divided into
two components denoted by hθ and gW which are the f eature
extractor (FE) and the linear classifier, respectively, where
θ, W are the parameters. The CE loss of classification (LC E )
is typically computed as follows:

LC E =
∑

(x,y)∈D̂t

m+n∑

i=1

−δi (x)log[σi( f t
θ,W (x))] (1)

where δi (x) is the label indicator function, m, n are the number
of learned and new classes respectively and σ is either the
so f tmax or sigmoid function. The kd loss (L K D) is used to
encourage the new network f t

θ,W to mimic the output of the

previous task model f t−1
θ,W . It is typically computed as follows:

L K D =
∑

x∈X̂ t

m∑

i=1

−σi ( f t−1
θ,W (x))log[σi( f t

θ,W (x))]. (2)

So the new model f t
θ,W is trained by the overall loss:

L = λ1 L K D + λ2 LC E (3)

where λ1, λ2 are hyper parameters. Note that f t
θ,W is contin-

ually updated at task t , whereas the network f t−1
θ,W is frozen

and will not be stored after the completion of task t . We use
the same denotations for the rest of this paper.

After training the new model, previous works have dif-
ferent subsequent processing. For example, iCaRL [4] takes
the nearest-mean-of-exemplars (NME) classification strategy
to classify all the observed classes. Some previous works
further correct the task-recency bias of a part of (e.g., the
linear classifier) or the whole of the new model with a small
validation dataset, such as BiC [5], EEIL [6]. Most previous
works ignore the feature uncalibration problem and use the
previous task model to make knowledge transferring directly.
Different from the previous works, we do not learn the existing
knowledge from f t−1

θ,W but from FCTM and we utilize an
image-feature hybrid storage strategy to train FCN.

III. OUR APPROACH

A. The Overall Design

Learning knowledge of previous tasks from the ground-truth
model instead of the old model in Fig. 1 in training the
new model improves basic kd-based methods significantly (cf.
Fig. 4 and Section V). Therefore, a key point of our approach
is to train a feature calibrated teacher model (FCTM) with a
much relieved feature uncalibration problem, since the ground
truth model is unavailable in the CIL setting. So, we put
forward feature calibration for the old model and propose
CKDF to train the new model.

As demonstrated in Fig. 5, our approach for training the
new model is a cascaded knowledge distillation framework
and has three stages in training each new task except task 1
(The first task is a typical classification task). Stage 1 is
used to train FCN. We use all the available data including
the stored images and features of the old classes and the
images of the new classes to train an FCN to alleviate the
feature uncalibration problem. Stage 2 is used to train the
new model. After training FCN, we obtain FCTM composed
of FCN and the frozen FE of the old model. Then, we replace
the old model in Fig. 1 with FCTM to train the new model.
Finally, the feature-exemplars of the old classes are updated in
stage 3. After completing a new task, the new model changes
and the feature exemplars of the previous tasks are out-of-
date. We apply feature adaptation [7] to adapt the old feature
exemplars to be in the right feature space of the new model.

B. Stage 1: Training FCN

To obtain a feature calibrated teacher model with a less
feature uncalibration problem to be used in training, we design
FCN with two objectives: (1) FCN can generate new features
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of an old class that are distinct from the new classes. It can
adjust the relative importance of the extracted features of
the old class which are used to distinguish it from other
classes especially the new ones. Therefore, it can mitigate the
feature confusion of the old model and the conflict between
the existing knowledge of the old model and the knowledge
of the new classes. (2) FCN also has the ability to preserve
the knowledge of the old model, which is still important to
distinguish among different old classes.

In the CIL settings, the data of future classes are unavailable,
but we can observe the newly coming classes when learning
the new task. So we can use the data of the newly coming
classes and the exemplars of old classes to calibrate the
existing knowledge of the old model.

We use the features extracted by the old model and the
feature exemplars as the input for training FCN. In this work,
we focus on image classification tasks. FCN is a shallow
fully connecting network (2-3 hidden layers) and we use
the multi-classes CE loss to achieve the feature calibration.
We denote V t and V̂ t as the selected features of the new
classes to be stored and the feature exemplars from all the
previous tasks at task t , respectively. The feature calibrating
loss (L FC ) is computed as follows:

L FC =
∑

(x,y)∈D̂t

m+n∑

i=1

−δi (x)logσi ( f t
FC N (ht−1

θ (x)))

+
∑

(v,y)∈V̂ t

m∑

j=1

−δ j (v)logσ j ( f t
FC N (v)) (4)

where f t
FC N is FCN to be trained at task t , σ is the so f tmax

function, ht−1
θ is the f eature extractor (FE) of f t−1

θ,W which
is fixed. The rest denotation is the same as Section II-B.
Because the kd loss in typical kd-based methods encourages
the preservation of the old model’s confused decision boundary
in the new model and typical kd-based methods ignore this
problem and so suffer from the feature uncalibration prob-
lem. Through Equation 4, we use the multi-classes cross-
entropy (CE) loss function computed by all observed data to
calibrate the decision boundary of the old model. Moreover,
the image-feature hybrid sample rehearsal strategy alleviates
the task-recency bias of FCN caused by the data imbalance
problem when training FCN. So after training FCN, the feature
uncalibration problem is relieved effectively, which helps to
improve the performances of kd-based methods.

It is worth noting that although we use the multi-classes
CE loss function to train FCN, we do not aim to learn new
knowledge to distinguish new classes but focus on adjusting
the existing knowledge to relieve the conflict between the
knowledge of the old model and the knowledge of the new
classes (Objective 1). In section IV-F, we conduct experiments
with a different feature calibrating loss which sees all the
new classes as one super-class, and it also outperforms the
baselines.

To achieve the second objective, FCN must preserve the
information in the old model that is important for the classi-
fication among old classes. To this end, we use the original
old model as an anchor to prevent the calibrated knowledge

from drifting far away from the old knowledge. We utilize the
kd technique to compute the anchor drifting loss (L AD) as
follows:

L AD =
∑

(x,y)∈D̂t

−
m∑

y=1

q̂y(x) log qy(x)

+ (1 − q̂y(x)) log(1 − qy(x))

+
∑

(v,y)∈V̂ t

−
m∑

y=1

p̂y(v) log py(v)

+ (1 − p̂y(v)) log(1 − py(v))

q̂y(x) = 1

1 + ex p(− ( f t−1
θ,W (x))y

T1
)

qy(x) = 1

1 + ex p(− ( f t
FCN (ht−1

θ (x)))y

T2
)

p̂y(v) = 1

1 + ex p(− (gt−1
W (v))y

T1
)

py(v) = 1

1 + ex p(− ( f t
FCN (v))y

T2
)

(5)

where gt−1
W is the frozen linear classifier of the original

teacher model f t−1
θ,W at task t − 1, T1 and T2 are temperatures.

If T1 = T2, L AD is a typical loss of knowledge distilla-
tion. Hinton et al. [43] suggest that higher temperatures will
increase the weight of smaller logit values and encourage the
network to better encode similarities among classes. T1 > T2 is
equivalent to a relaxed anchor (the soft target computed from
the output of the old model). In this work, we employ a
relaxed anchor on most experiments. L AD is added to the
feature calibrating loss, resulting in the overall loss function
for training FCN as:

L FC N = L FC + λL AD (6)

where λ is the hyper-parameters.

C. Stage 2: Training New Model

After training FCN, we obtain FCTM with a less feature
uncalibration problem which attaches FCN to the frozen FE of
the previous task model. Our approach (CKDF) can be applied
to adapt typical kd-based methods as long as we replace the
previous task model with FCTM to train the new model.
Our main method (CKDF-iCaRL) is adapted from iCaRL
by CKDF. The CE loss (LC E ) and the kd loss (L K D) are
computed as follows:

LC E = −
∑

(xi ,yi )∈D̂t

m+n∑

y=1

δy=yi (xi ) log σy( f t
θ,W (xi ))

= (δy �=yi (xi)) log(1 − σy( f t
θ,W (xi ))) (7)

L K D = −
∑

(xi ,yi )∈D̂t

m∑

y=1

σy( f t
FCT M (xi )) log σy( f t

θ,W (xi ))

+ (1 − σy( f t
FCT M (xi ))) log(1 − σy( f t

θ,W (xi))) (8)
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where σ is the sigmoid function, f t
FCT M (xi) =

f t
FC N (ht−1

θ (xi )) is the feature calibrated teacher model
which attaches the trained FCN ( f t

FC N ) to the FE (ht−1
θ ) of

the previous task model ( f t−1
θ,W ) at task t and it is fixed when

training the new model. The overall loss function for training
the new model is:

Loverall = LC E + L K D (9)

At stage 2, we use all available images including the stored
image exemplars of old classes and the images of the current
task to train f t

θ,W without using the stored feature exemplars.
This is because the stored feature exemplars and the calibrated
feature exemplars, generated by mapping the stored feature
exemplars to the calibrated feature space by FCN, are not in
the right feature space of f t

θ,W . We split the memory budget
to store image and feature exemplars for training FCN and
the new model. CKDF employing the image-feature hybrid
storage performs better than using the pure image or feature
storage strategy (cf. Section IV-G.1).

D. Stage 3: Updating Feature Exemplars

At stage 1, we use the stored feature exemplars to train
FCN as shown in Fig. 5. The stored feature exemplars V t of
the new classes extracted by f t

θ,W at task t can be immediately

used in training the next task t + 1. But V̂ t is unsuitable to
be used at task t + 1, because V̂ t is not in the same feature
space as V t . We utilize feature adaptation (FA) [7] to update
V̂ t to generate new feature exemplars set V̂ t+1 = V̂ t

F A ∪ V t

when completing task t . V̂ t
F A is the adapted features that are

generated by mapping V̂ t to the feature space of V t through
feature adaptation. After adapting all the old feature exemplars,
all features of previous tasks are in the same feature space as
V t [7].

After training the new model, CKDF-iCaRL does not use
the new model directly but employs the NME strategy to make
inference like in iCaRL.

IV. EXPERIMENTS

In this section, we first give details for benchmark datasets
and experimental setup. Then, we conduct several experi-
ments to demonstrate the effectiveness of the proposed CKDF.
In addition, we also prove the generalization ability of the
proposed method by extending it to three basic kd-based
methods. Finally, we analyze the importance of each com-
ponent contained in CKDF and show the effect of the loss
function employed in our method. Our code is available at
https://github.com/CSTiger77/CKDF.

A. Datasets and Exemplar Management

We conduct experiments on CIFAR-10, CIFAR-100 [44]
and randomly choose 50 classes from ImageNet ILSVRC
2012 (referred to ImageNet-50) [45] to validate our approach.
We pad 4 pixels for images in CIFAR-10 and CIFAR-100
and then random crop them into 32 × 32 pixels. Images
in ImageNet-50 are first resized to 256 × 256, then random

cropped to 224 × 224 pixels. We use horizontal and vertical
flips in all image pre-processings.

The memory budget is fixed to the size of storing
2000 images [4]–[7] for all experiments in this work and it is
divided into two parts for the image-feature hybrid methods:
one is for storing image exemplars and the other is for storing
feature exemplars. In this work, the split ratio is set to 90 : 10,
i.e. 90% of memory budget is for image exemplars and 10%
for feature exemplars. Although the size of memory for the
feature exemplars storage is much smaller than that for the
image exemplars storage, we still store a large number of
feature exemplars because the feature of an image has a much
lower dimension. For example, we can store 1800 (90% of
2000) image exemplars and 58800 (10% × 2000 × 294)
feature exemplars on ImageNet-50. We follow the exemplar
management of iCaRL to select image and feature exemplars,
where the image-exemplars and the feature-exemplars are not
overlapping.

B. Baselines and Metrics

We choose two state-of-the-art kd-based methods with the
exemplars rehearsal (iCaRL [4], BiC [5]) as baselines. We also
use an extended version of LwF [1], namely LwF-UE (LwF
using exemplars) as a compared method. LwF doesn’t apply
any experience replay technique. In this work, we focus on
kd-based methods with the exemplar rehearsal, so we adapt
LwF by introducing the exemplar rehearsal to it. The adapted
method (LwF-UE) outperforms LwF significantly, and we use
it instead of LwF as a baseline for a fair comparison.

We use a common metric in the continual learning literature:
average accuracy [11] for overall performances to validate our
approach.

C. Implementation Details

We use ResNet18 (d = 512) for ImageNet-50 and ResNet34
(d = 512) [46] for CIFAR-10 and CIFAR-100. When training
networks, we follow the standard practices for fine-tuning
existing networks. The training details of the three stages are
as follows:

1) Training FCN: During training FCN, we train FCN
by oversampling the image exemplars and feature exemplars
of old classes. FCN is a 4-layers (3 hidden layers) multi-
layer perceptron (MLP) with ReLU activation. FCN uses the
features extracted by the previous task model or the feature
exemplars (d = 512) as the input. The first two layers are
hidden layers with dimensions d � = 16d . The output of the
penultimate layer is the calibrated features (d = 512) and
the last layer of FCN is the linear classifier. We use the
same set of hyper-parameters and utilize Adam for training
FCN in all experiments. The number of training epochs is 60.
The learning rate is set to 0.001 and reduced to 1/5 of the
previous rate after 20, 40, 55 epochs. The weight decay and
the momentum are set to 0.0001 and 0.9, respectively. The
batch size is 128. T1 and T2 in Equation 5 are set to 2, 1. λ
in Equation 6 is set to the square of T1 of Equation 5.
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Fig. 6. The accuracy over classes of each incremental batch at the final stage of the experiments with 5 (a), 2 (b) classes per batch on CIFAR-10
and 50 (c), 20 (d) classes per batch on CIFAR-100.

TABLE I

COMPARISON ON CIFAR-10 (ACCURACY %)

2) Training New Model: We use stochastic gradient
descent (SGD) to train the new model with different
hyper-parameters on different datasets. The training details are
listed as follows:

CIFAR-10 We train the network for 120 epochs with
128 batch size, 0.00001 weight decay and 0.9 momentum at
each task. The learning rate is set to 0.1 and reduced by a
factor of 5 at 30, 60, 90, 100, 110 epochs.

CIFAR-100 The number of training epochs is 90 at each
task. The learning rate is set to 1 and reduced the learning rate
by a factor of 5 at epochs 50, 64 and 81. The weight decay
and the momentum are set to 0.00001 and 0.9, respectively.
The batch size is 128.

ImageNet-50 We train the network for 90 epochs with
128 batch size at each task. The weight decay and the
momentum are 0.0005 and 0.9. The learning rate is set to
0.1 and reduced to 1/5 of the previous rate after 20, 40, 60,
70, 80 epochs.

3) Updating Feature Exemplars: During updating feature
exemplars, we train a feature adaptation network (FAN) with
all the available images at the current task. The structure of
FAN is the same as FCN. When training FAN, we copy FCN
and fine-tune it. We use the same set of hyper-parameters to
train FAN as training FCN.

D. Main Experiments

1) Evaluation on CIFAR-10 and CIFAR-100: We make
experiments on CIFAR-10 and CIFAR-100, each of them is
split into 2 and 5 incremental batches. Tables I and II show the
results of these experiments, where CKDF-iCaRL is our main

TABLE II

COMPARISON ON CIFAR-100 (ACCURACY %)

method employing the image-feature hybrid storage strategy
and CKDF-PI-iCaRL is adapted from iCaRL by CKDF with
the pure image storage.

As shown in the tables, the performance of LwF-UE drops
quickly. BiC that improves LwF-UE by utilizing the data
rebalance to correct the bias of linear classifier of the new
model is one of the state-of-the-art methods. Both our methods
significantly outperform this baseline by about [0.2%, 11%]
over all experiments except for the 2 incremental batches
on CIFAR-10. As a Not-End-to-End method, iCaRL that
combines the kd technique with the NME strategy is another
one of the state-of-the-art methods. Our methods outperform
this strong baseline at nearly every stage. CKDF-iCaRL
outperforms iCaRL at the final stage of all experiments by
about [0.95%, 2%] and CKDF-PI-iCaRL outperforms iCaRL
by about [0.32%, 2.6%]. Besides, CKDF-iCaRL that applies
the image-feature hybrid storage performs better than CKDF-
PI-iCaRL with the pure image storage strategy. Fig 6 shows
a comparison of the average accuracy over each incremental
batch at the final stage of the experiments between our
methods and the baselines. The number of batches in which
our methods surpass the baselines is the same or more than
those we lose, so our methods show better performances than
the baselines.

2) Evaluation on ImageNet-50: 50 classes of ImageNet-50
are split into 2, 5, 10 incremental batches. All the average
accuracies at the final stage are shown in Table III. Our method
CKDF-iCaRL outperforms BiC over the three experiments by
about 1.28%, 3.8% and 8.9%, respectively. The results of
CKDF-iCaRL are above iCaRL by 2.5%, 1.8% and 0.9%
on the three experiments. CKDF-PI-iCaRL also performs
better than the baselines. Fig. 7a shows that the accuracy of
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Fig. 7. Experimental results of class-incremental training on ImageNet-50:(a) Our methods outperform the baselines at nearly every stage on ImageNet-50.
(b) The accuracy over classes of each batch at the final stage of experiments with 10, 5 classes per batch on ImageNet-50.

TABLE III

COMPARISON ON IMAGENET-50 (ACCURACY %)

CKDF-iCaRL at nearly every stage is above the baselines.
Fig. 7b demonstrates that CKDF-iCaRL performs better over
nearly all the incremental batches than the baselines at the
final stage of the experiments.

From the main experiments, we can see that our approach
using the feature-image hybrid storage strategy (CKDF-
iCaRL) performs better than using the pure image storage
strategy (CKDF-PI-iCaRL) and both of them achieve the state-
of-the-art average accuracies on CIFAR-10, CIFAR-100 and
ImageNet-50.

E. Extended Experiments

To test the generalization ability of CKDF, we use CKDF
to adapt three types of kd-based methods: LwF-UE, iCaRL
and BiC. LwF-UE is an end-to-end method, while iCaRL is
not end-to-end and BiC further corrects the task-recency bias
of the linear classifier with an additional bias layer, which
is trained on a small validation dataset through data balance
techniques (i.e., under-sampling or over-sampling) after train-

TABLE IV

INCREMENTAL LEARNING RESULTS (AVERAGE ACCURACY % ON THE

FINAL STAGE) OF EACH INCREMENTAL BATCH ON EXTENDED EXPER-
IMENTS WITH 5, 2 CLASSES PER BATCH ON CIFAR-10 AND 50, 20

CLASSES PER BATCH ON CIFAR-100

TABLE V

INCREMENTAL LEARNING RESULTS (AVERAGE ACCURACY % ON
THE FINAL STAGE) OF EXTENDED EXPERIMENTS WITH 25,

10 AND 5 CLASSES PER BATCH ON IMAGENET-50

ing the new model. We denote CKDF-LwF-UE, CKDF-BiC
as the adapted methods of LwF-UE, BiC by CKDF, respec-
tively. We conduct experiments on CIFAR-10, CIFAR-100 and
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Fig. 8. The trend of multi-class average accuracy of each incremental learning
stage on extended experiments on CIFAR-10, CIFAR-100 and ImageNet-50.

ImageNet-50. Our main method CKDF-iCaRL is the adapted
method of iCaRL and we have conducted experiments and
shown the results in the main experiments. Here, we show the
results once again together with the results of CKDF-LwF-UE
and CKDF-BiC to validate that CKDF improves various types
of kd-based methods with the exemplar rehearsal.

Table IV shows the comparison between the baselines
and the corresponding adapted methods on CIFAR-10 and
CIFAR-100. We find that our approach improves the baselines
with different degrees. Specifically, CKDF-LwF-UE improves
LwF-UE by more than 5% on the experiments with 2 classes
per batch on CIFAR-10 and 20 classes per batch on CIFAR-
100. CKDF-iCaRL outperforms iCaRL by [0.95%, 2.03%].
CKDF-BiC performs better than BiC by about [1.5%, 4.5%]
on CIFAR-10 and on the experiment with 2 incremental
batches on CIFAR-100 but loses on the experiment of CIFAR-
100 with 5 incremental batches.

Table V shows the similar results that the adapted meth-
ods outperform the baselines on ImageNet-50. Especially,
our approach improves LwF-UE sizeable by about 10% on
the experiment with 5 classes per batch on ImageNet-50.
Fig. 8 shows the trend of multi-class average accuracy at
each incremental learning stage. The adapted methods surpass
the corresponding baselines nearly on every stage of the
experiments. The results of these experiments demonstrate that
our approach can be extended to various kd-based methods and
improve them.

F. Alternative Experiments

When training FCN, we assume that adjusting the old
knowledge to distinguish the old classes from the new classes
is more important than learning new knowledge of new classes
for classifying among them. To validate this assumption,

TABLE VI

INCREMENTAL LEARNING RESULTS (ACCURACY %) OF THE EXPERI-
MENTS WITH 2 CLASSES PER BATCH ON CIFAR-10

TABLE VII

INCREMENTAL LEARNING RESULTS (ACCURACY %) OF THE EXPERI-
MENTS WITH 20 CLASSES PER BATCH ON CIFAR-100

we conduct experiments with a new feature calibrating loss
which sees all the new classes of the new task as one
superclass. The new feature calibrating loss is computed as
follows:

L FC =
∑

(x,y)∈D̂t

m+1∑

i=1

−δi (x)logσi ( f t
FC N (ht−1

θ (x)))

+
∑

(v,y)∈V̂ t

m∑

j=1

−δ j (v)logσ j ( f t
FC N (v)) (10)

where m and 1 of m + 1 are the number of old classes and
new classes, respectively. We adapt iCaRL and LwF-UE by our
approach with the new feature calibrating loss, namely with
a prefix CKDF-OSC- (CKDF-OneSuperClass-) and conduct
experiments with 5 incremental batches on CIFAR-10 and
CIFAR-100. The results of the experiments are shown in
Tables VI and VII.

From Tables VI and VII, we can see that CKDF-OSC-
iCaRL, CKDF-OSC-LwF-UE are inferior to CKDF-iCaRL
and CKDF-LwF-UE but perform better than the original base-
lines. Especially, CKDF-OSC-LwF-UE improves LwF-UE by
large margins: 4.9% on CIFAR-10 experiments and 5.5% on
CIFAR-100 experiments. These results show that even though
FCN just learns to distinguish old classes from new classes but
not learns to classify new classes, CKDF-OSC-LwF-UE and
CKDF-OSC-iCaRL still improve the corresponding baselines.

G. Ablation Study

1) The Sensitivity to Split of Memory Budget: In CKDF,
we store and use the feature exemplars to train FCN. We also
conduct ablation experiments without the feature exemplars.
We conduct experiments through CKDF-PI-iCaRL which is
adapted from iCaRL by our approach with the pure image
storage strategy on CIFAR-10, CIFAR-100 and ImageNet-50.
The results are shown in Tables I, II and III and in Fig. 6, 7.
From these results, we find that CKDF with the pure image
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Fig. 9. Results on the split of memory budget experiments. The left is for
CKDF-split-iCaRL which adapts iCaRL by our approach with various split
ratios of memory for image exemplar storage, the right is for CKDF-split-BiC.

TABLE VIII

INCREMENTAL LEARNING RESULTS (ACCURACY %) OF THE ABLATION

EXPERIMENTS WITH 2 CLASSES PER BATCH ON CIFAR-10

storage strategy without using feature exemplars is still effec-
tive and improves kd-based methods.

At the stage of training the new model, we just use all avail-
able images to train the new model without using the stored
feature exemplars. So we must trade off the memory budget
designated for the feature exemplars and the image exem-
plars. We conduct experiments with 5 incremental batches
on CIFAR-10 and CIFAR-100 to analyze the sensitivity of
our approach to the split ratio of memory budget. We select
0%, 50%, 80%, 90% and 100% of the memory budget to
store image exemplars to conduct experiments. We use the
prefix CKDF-split- to denote the adapted methods which
adapt the baselines through CKDF with various split ratios
of the memory budget. 0% of the memory budget to store
image exemplars is equal to the pure feature storage and
100% is corresponding to the pure image storage strategy.
We use the end-to-end output of the new model for inference
on experiments of CKDF-split-iCaRL at 0%. BiC needs a
validation set of exemplars of old classes to correct the bias
of the new model, so we begin the split ratio from 50% on
CKDF-split-BiC experiments. The results are shown in Fig. 9.

From the results, we can see that our approach is sensitive to
the split ratio of memory budget between the feature exemplars
and the image exemplars. And it seems that the average
accuracy rises first and then falls along with the increasing
of the split ratio of memory budget for the image exemplar
storage and may obtain the best results with a ratio between
90% to 100% in our experiments.

2) Other Ablation Experiments: To analyze the function
of the anchor drifting loss, we conduct ablation experi-
ments which compare CKDF-iCaRL and CKDF-LwF-UE with

TABLE IX

INCREMENTAL LEARNING RESULTS (ACCURACY %) OF THE ABLATION
EXPERIMENTS WITH 20 CLASSES PER BATCH ON CIFAR-100

Fig. 10. Comparison on kd-based methods using different models as the old
model in Fig. 1. Each experiment has 2 incremental learning batches. The
methods named with the prefix CKDF are our approaches.

their corresponding ablated methods without the anchor drift-
ing loss, namely NoAnchor-iCaRL and NoAnchor-LwF-UE.
In training FCN, we oversample the exemplars of old classes.
Here, we validate our approach through ablation experiments
without any oversampling, namely with the prefix CKDF-
NOS-(CKDF-No Over Sampling).

Table VIII demonstrates the performances of the ablated
methods without the anchor drifting loss function. The ablated
methods perform better at the beginning but drop quickly,
resulting in relatively poor results finally on CIFAR-10,
compared with CKDF-iCaRL and CKDF-LwF-UE. Table IX
similarly demonstrates that the ablated methods are inferior
to CKDF-iCaRL and CKDF-LwF-UE on CIFAR-100. The
ablated methods without the anchor drifting loss perform
worse than the original baselines as shown in the two tables.
These results suggest that the anchor drifting loss function is
important for our approach.

The results of ablation experiments without oversampling
the exemplars of the old classes are also shown in Tables VIII
and IX. The two tables show that CKDF-NOS-iCaRL with-
out oversampling is inferior to CKDF-iCaRL while CKDF-
NOS-LwF-UE performs better than CKDF-LwF-UE. Both
the ablated methods without oversampling outperform the
baselines on CIFAR-10 and CIFAR-100 by the margins of
0.47% and 6.41%, respectively. These results strongly suggest
that the effectiveness of CKDF is relied on its own mechanism
but not oversampling. At the same time, the data rebalance
technique may improve our approach to some extent.
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Fig. 11. Visualization experiments. The left is the visualization of features
extracted by the old model, the middle is the visualization of calibrated
features and the right is for the ground-truth model. The red samples are
the first batch (old classes), the blue are the second batch (new classes), the
digits in the figure are the labels.

V. DISCUSSION

A. Diagnosis: Feature Uncalibration Problem

Our approach is based on the observation that typical
kd-based methods suffer from the feature uncalibration prob-
lem. The feature uncalibration problem refers to the phenom-
enon that the feature confusion of the old model between
the learned and new classes is detrimental to transferring the
existing knowledge from the old model to the new model
when learning new classes in the way as in typical kd-based
methods.

We conduct experiments to demonstrate this phenomenon:
First, we pre-train the ground-truth model using all the data
including all the classes in CIL. Then, we conduct three
groups of control experiments, the first group is to transfer
knowledge from the old model to the new model according to
the standard process of typical kd-based methods. The second
group uses our approach to train the new model. The third
group replaces the old model in Fig. 1 with the ground-truth
model in training the new model. The management of memory
budget is the same as described in Section IV. Each experiment
has 2 incremental learning steps. The results are shown in
Fig. 4 and 10.

As shown in Fig. 10, gt-iCaRL, gt-LwF-UE and gt-BiC
using the ground-truth model, which is without the feature
uncalibration problem outperform the original baselines by
very large margins. For example, gt-BiC gets the accuracy:
0.9380, 0.7275 on experiments with 5 classes per batch on
CIFAR-10 and with 50 classes per batch CIFAR-100, respec-
tively, better than the corresponding results of original BiC:
0.8785, 0.6237. The results also show that our approach using
FCTM loses to the methods using the ground-truth model yet
still outperforms the baselines.

The results demonstrate that typical kd-based methods suffer
from some unknown problems and the ground-truth model can
greatly relieve these problems and improve their performances.
To analyze the problems, considering that the ground-truth
model can make inference on all the classes well, we assume
that the previous task model trained with the data of old classes
but without observing new classes confuses the new classes
with the learned classes, therefore, the existing knowledge of
the previous task model may conflict with the new knowledge
of new classes.

To validate our assumption, we conduct visualization exper-
iments including two groups of control experiments. We select
a small subset with 4 classes from CIFAR-100, denoted

Fig. 12. The multi-class average accuracy on the subset with 4 classes
selected from CIFAR-100 with 2 incremental learning batches.

as D. We divide D into two incremental learning batches
D = {D1,D2}, where D1 ∩ D2 = ∅. Then we train models
according to two approaches: iCaRL, gt-iCaRL. The memory
budget is fixed to 2000. At the second incremental learning
step, we extract two groups of features of the training datasets,
the first is using the feature extractor h1

θ of the previous task
model which is trained by the dataset D1, the second group is
using the ground-truth model trained by the dataset D. Then
we visualize the features through t-SNE [47] in Fig. 11. From
Fig. 11, we can see that the features extracted by the original
old model has the most mutual intrusion between the learned
classes (the first batch classes) and the new classes (the second
batch classes).

B. Analysis on FCN

From Fig. 4, 10 and section IV, we can see that CKDF
is effective indeed. But why our approach is effective? Here,
we assume the reason why the approach that transfers knowl-
edge from the ground-truth model or FCTM is effective is
that the ground-truth model and FCN relieve the feature
uncalibration problem and alleviate the conflict between the
existing knowledge of the old classes and the knowledge of
the new classes.

We conduct visualization experiments to validate this
assumption. We add a control experiment which is conducted
according to CKDF-PI-iCaRL in the same setting of the
experiments in Fig. 11. We first extract features of all the
classes by h1

θ then map the features to the calibrated feature
space to obtain the calibrated features by f 2

FC N at the second
incremental learning step. Then we visualize the calibrated
features through t-SNE. From the visualization (Fig. 11),
we can see that the ground-truth model has scarcely any
mutual intrusion between the features of old classes (red
samples) and new classes (blue samples), while the original
old model has the most mutual intrusion and FCN is at the
middle ground. With these three group features, we train
three linear classifiers, the training accuracy rates are 72.35%,
74.22% and 98.44% respectively and the test accuracy rates
are 22.25%, 31.75% and 62.75%. Ground-truth model and
FCTM alleviate the mutual intrusion really and as Fig. 12
shows, the approaches using the ground-truth model and
FCTM outperform iCaRL. Interestingly, gt-iCaRL using the
ground-truth model outperforms the ground-truth model itself
(the upper bound).
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C. Conclusion and Future Work

In this work, we discover that the previous kd-based meth-
ods suffer from the feature uncalibration problem in CIL and
the ground-truth model can greatly relieve the problem and
improve the kd-based methods significantly. Based on this
observation, we put forward the feature calibration for the old
model and propose CKDF to realize the feature calibration.
In CKDF, we take an image-feature hybrid storage strategy
that trades off the split of the memory budgets to store image
and feature exemplars of the previous tasks for training FCN
and the new model. CKDF which employs the hybrid storage
performs better than using the pure image or feature stor-
age strategy. Our main method (CKDF-iCaRL) which adapts
iCaRL by CKDF achieves state-of-the-art performances on
three CIL benchmarks. Moreover, CKDF is a general frame-
work and can be easily extended to various kd-based methods
to improve performances significantly. We also put insight into
components of our approach and analyze the mechanism why
using the ground-truth model or FCTM instead of the old
model in Fig. 1 is effective through experiments.

We think that the feature uncalibration problem virtually
reflects the possible conflict between the existing knowledge
of the previous task model and the new knowledge of the
current task. It is better to make calibration for the existing
knowledge to relieve the conflict before learning the existing
knowledge from the previous task model when learning the
new task. At the same time, most previous works on CIL
use the old model directly. For example, regularization-based
approaches consolidate the previous knowledge of the old
model by introducing an extra regularization term in the loss
function. They may also suffer from the feature uncalibration
problem and it would be informative to study the influence of
this problem on them in future works.
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