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Abstract—1In our daily life, a large number of activities
require identity verification, e.g., ePassport gates. Most of those
verification systems recognize who you are by matching the
ID document photo (ID face) to your live face image (spot
face). The ID vs. Spot (IvS) face recognition is different from
general face recognition where each dataset usually contains a
small number of subjects and sufficient images for each subject.
In IvS face recognition, the datasets usually contain massive class
numbers (million or more) while each class only has two image
samples (one ID face and one spot face), which makes it very
challenging to train an effective model (e.g., excessive demand
on GPU memory if conducting the classification on such massive
classes, hardly capture the effective features for bisample data
of each identity, etc.). To avoid the excessive demand on GPU
memory, a two-stage training method is developed, where we first
train the model on the dataset in general face recognition (e.g.,
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MS-Celeb-1M) and then employ the metric learning losses (e.g.,
triplet and quadruplet losses) to learn the features on IvS data
with million classes. To extract more effective features for IvS
face recognition, we propose two novel algorithms to enhance the
network by selecting harder samples for training. Firstly, a Cross-
Batch Hard Example Mining (CB-HEM) is proposed to select the
hard triplets from not only the current mini-batch but also past
dozens of mini-batches (for convenience, we use batch to denote
a mini-batch in the following), which can significantly expand the
space of sample selection. Secondly, a Pseudo Large Batch (PLB)
is proposed to virtually increase the batch size with a fixed GPU
memory. The proposed PLB and CB-HEM can be employed
simultaneously to train the network, which dramatically expands
the selecting space by hundreds of times, where the very hard
sample pairs especially the hard negative pairs can be selected
for training to enhance the discriminative capability. Extensive
comparative evaluations conducted on multiple IvS benchmarks
demonstrate the effectiveness of the proposed method.

Index Terms—Face recognition, ID vs. spot, deep learning,
cross-batch hard example mining, pseudo large batch.

I. INTRODUCTION

ACE recognition [1]-[10] has been a thriving research

field in the past decades, on account of its wide range
of applications such as human identification [11]-[13], access
control [14], face retrieval [15] and so on. In many real-
world applications, face recognition is usually conducted by
matching the live face (called the spot face) with the face in
ID document (called ID face), which is called ID vs. Spot
(IvS) face recognition [12]. IvS face recognition plays an
important role in our daily lives, e.g., ePassport gates with
face authentication system.

Until now, the IvS face recognition still confronts some
critical challenges and needs profound studies. Different from
general face recognition [4], [5], [8]-[10], [16], the datasets
of IvS face recognition are usually captured from practical
face authentication systems (e.g., ePassport gates and ID
card gates), where a very large number of identities are
usually accessible (up to millions and even tens of millions
of identities) due to the high flow of people traffic but only
two images (a live face photo and a ID face) for each identity
can be captured. For such massive classes, if we directly
train the network with softmax loss or its modifications (e.g.,
AM-softmax [8], [9]), numerous parameters are brought in the
classifier layer, which poses a tremendous pressure on GPU
resource. To avoid this, we take a two-stage training method
for IvS face recognition. We first train the deep network
on large datasets (e.g., MS-Celeb-1M [17]) for general face
recognition with A-softmax loss function [5], which helps the
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network to obtain a good initialization. Then, the network is
finetuned on the IvS datasets with the metric learning loss
(both triplet loss [18] and quadruplet loss [19] are employed),
where the classifier layer can be removed in this stage. Triplet
loss and quadruplet loss learn features from different perspec-
tives, where triplet loss is constructed based on a triplet (an
anchor, a positive and a negative sample) and quadruplet loss
is constructed based on a quadruplet (four arbitrary samples
with two of a positive pair and the other two of a negative
pair). To our best knowledge, it is the first attempt to apply
the quadruplet loss to the task of face recognition.

In metric learning, one critical challenge is how to select
effective sample pairs in the training stage. Some previous
works [20], [21] propose the idea of Batch Hard Example Min-
ing (B-HEM) to select hard samples for training while ignoring
easy samples. As shown in Fig. 1 (a), more discriminative
features can be captured when training with B-HEM. However,
only using the B-HEM is not sufficient. In B-HEM, the hard
sample pairs can only be selected from the current batch
with containing a limited number of images. For example, the
maximal batch size can only be set to 384 with the 64-layer
residual network on three 2080Ti GPUs (11G memory per
GPU). In IvS face recognition, we find that a larger batch
size leads to a larger selecting space and thus the better
performance can be achieved as shown in Fig. 1 (b). To enlarge
the selecting space, we propose two new algorithms. The first
one is called Cross-Batch Hard Example Mining (CB-HEM).
Although the network parameters are changing throughout the
training process, the features of nearby iterations will not
be changed so much. Thus, the features of past batches can
also be an important reference when selecting hard sample
pairs. In other words, the sample selection is not limited
to the current batch but can be extended to dozens of past
M — 1 batches, where the selecting space can be extended by
dozens of times. However, the number of crossed batches M
cannot be set too large, where the network parameters would
be changed a lot after so many iterations. Thus the second
algorithm named Pseudo Large Batch (PLB) is proposed.
It updates the network parameters every PseudoN iterations
by using accumulated gradients. In this way, the batch size can
be virtually increased by PseudoN times. Thus, when PLB
is used with CB-HEM together, the searching space can be
further expanded. Besides, we also propose a new loss term
in PLB to build the connections among the samples in different
iterations, where the samples in previous iterations can also be
selected to calculate the loss in the current iteration.

The contributions of our work can be summarized as
follows: (1) A novel method called Cross-Batch Hard Example
Mining (CB-HEM) is proposed for IvS face recognition.
Compared with previous B-HEM, it selects the hard sample
pairs from both current and past batches rather than only
the current batch, which helps capture more effective sample
pairs for training. (2) A Pseudo Large Batch (PLB) method
is proposed to virtually increase the batch size with breaking
through the limitation of GPU memory. It can be used with
CB-HEM concurrently to further expand the searching space,
where more difficult sample pairs can be captured for training.
(3) Both triplet and quadruplet losses are employed to optimize
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Fig. 1.  The left: the comparisons of training the network with (‘w/’)

or without (‘w/0’) Batch Hard Example Mining (B-HEM). The triplet loss
(denoted by “Tri’) is employed as the loss function. The right: the comparisons
of training the network with different batch size (denoted by ‘BS’). The triplet
loss with B-HEM is employed as the loss function. All networks are trained
on Private-IvS-Train-S and evaluated on Private-IvS-Test (see Section IV-A
for details).

the network from different aspects. To our best knowledge, it is
the first attempt to apply the quadruplet loss to IvS face recog-
nition. (4) Extensive comparative evaluations demonstrate the
superiority of the proposed method over several benchmark
datasets including Private-IvS, Public-IvS and LFW-BLUFR.

II. RELATED WORKS

A. General Face Recognition

Face recognition [1]-[5], [8]-[10], [12], [13], [22], [23],
which has been studied for more than 30 years, is a very
classical problem in computer vision. In 1990s to early
2010s, the holistic approaches (e.g., linear subspace [24],
manifold [25] and sparse representation [26]), local descriptors
(e.g., Gabor [27] and LBP [28]) dominated the face recognition
community. Most of those feature descriptors are handcrafted,
which suffers from a lack of distinctiveness and compactness.
Later, face recognition has achieved a series of breakthroughs
owing to the great success of deep learning [29]-[39]. e.g.,
DeepFace [40], DeeplD [3], DeepID2 [13] and FaceNet [18].
Very recently, many researchers find that the loss function
plays an important role in face recognition, while traditional
softmax loss is not powerful enough to extract the discrimina-
tive features. Thus, a series of loss functions [4], [5], [8]-[10],
[41]-[47] are proposed to boost the performance, e.g., Center
loss [41], L-softmax [4], A-softmax [5], AM-softmax [8], [9]
and so on. All of those losses share the same idea to
improve the discriminative capability: maximize the inter-class
variations and minimize the intra-class variations. For exam-
ple, center loss [41] is proposed to learn centers for each
identity and minimize the intra-class distance by narrowing
the distance among each sample and its corresponding cen-
ter. L-softmax [4], A-softmax [5] and AM-softmax [8], [9]
improve the feature discrimination by adding angular or cosine
margin constraints. Moreover, some works adopt the attention
mechanism [48], [49] or advanced architecture [50], and also
achieve promising performance.

B. IvS Face Recognition

The studies about IvS face recognition are very rare
although it faces so many challenges. To our best knowledge,
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the first work about IvS face recognition is first studied
by Starovoitov et al. [51], Starovoitov and Samal [52]. The
authors employ the Hough Transform to localize the eyes.
Then the whole face region is cropped and gradient maps
are computed as feature maps for recognition. Recently,
Shi and Jain [53], [54] and Zhu et al. [12] first apply the
deep learning technology to this problem. Shi and Jain [53],
[54] propose DocFace/DocFace+ with a Dynamic Weight
Imprinting (DWI), which allows faster convergence and
more generalizable representations. Zhu et al. [12] propose
a dominant prototype softmax (DP-softmax), which makes
deep learning applicable to large-scale classes. More recently,
Albiero et al. [55] study the problem of IvS face recognition
across age differences in adolescence. Our work is different
from previous works. We propose two novel algorithms,
namely CB-HEM and PLB, both of which help the network
capture more difficult samples beyond the limitation of GPU
memory.

C. Deep Metric Learning

Deep metric learning aims to learn a feature embedding
space with large inter-variations while small intra-variations
according to pairwise distances or similarities [18], [19],
[56]-[61]. In those methods, contrastive loss [56] and triplet
loss [18] are two classical deep metric learning methods.
Contrastive loss learns a discriminative metric to narrow
the distance of positive pairs and enlarge the distances of
negative pairs to be large than a fixed threshold. For triplet
loss, it encourages the features of a positive pair is farther
than those of a negative pair (with respect to the same
anchor) by a given margin. Extended from contrastive and
triplet losses, quadruplet [19] and histogram loss [58] are
also proposed in recent work. Recent pair-based losses aim
to explore the full pair-wise relations between samples in a
mini-batch. For example, N-pair loss [62] and Lifted Structure
loss [57] are proposed to associate an anchor sample with
a positive sample and multiple negative samples. Similar to
triplet loss, those two losses [57], [62] learn to pull the positive
to the anchor while pushing the negatives away from the
anchor sample. Moreover, Ranked List loss [63] considers
all positive and negative samples in a batch. Multi-Similarity
(MS) loss [60] considers all pair in a batch and assigns a
weight to each pair, which helps the network focus on useful
pairs. Recently, proxy-based losses are proposed to improve
the efficiency by employing some representative proxies for
calculations. The classical losses including Proxy-NCA [64],
Proxy-Anchor [65], SoftTriple [66]. For example, Proxy-
Anchor assigns each class with a proxy, and then calculate
the loss based on all pairs among all proxies and all samples.
Sampling plays an important role in pair-based metric learning.
Thus, hard mining [20], [67], [68] is proposed to improve
training efficiency. Hermans et al. [20] propose a batch hard
example mining in triplet loss, where only the hardest positive
and negative pairs are selected for training, which improves
the feature discrimination by learning the semantics from hard
sample pairs. However, the batch hard example mining usually
suffers from the GPU memory, where the hard sample pairs
can only be selected from the current batch of a limited size.
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An illustration of the two-step training manner for IvS face

III. THE PROPOSED APPROACH

An illustration of the proposed method is shown in Fig. 2,
where a two-stage training manner is employed to learn an
effective model for IvS face recognition. More specifically, the
network is first pretrained on MS-Celeb-1M [17] of general
face recognition with AM-softmax loss function [8], [9]. Then,
a metric learning way is employed to finetune the network on
the IvS dataset. In the second stage, both triplet and quadruplet
losses are employed as the loss function. Besides, two novel
algorithms namely CB-HEM and PLB are proposed to select
more difficult sample pairs for training.

A. Triplet Loss

Triplet loss [18] is learned on a series of triplets
{Xa:Xp, Xu}, where X4, X, and X, indicate the feature vectors
of anchor, positive and negative samples, respectively. Math-
ematically, the triplet loss can be represented as:

>

a,p,n
Ya=Yp7#Yn

Lyyi = [d (x4, Xp) — d(Xa, Xn) +m1]+ (1)

where y; indicates the label of the feature vector x;, and
[z]+ = max(z, 0). m| represents the margin hyperparameter
to control the differences of intra- and inter- distances. In our
experiments, m; is set to 0.2 by our experience. d(ry, 2)
indicates a metric function to measure the distance between
r; and rp and we set d(ry, ) = [[r; — ra|l5.

B. Quadruplet Loss

Different from triplet loss, quadruplet loss learns features
according to the relative distance between arbitrary positive
and negative pairs. We define a quadruplet as {x,-, X, X[, xk},
where x;, X; come from the same identity and x;, X; from any
two different identities. The quadruplet loss is represented as:

> ld(kxi,x)) )
i,j,l,k
Vi=Vj, VIF Yk

Lyua = —d(x;, X) + m2]+

where m» indicates the margin hyperparameter and it is set to
0.2. As shown in the above equation, the quadruplet loss aims
to make the distances between any two positive samples less
than that of any two negative samples.
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An illustration of the proposed Cross-Batch Hard Example Mining (CB-HEM). Our CB-HEM can generate cross-batch hard triplets to train the

network more effectively. We first conduct an intra-batch comparison to select the hard positive pairs from the current batch. Then, we compare them with
a feature queue containing the features from past batches to select hard negative samples. Those selected hard positive pairs and negative samples form
cross-batch hard triplets, which will be retrained to improve the network’s discriminative capability.

C. Batch Hard Example Mining

The triplet loss with B-HEM [20] is an improved version
of the original semi-hard triplet loss [18]. Assume each batch
contains N images and a certain number of identities with
several images per identity. Then, each image would be set
as the anchor sample and the hardest positive and negative
samples with respect to each anchor would be selected within
a batch when formulating the triplets for training. The triplet
loss with B-HEM can be formulated as:

hardest positive hardestnegative

N
DL max d(xe,Xp)— min d(Xe, Xa)+mils

Ya=Yp YaFVn

Lbh _

tri —
a=1

3)

Inspired by the above formula, we also can formulate a hard
example mining for the quadruplet loss. We first traverse all
positive and negative pairs, and select the most difficult K
positive and K negative pairs. Then those selected pairs are
randomly paired to form hard quadruplets for computing the
quadruplet loss. In our experiments, K is set to be equal to
the batch size N. The quadruplet loss with B-HEM can be
written as:

hardK positive  hardK negative

bh
L, = > [ dxi,x) — dxi,x) +mal, 4)
(NS e
(1, k)eNhardK
where PZ“?;“( and Ng%fK indicate the selected hard positive

and negative pairs.

D. Cross-Batch Hard Example Mining

In B-HEM, the hard sample pairs are only selected from the
current batch while the samples of past batches are ignored.
Although the network is updated at each iteration, but the
features of nearby iterations won’t be changed so much.
Thus, the samples in the past batches also can be important
references when selecting the hard sample pairs in the current
batch. Inspired by this, we propose a CB-HEM, which extends

the selecting space to nearby M batches (a current batch and
M — 1 past batches). An illustration of our proposed CB-HEM
is shown in Fig. 3 and the details of the algorithm is shown in
Algorithm 1. Given a batch of images I = [Ij,---Iy] and
corresponding labels Y = [y, -, yn], the corresponding
batch features X = [x, - - - Xy ] are extracted by the network
F (-; ©), where © denotes the network parameters needed to
be learned. Based on the batch features X and labels Y, we
first capture the batch hard triplets and quadruplets according
to Eq. (3) and Eq. (4), respectively. Then, the network is first
updated by using B-HEM according to the summed loss as
following:

Lbh — [ bh

tri

+ Lbh

qua

(5)

Subsequently, we detach X from the computational graph and
denote them as X, which becomes just numerical vectors of
taking up a small amount of GPU memory. Then, we collect
detached features X, images I and labels Y by using three
queues, namely QOx, O and Qy, respectively.

Later, we aim to capture the cross-batch hard triplets
according to X and Qx. Note each identity only contains
two images, and these two images would be placed into the
same batch. In other words, the selection of positive sample
pairs can be only considered in the current batch. Thus,
we first select the hard positive sample pairs from the current
batch according to the pair-wise distance matrix D; € RV*V
across all within-batch samples. According to the idea of hard
example mining, only a certain small proportion (denoted by r)
of the most difficult positive pairs will be selected out and
their corresponding indexes are denoted as P’l” and P’Z’i. For
convenience, we denote this process as Sel Hard Pos. Later,
a cross-batch comparison is employed to select hard negative
samples. First, a distance matrix D, € RV*MN among the
features of the current batch and past M — 1 batches will
be calculated. Based on D», the hardest negative sample for
each positive sample (with minimum distance) would be found
out. More specifically, for two positive samples (one pair) in
P I and Py i, all of them would find their hardest negative
samples but only the most difficult one will be retained and
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Algorithm 1 Cross-Batch Hard Example Mining

Algorithm 2 Training With Pseudo Large Batch

Input: Training dataset D = {I;,y; }; Feature
extraction network F (-; ©); Learning rate 7;
Number of crossed batches M; The proportion
r of the selected hard pairs.
Output: Feature extraction network F (-; ©).

1 Initialize network F (-; ©);

2 Initialize queues Qy, Qvy, Ox, Q" as empty ;

3 while not convergence do

4 //// training with batch hard example mining

5 Sampling data I = [I1,--- ,In],Y = [y1,- - ,yn] ;

6 Extract batch features X = F (I;0) ;

7 Calculate LY according to Eq. 5;

8 | Update © + © —n?Ltan with SGD;

9 // get into the queues

10 Detach features X = detach(X);

11 EnQueue(Qr, 1),EnQueue(Qy, Y),EnQueue(Qx, X)

12 | //// select cross-batch hard triplets

13 | // intra-batch comparisons

14 Calculate the distance Dy = CalDist(X) ;

15 Pt PLé = SelHardPos(D1,Y, Qy, Q1,7) ;

16 // cross-batch comparisons

17 Calculate the distance Dy = CalDist(X, Ox) ;

18 N = SelHardNeg(D2,Y, Qv, 1, P P5) ;

19 EnQueue(Q', (Pt PLi NH)) ;

20 // out of queues

21 if QueueLength(Qy) >= M then

2 | DeQueue(Qr).DeQueue(Qy ). DeQueue(Qx )
23 end

2 ////retrain the selected cross-batch triplets
25 if QueueLength(Q") > N then

26 P PYé N = DeQueue(Q') ;
27 Extract features for P4, P4 N,
28 Calculate Ly,; according to Eq. (1);
29 Update © < © — ndL‘” with SGD;
30 end

31 end

the corresponding positive sample will be set as the anchor
sample. This process is represented as Sel Hard Neg for short,
and the indexes of selected hard negative samples are denoted
as N Those cross-batch hard triplets (i.e., P!, Py " and
N7y are then input to the queue Q'"'. When the number of
samples in Q""" reaches a certain number (e.g., the batch size
N), we will take the raw images of those hard triplets out,
and input them into the network for training again, where the
network is updated according to Eq. (1).

E. Pseudo Large Batch

As shown in Fig. 1 (b), the better performance can be
achieved when training with a large batch size, where the
harder samples can be discovered. However, limited by GPU
resource, the batch size cannot be set too large. Therefore,
we propose a PLB algorithm as illustrated in Algorithm 2
to virtually increase the training batch size. The core idea in
PLB is to update every PseudoN iterations with using the
accumulated gradients of all those iterations, which virtually
increases the batch size by PseudoN times. Of course, simply
using the accumulated gradients for updating only virtually
increases the batch size, but cannot explore the correlations

Input: Training dataset D = {I,,vy;}; Feature
extraction network F (-; ©); Learning rate 1;
Pseudo expansion times PseudoN.
Output: Feature extraction network F (-; ©).
1 Initialize network F (-; ©);
2 while not convergence do
3 V@:O, Xple[];
4 for iter = 1;iter < PseudoN do
5 Sampling data

I= [117"' 7IN]7Y = [y17"' 7yN]’
6 Extract batch features X = F (I;09) ;
7 X = detach(X), Xplb = [XplIu X] 5
8 Calculate Ly, according to Eq. 7;
1 OLpwy .
9 V("‘) — V@ + PseudoN @gb ’
10 end
11 Update © <~ © — nVO with SGD;
12 end
Ly L+ L0 I
P )
\é\\f’/\\
o 7
§ ! . 1 _5Lpib
5%, ‘."\V®7z PseudoN 00O

l

Update network: @ «— ® —pVO

Fig. 4. An illustration of the proposed Pseudo Large Batch (PLB).

bh
between different iterations. To achieve this, a loss L oross._iter

is constructed to help the network select cross-iteration hard
examples. Mathematically, L can be represented as

cross_iter
follows:
N hardest positive hardest negitive
bh
Liross _iter— 2 max d(Xa, Xp) m)l(n d(Xg, X,) +m1]
a=1 X €Xpip
ya yp YaFYn

(6)

where f(p;b denotes the detached features collected from
previous iterations (see Algorithm 2 for details). In this loss
function, the anchor and positive samples are chosen from
the current iteration (each identity only contains two samples
and all of them would be placed in the same iteration),
while the negative samples can be selected from any pre-
vious iteration. The training loss for each iteration can be
written as:

Ly = L2 + L2 + L2

tri qua cross_iter (7)

Obviously, the term Llc’r oss_irer Captures hard sample pairs
across iterations, which helps to improve the network’s
discriminative capability. Besides, the traditional batch in
CB-HEM can be replaced with our proposed PLB, where the
network is also updated every PseudoN iterations with the
accumulated gradients and the loss function of L% is also

replaced with L, (the part of finding cross-batch hard triplets
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Fig. 5.  Some examples of Private-IvS dataset. Each identity contains two
face images, namely one ID face and one spot face. The ID face is usually in
low resolution due to the image compression, while the spot face is captured
in the unconstrained environment with large variations of illuminations, poses,
background and so on.

and retraining will not be changed). In this way, the proposed
CB-HEM and PLB can be employed simultaneously to train
the network, where the selecting space will be dramatically
expanded by M x PseudoN times.

FE. Algorithm Acceleration

To improve the efficiency of the proposed method, we
conduct the algorithm acceleration from the following aspects:
o Find the hard positive samples based on small distance
matrixes (denoted as A). Each identity contains only two
samples and all of those two samples will be placed in a
same batch. Thus, for the PLB, the hard positive samples
can be selected according to PseudoN small distance
matrixes, each of which contains all pair-wise distances
of the whole batch. Intuitively, find the hardest positive
pairs in a large distance matrix (e.g., a pseudo large batch
with the size of PseudoN - N x PseudoN - N) would
be obviously tough than finding those in a small distance
matrix (e.g., a small batch with the size of N x N).
o Simplifying distance calculation (denoted as B). The
distance between X; and x; is calculated as:

D} = xi —x; P = Inil = 2x7x; + x| ®)

Note that the features are normalized by L2 normaliza-
tion, where ||x;||* = Hx j ILZ = 1. Therefore, the distance
can be calculated by D = 2 — 2x;Txj, where the
. 2 .
calculations of ||x;||> and Hx j H can be omitted.

IV. EXPERIMENTS
A. Datasets

In our experiments, all networks are first pretrained
on MS-Celeb-1M dataset [17], and then finetuned on the
Private-IvS dataset (a private dataset of IvS face recognition)
or Megaface-bisample [69]. Then, we evaluate the proposed
method on three datasets, including the test part of Private-
IvS, Public-IvS [12] and LFW-BLUFR [70], [71]. We will
introduce those datasets in the following.

1) MS-Celeb-IM: MS-Celeb-1M is the largest wild dataset
with containing 10 million images of 98,685 celebrities. All
those images are crawled from the IMDB website! and the
dataset contains much noise. Thus, we use a cleaned version

Thttps://www.imdb.com/
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Fig. 6. The distributions of facial expressions and head poses in Public-
IvS dataset. There are eight types of facial expressions, including angry,
sad, neutral, grimace, disgust, surprised, fear and happy. Moreover, we use
the angles of yaw, pitch and roll to denote a head pose, where different
combinations of yaw, pitch and roll indicate different head poses. The
distributions show large variations in facial expressions and head poses.

of this dataset for training according to the list [72], where
only 5 million images of 79,077 identities have remained.

2) Private-IvS: Private-IvS is the dataset for IvS face recog-
nition, and each identity in this dataset contains two face
images (one ID face and one spot face). The ID face is cap-
tured with frontal face, clean background, neutral expression
and so on, while the spot face is captured by the on-site devices
(e.g., ID card gates), with large variations in background, head
pose, expression, illumination and so on. In our experiments,
we divide this dataset into three subsets: Private-IvS-Train-
L(arge), Private-IvS-Train-S(mall) and Private-IvS-Test, which
contains 2 million, 500,000 and 10,000 identities, respectively.
The Private-IvS-Train-S is a subset of Private-IvS-Train-L, but
the training sets and the test set are non-overlapped. When
evaluating the proposed method, all the images in the test set
are paired, where 10,000 positive pairs and about 400 million
negative pairs are generated for testing.

3) Public-IvS: Public-IvS is a public evaluating dataset for
IvS face recognition. All people in this dataset are public
characters, such as politicians, teachers and researchers and so
on. The images are crawled from the internet, like BaiduBake?
or official pages. After crawling, those images are manually
cleaned by students and staff. We use Baidu Face API® to
analyze the distributions of emotions and head poses on this
dataset as shown in Fig. 6. Finally, this dataset contains 1,262
identities and 5,507 images, and all of those images would be
paired together during the testing stage.

4) Megaface-Bisample & LFW-BLUFR: We also evaluate
the proposed method on the open MF2 dataset [69] following
the Megaface-bisample protocol [12]. MF2 contains 657,559
identities but only two samples are randomly selected for
each identity to mimic the bisample data. In the testing stage,
the model is evaluated following the BLUFR protocol [71]
on LFW [70]. More details about Megaface-bisample and
LFW-BLUEFR can be founded in the work [12].

Zhttp://baike.baidu.com/
3 https://ai.baidu.com/tech/face/detect
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TABLE I

THE ANALYSIS OF M ON PRIVATE-IVS-TEST DATASET. ‘N/A’ DENOTES
THE NETWORK IS ONLY TRAINED BY B-HEM OF TRIPLET AND
QUADRUPLET LOSSES. THE TOP-2 RESULTS ARE HIGHLIGHTED

Verification Rate (VR)

M FAR=le-6 FAR=le-5 FAR=le-4
N/A 82.00 90.40 95.38

2 84.56 92.72 96.76

5 86.18 92.92 96.76

10 86.00 93.24 97.02

20 86.36 93.64 96.98

40 86.92 93.62 97.22

80 87.38 93.62 97.00

B. Settings and Metrics

All face images are detected by FaceBox [73] and then
aligned the face by five landmarks (including two eyes, nose
tip and two mouth corners). Then all faces are cropped and
resized to the size of 120 x 120. In the training stage, the
images are augmented by random flip. We conduct all exper-
iments by using Pytorch, and a Stochastic Gradient Descent
(SGD) with a weight decay of 0.0005 and a momentum of
0.9 is adopted to optimize the network. Following the work [5],
[12], we adopt a 64-layer residual network is adopted as our
backbone. In the first training stage, the network is trained
by using AM-softmax [8], [9] on MS-Celeb-1M. Then, the
network is finetuned on our Private-IvS dataset (e.g., Private-
IvS-Train-L or Private-IvS-Train-S). In both two stages, the
learning rate starts from 0.01 and is reduced by a factor of
10 along with the number of iterations increases. The network
is trained on three NVIDIA GTX 2080Ti GPUs in parallel
with the batch size of 384.

In the evaluation stage, both the features of the raw image
and its flipped copy would be extracted and then concatenated
together as the final face feature. For any two face images, the
score is obtained by calculating the cosine distance between
their corresponding features. The ROC curve is employed as
the evaluating metric. The verification rate (VR) at low false
acceptance rate (FAR) important reference criteria especially
in real application since false acceptance gives higher risks
than false rejection.

C. Parameter Analysis

In this section, we mainly investigate the effects of some
parameters on performance, including the number of crossed
batches M, the proportion r of the selected hard pairs in
CB-HEM and the pseudo expansion time PseudoN in PLB.
In this section, all networks are trained with Private-IvS-Train-
S and evaluated with Private-IvS-Test.

1) The Number of Crossed Batches M in CB-HEM: M
indicates the number of crossed batches that can be employed
to select cross-batch hard triplets. We conduct the experiments
with various M to search its optimal value (the proportion r
of the selected hard pairs is set to 0.4). The network only
trained by B-HEM of triplet and quadruplet losses is labeled
as ‘N/A’ is also taken for comparisons, which can clearly show
the performance improvement of each setting.

As shown in Table I, the optimal performance is hardly
achieved when M is set to too small or too large. When M
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TABLE II

THE ANALYSIS OF RATIO r ON PRIVATE-IVS-TEST DATASET. ‘N/A’
DENOTES THE NETWORK IS ONLY TRAINED BY B-HEM OF TRIPLET
AND QUADRUPLET LOSSES. THE TOP-2 RESULTS
ARE HIGHLIGHTED

- Verification Rate (VR)
FAR=1e-6 FAR=Ie-5 FAR=Ile-4
N/A 82.00 90.40 95.38
0.05 84.50 93.24 96.80
0.1 86.32 93.38 97.00
0.2 85.90 93.74 97.22
0.4 86.92 93.62 97.18
0.6 86.68 93.30 97.02
0.8 86.54 93.24 96.80
1.0 85.88 93.14 96.62
1.2 85.10 91.94 96.34
1.4 85.00 91.66 96.18

is set to too small (e.g., 2), the space of sample selection
is only expanded a few times. At this time, the performance
improvement is also relatively small, and there is still potential
to pick harder cross-batch triplets when employing a larger M.
When M is set to too large, the network has been updated
many times and the features of past early batches may be out-
of-date, which is less helpful for the network to select harder
sample pairs. As shown in Table I, when M is set to be larger
than 40, it is hard to further improve the performance while
the computations will increase a lot. Thus, M = 40 is an
optimal value with achieving the highest verification rates at
FAR=1e-5 and FAR=1e-6. At the same time, the computa-
tions when setting M to 40 will not increase too much. M
will be set to 40 in the following experiments.

2) The Proportion r of the Selected Hard Pairs in CB-HEM:
r indicates the proportion of the number of the selected hard
positive pairs and the size of a batch. Lots of experiments
with varying r from 0.05 to 1.4 are conducted to find an
optimal value. Note that r > 1 indicates an oversampling
on the hardest positive sample pairs (also the cross-batch
hard triplets) is employed. For example, r = 1.4 indicates
40% of the most difficult positive sample pairs are repeated
(we select negative samples for those pairs in a same way).
As shown in Table II, it achieves the best performance at
FAR=1e-5 and FAR=1e-6 when setting r to 0.2. Although
the higher performance can be achieved at FAR =1le-4 when
r = 0.4 is employed, lots of computations are brought (twice
as many triplets will be retrained). To balance the accuracy
and efficiency, we adopt » = 0.2 in the following experiments.
Moreover, ‘N/A’ indicates the model trained only with B-HEM
of triplet and quadruplet losses but without CB-HEM. Take
‘N/A’ for comparisons helps us to know the improvement of
each setting in CB-HEM. When r is too small, the learning
of hard examples will be far from enough. When r is large,
lots of easy pairs would be selected, which is useless for
network training. What’s more, experimental results show that
employing an oversampling hardly improves the performance.
This may be because the repeated samples contain much
redundant information.

3) The Expansion Times PseudoN in PLB: In PLB,
we have virtually increased the batch size by PseudoN times.
Generally speaking, large PseudoN means the network can
select more difficult cross-batch triplets in a large set. At the
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TABLE III

THE ANALYSIS OF PseudoN ON PRIVATE-IVS-TEST DATASET. ‘N/A’
DENOTES THE NETWORK IS ONLY TRAINED BY THE PROPOSED
CB-HEM. THE TOP-2 RESULTS ARE HIGHLIGHTED

Verification Rate (VR)
PseudoN | ~prR—Tc6 FAR=1e-5 FAR=Ic4
N/A 85.90 93.74 97.22
2 88.70 94.82 97.88
5 89.18 95.40 98.06
10 88.40 95.24 97.88
15 87.86 94.78 97.82
1.000 1.000
0.975 4 0.975 -
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&
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Fig. 7. Ablation studies on Private-IvS-Test dataset. The results shown in
the left and right figures are trained on Private-IvS-Train-L and Private-IvS-
Train-S, respectively. ‘Tri’, ‘Qua’, ‘CB-HEM’ and ‘PLB’ indicate triplet loss,
quadruplet loss, CB-HEM and PLB, respectively.

same time, the number of the network updates will be reduced
by PseudoN times (the updates of retraining samples are
not included) and the training efficiency has dropped. Thus,
large PseudoN does not necessarily get good performance
although it helps to select more difficult sample pairs. To select
an optimal value for PseudoN, a series of experiments are
conducted as shown in Table III. The highest performance is
achieved when setting PseudoN to 5, where the accuracies
at FAR=1e-4, FAR=1e-5 and FAR =le-6 reach to 98.06%,
95.40% and 89.18%. In the following experiments, the value
of PseudoN is set to 5.

D. Ablation Studies

The ablation studies are conducted with the employed
components, including Quadruplet loss (Qua), CB-HEM and
PLB. The experiments are conducted on Private-IvS dataset,
where both Private-IvS-Train-L and Private-IvS-Train-S are
employed for training, and Private-IvS-Test and Public-IvS
are employed for testing. The baseline model is trained with
the triplet loss and B-HEM, then we gradually add the above
components to the baseline model.

As shown in Fig. 7 and Fig. 8, all the above components
can improve the performance on both Private-IvS-Test and
Public-IvS datasets whether training on Private-IvS-Train-L
(a large set with millions of classes) or Private-IvS-Train-
S (a small set with hundreds of thousands of classes). For
example, when training on Private-IvS-Train-L, quadruplet
loss, CB-HEM and PLB improve the performance by about
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Fig. 8. Ablation studies on Public-IvS dataset. The results shown in the
left and right figures are trained on Private-IvS-Train-L and Private-IvS-
Train-S, respectively. ‘Tri’, ‘Qua’, ‘CB-HEM’ and ‘PLB’ indicate triplet loss,
quadruplet loss, CB-HEM and PLB, respectively.

TABLE IV

THE COMPARISONS ON PRIVATE-IvS DATASET. THE TOP-2
RESULTS ARE HIGHLIGHTED

Verification Rate (VR)

Method FAR=Ic:6 FAR=Ic-5 FAR=Ic4
AM-softmax’ 4546 62.10 78.28
Angular™ [59] 82.36 90.92 95.82
Lifted* [57] 82.76 91.92 96.38
MS Loss* [60] 78.80 89.16 95.10
N-pair* [62] 77.38 87.84 94.84
Tri + B-HEM® 82.00 90.40 95.38
Tri + B-HEM' 82.82 91.42 96.08

Ours* 89.18 95.48 98.06

Ours’ 92.10 96.50 98.30

1 only pretrained on MS-Celeb-1M; finetuned on * Private-IvS-

Train-S and T Private-IvS-Train-L.
4.5%, 1.1% and 1.5% at FAR=1e-6, respectively. When train-
ing on Private-IvS-Train-S, the corresponding performance is
improved by 1.9%, 1.5% and 3.1%, respectively. Those per-
formance improvements verify the effectiveness of proposed
components, and also show that training with very hard sample
pairs helps to improve the model’s discriminative capability.
Note that the Public-IvS dataset is collected from the web.
It still contains some noises although it has been manually
cleaned, which makes the performance improvement very
difficult.

E. Comparisons to Prior Arts

1) Results on Private-IvS Dataset: For Private-IvS dataset,
the baseline method, namely training the network with Triplet
loss and B-HEM (denoted as Tri + B-HEM)), is also employed
for comparisons. Moreover, we also place the performance of
our pretrained model (only pretrained on MS-Celeb-1M with
AM-softmax) to show the benefits of finetuning on IvS dataset.
Besides, we also implement four classical methods in metric
learning, namely Angular [59], Lifted [57], MS Loss [60]
and N-pair [62], for comparisons. The results are shown in
Table IV. The pretrained model of AM-softmax can only
achieve a very low performance on Private-IvS-Test dataset.
More specifically, the accuracy at FAR=1e-6 is lower about
40% compared with our baseline method. This also shows that
finetuning on IvS dataset is very necessary to bridge the gap
between the datasets of IvS face recognition and general face
recognition. Compared with the baseline method, the perfor-
mance can be improved by 9.28% and 9.96% when training

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on April 29,2022 at 09:16:08 UTC from IEEE Xplore. Restrictions apply.



3232

TABLE V

THE COMPARISONS ON PUBLIC-IvS DATASET. THE TOoP-2
RESULTS ARE HIGHLIGHTED

Verification Rate (VR)

Method FAR=1c-5 FAR=Ic-4 FAR=Ic3
Angular™ [59] 93.00 96.82 9871
Lifted* [57] 89.48 95.28 98.42
MS Loss* [60] 90.43 95.77 98.38
N-pair* [62] 87.82 94.09 97.66
COTS-1 [54] 83.78 39.92 92.90
COTS-2 [54] 94.74 97.03 97.88
CenterFace [41] 35.97 53.30 69.18
SphereFace [5] 53.21 69.25 83.11
DocFace+ [54] 91.88 96.48 98.40
LBL(DPS) [12] 93.62 97.21 98.83
Tri + B-HEM® 88.52 9456 98.13
Tri + B-HEM' 93.16 96.93 98.75
Ours* 94.43 97.72 98.81
Ours’ 95.95 98.03 99.01

training on * Private-IvS-Train-S and T Private-IvS-Train-L.

TABLE VI

THE COMPARISONS ON LFW-BLUFR FOLLOWING THE MEGAFACE-
BISAMPLE. THE BEST RESULTS ARE HIGHLIGHTED

Verification Rate (VR)
Method FAR=1e.5 FAR=lc4 TAR=1c3
Lifted [57] 53.45 75.46 90.50
N-pairs [62] 50.30 73.40 90.16
LBL(DPS) [12] 73.86 88.03 95.68
Tri + B-HEM 61.93 85.40 9443
Ours 74.86 92.24 96.87

on Private-IvS-Train-L and Private-IvS-Train-S, respectively.
The considerable improvements show the proposed method
can markedly enhance the model’s discriminative capability.

2) Results on Public-IvS Dataset: For Public-IvS dataset,
we compare the proposed method with previous state-of-the-
art methods as shown in Table V. In addition to academic
methods, two Commercial-Off-The-Shelf (COTS) face match-
ers, namely COTS-1 and COTS-2, are also employed for
comparisons. The proposed method achieves outperforms all
previous methods. For example, the proposed method trained
on Private-IvS-Train-L outperforms LBL(DPS), DocFace+
and COTS-2 by 2.33%, 4.07% and 1.21% at FAR=le-5,
respectively. When training on Private-IvS-Train-S (only
1 million images of 500 thousand identities are included), our
method also can achieve a very high accuracy of 94.48%,
which is higher than most previous methods, e.g., LBL(DPS)
and DocFace+. Note that LBL(DPS) is trained with about
4 million images of 2 million identities, which are much more
than our Private-IvS-Train-S’.

3) Results on LFW-BLUFR Dataset: For LFW-BLUFR
dataset, LBL(DPS) [12], Lifted Struct [57], N-pairs [62]
and our baseline method Tri + B-HEM are taken for com-
parisons. For N-pairs and Lifted Struct, the results in the
work [12] are reported. Our approach performs best with
achieving the verification rate of 74.86%, 92.24% and 96.87%
at FAR=1e-5, FAR=1e-4 and FAR=1e-3, respectively. The
proposed method improves the previous best accuracy by
about 1.0% at FAR=1e-5, which shows the proposed method
also can perform well on bisample face dataset in the wild.

F. Discussions

1) Algorithm Acceleration: The experimental results of
algorithm acceleration are shown in Fig 9. The modification
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Fig. 9. Experimental results of the proposed algorithm acceleration. In both
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experiment without A and B, with A and with A and B, respectively. The left
and right figures show comparisons of time consumption and performance,
respectively.
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Fig. 10. (a) Experimental results of using Contrastive loss; (b) Comparisons
of Tri+Qua+CB-HEM with using different settings (M=40, p=0.2 vs. M=5,
p=0.8).

A (denoted by ‘w/ A’, finding the hard positive samples
based on many small distance matrixes rather than a large
distance matrix) reduce the training time by about 20% (from
120 minutes to 96 minutes for training an epoch) without
degrading performance. When further adding the modification
B (denoted by ‘w/ AB’, simplifying distance calculation), the
performance keeps unchanged. For time consumption, it can
only be reduced a little bit with the modification B, which
may due to that the amount of distance calculation is relatively
small and it is calculated on GPU.

2) Experiments With Contrastive Loss: To further verify the
effectiveness of the proposed CB-HEM and PLB, we also
conduct the experiments with Contrastive Loss (denoted as
‘Cont’). The margin of contrastive loss is set to 1.2, and the
settings of CB-HEM and PLB are the same as above (M = 40,
p = 0.2, PseudoN = 5). The experimental results are
shown in Fig. 10 (a). When training with Contrastive loss, our
CB-HEM and PLB also can improve the performance by a lot.
For example, CB-HEM and PLB improve the accuracy about
6% and 5% at FAR=le-5, respectively. The improvements
show the generality of our proposed CB-HEM and PLB.

3) How About Using a Small M and a Large r?: The
parameters M and r are highly coupled. To select promising
values for those two parameters in an efficient way, we
first take experiments to determine the value of M and then
search the best value for . According to our experiments in
Section IV-C, a large value for M = 40 and a small value for
r = 0.2 are finally determined. How about the performance
when using a small M and a large r? Here, we take a series of
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TABLE VII

DEEP ANALYSIS ON PESUDO LARGE BATCH. ALL NETWORKS
ARE TRAINED ON PRIVATE-IVS-TRAIN-S AND EVALUATED
WITH PRIVATE-IvS-TEST

Verification Rate (VR)
Method FAR=1c-6 FAR=Ic-5 FAR=Ic4
T 82.00 90.40 95.38
Tri+PLB-Plain 80.76 90.26 95.68
Tri+PLB 84.16 91.76 96.50
Qua 80.60 90.88 95.90
Qua+PLB-Plain 80.96 90.98 96.24
Qua+PLB 83.66 92.24 96.78
Tri+Qua 8430 92.54 96.64
Tri+Qua+PLB-Plain 83.66 92.24 96.78
Tri+Qua+PLB 85.60 92.66 97.02
Tri+Qua+CB-HEM 85.90 93.74 97.18
Tri+Qua+CB-HEM+PLB-Plain | 88.40 94.90 97.66
Tri+Qua+CB-HEM+PLB 89.18 95.40 98.06

experiments (gradually change M from 40 to 5 while r from
0.2 to 1). The experimental results are shown in Fig. 10 (b).
Generally, training the network with a larger M and a small
r (e.g., M =40 and r = 0.2) can achieve better performance
than that of using a small M and a large r (e.g., M =5 and
r = 1). Intuitively, using a large M enlarges the selecting
space of cross-batch hard triplets and using a small r can help
the network to select the most difficult positive sample pairs
for training. This may be the reason why using a large M and
a small r can achieve better performance.

4) Deep Analysis on PLB: In this Section, a comprehensive
study on PLB is conducted. We first analyze how much
improvement PLB will bring to each method, with conducting
the experiments with or without PLB settings (e.g., Tri vs.
Tri+PLB, Qua vs. Qua+PLB and so on). Moreover,
to further verify the effectiveness of PLB, a plain setting
without Lé’f’ossiit o is employed for comparison. We denote
this plain setting as PLB-Plain. Actually, PLB-plain is simply
aggregating the gradients from multiple iterations to update
the network and there are no connections among different
iterations. The experimental results are shown in Table VII.
For our PLB, it can stably improve the performance on all
methods (including Tri, Qua, Tri+Qua, Tri+-Qua+CB-HEM).
However, the performance is hardly improved by using
PLB-Plain except for Tri+Qua+CB-HEM+PLB-Plain.
For Tri+Qua+CB-HEM+PLB-Plain, using PLB-Plain
can improve its performance because it can enlarge the
selecting space for CB-HEM to select harder sample pairs
for training. In this way, the performance improvements
come form CB-HEM rather than PLB-Plain itself. This also
shows simply that aggregating the gradients from multiple
iterations/runs hardly improves the performance.

5) Visual Assessment: Fig. 11 and Fig. 12 shows the falsely
classified images on Public-IvS and Private-IvS-Test datasets,
respectively. In Private-IvS-Test dataset, the failures of false
accept and false reject pairs may come from the low res-
olution, poor illumination, extreme pose, eyeglasses and so
on. In Public-IvS, the failures come from two parts. One is
external factors as explained above and the other is noises,
where the labels of some pairs are wrong. For example, the
first and second columns in Fig. 11 show the faces of the same
identity, but the dataset annotates them as different identities.
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Fig. 11. Falsely classified images (both false accept and reject pairs) in
Public-IvS-Test datasets at FAR=1e-5. Some noises of Public-IvS dataset are
also shown in the figure.
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Fig. 12.  Falsely classified images (both false accept and reject pairs) in
Private-IvS datasets at FAR=1e-5.

V. CONCLUSION

ID vs. Spot face recognition plays an important role in
our daily life. In this paper, CB-HEM and PLB have been
proposed to train the network with very hard sample pairs,
which improves the network’s discriminative capability. Dif-
ferent from the previous B-HEM, the proposed CB-HEM
can select hard sample pairs from past batches rather than
only the current batch. For PLB, it virtually increases the
batch size by updating the network once every few iterations
with the accumulated gradients. With CB-HEM and PLB, the
hard sample pairs can be selected from a large image space
hundreds of times larger than the current batch space, which
breaks through the limitation of GPU memory. Extensive
experiments on IvS face datasets have verified the effectiveness
of the proposed CB-HEM and PLB.
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